气态源分子束外延材料生长及特性和量子级联激光器材料生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文围绕量子级联激光器(QCL)的材料生长、特性和气态源分子束外延(GSMBE)技术为主线展开。本文针对量子级联激光器对InP基、GaAs基异质纳米结构材料的要求,对材料的气态源分子束外延生长、质量控制和特性进行了深入的研究和分析,达到有所发现、有所创新,指导器件结构和生长工艺优化,研制出器件质量的QCL材料。主要结果如下:
     1、用GSMBE技术生长了高质量的与InP和GaAs晶格匹配的Ⅲ-Ⅴ族基础材料,包括InP衬底上生长InP、InGaAs、InAlAs和在GaAs衬底上生长AlGaAs等。其中三元系外延材料的X射线衍射结果表明外延层的半峰宽仅略大于衬底半峰宽,达到了共格生长。由于作为QCL有源区阱层材料的InGaAs的质量对QCL的性能影响显著,研究了不同生长温度对InGaAs材料的结晶质量、电学和光学特性的影响,以及生长温度对InP材料的表面缺陷密度和电学性能的影响,获得了生长InP和QCL材料的优化条件。
     2、用X射线衍射方法研究了InP基InGaAs、InAlAs双轴应变体系。定量计算了材料的临界厚度与组分的关系。在X射线对称衍射的基础上,加入了非对称衍射方法,精确标定了应变材料的弛豫比例。发现随着InAs摩尔组分的变化,In_xGa_(1-x)As、In_xAl_(1-x)As两种材料外延层从完全应变到完全弛豫的组分区间比较小,x的变化范围都在0.1以内。所生长的压应变In_xGa_(1-x)As(x>0.53)材料的部分应变区间要大于张应变的In_xAl_(1-x)As(x<0.52)材料的部分应变区间。
     3、研究了InP基InGaAs、InAlAs和GaAs基A1GaAs材料的组分对Si掺杂行为的影响,发现InGaAs材料的掺杂浓度不受组分的影响,而后两种材料都有类似“V”形的掺杂谷,并且InAlAs材料还存在两个Si掺杂隙。揭示了两种含Al材料的掺杂谷都发生在直接-间接能带的转换点附近,表明能带转换对掺杂浓度有非常显著的影响,从能带理论和Hall测试两方面都做出了定性的解释。对InAlAs材料的变温霍尔研究表明,在掺杂谷附近它的施主离化能增加得很快,这也从实验上证实了能带类型转换点附近施主能级的异常变化。
     4、研究了2英寸InP基晶格匹配的InGaAs和InAlAs材料的组分均匀性,分析了生长条件和生长方法对均匀性的影响,获得了组分波动小于±0.1%的InGaAs、InAlAs材料,为QCL和其它器件结构的生长提供了大面积均匀性的保证。研究了GSMBE单原子层控制方法,设计了精确标定材料生长速率的实验,并分别应用于晶格匹配和应变补偿材料体系,所生长的QCL有源区结构实际厚度与设计厚度误差小于2%,表明这种标定方法非常可靠。
     5、研究了外延材料表面缺陷的起因和降低缺陷密度的途经。采用特殊温区结构的Ga和In束源炉以及科学地调控升降温过程,可使外延材料表面缺陷密度从10~3/cm~2降至10/cm~2,为研制高质量激光器打下优良的材料品质基础。
     6、用GSMBE技术生长了一系列F-P腔和DFB量子级联激光器材料,研究了不同的注入区掺杂浓度及二元或三元系波导包覆层对QCL器件性能的影响。在亚洲首先研制出5~10gm范围内多模F-P腔QCL,实现了低温连续和室温脉冲激射。器件测试结果表明降低注入区的掺杂浓度有利于降低阈值电流密度,并且InP的波导包覆层比InAlAs有更好的散热性能。所生长的QCL结构在亚洲首先研制出7.4、7.6、7.7、8.4μm单模DVB-QCL,低温和室温阈值电流最低分别达到了574A/cm~2(70K)和970A/cm~2,最高连续工作温度达到了135K,并被成功地应用于探测N_2O气体。
     本论文对GSMBE技术、InP基和GaAs基基础材料以及QCL器件结构材料的生长优化和特性研究,为量子级联激光器材料与器件的研制提供了支持和可靠依据,并为后续的MBE方面的工作提供了有参考价值的信息。
This dissertation mainly focused on the gas source molecular beam epitaxy (GSMBE) technology and the optimization growth of quantum cascade laser (QCL) materials. The growth conditions and properties of III-V group fundamental materials were also investigated as the high material quality required in QCL fabrication. The main results achieved in this work could be summarized as follows:
     1. High quality III-V group materials lattice-matched with InP and GaAs were grown by GSMBE, including InP, InGaAs, InAlAs on InP, and AlGaAs on GaAs. The best FWHM of XRD of the three kinds of ternaries is only wider than that of the substrates, indicating coherent growth and high single crystal qualities. Since the performance of QCLs is influenced remarkably by the quality of the InGaAs layers that act as quantum wells, the crystal qualities, electrical and optical properties of InGaAs were investigated with different growth temperatures. Likewise, the surface defect density and electrical properties dependent on growth temperature of InP layers were investigated. The results show that the best growth temperature for InP is 40℃lower than InGaAs, implying that the growth temperature has to be regulated during the GSMBE growth of QCL structures containing InP layers.
     2. The InP based In_xGa_(1-x)As (x > 0.53) and In_xAl_(1-x)As (x < 0.52) strained system were investigated by using XRD. The critical thickness versus material composition was evaluated. The relaxation ratio of strained layers was accurately calibrated by the integration of symmetric and asymmetric XRD. It was found that the composition intervals from the full strained layers to the full relaxed ones were quite narrow for both materials, and the span of x was less than 0.1.
     3. The Si incorporation behaviors in InP-based InGaAs, InAlAs and GaAs-based AlGaAs were investigated respectively for full composition ranges. The doping concentration of InGaAs layers were not affected by its composition, whereas, InAlAs and AlGaAs layers both exhibited a doping valley, locating at the direct-indirect bandgap crossover. At the both sides of InAlAs doping valley, there were other two doping gaps which showed high electrical resistance. The doping valley could be interpreted by both energy band theory and Hall effect measurement theory. The rise of donor ionization energy of Si-doped InAlAs was revealed near the doping valley by employing Hall effect measurement dependent on temperature, which gave us direct proof for the abnormal behavior of the donor energy at the crossover points.
     4. Composition uniformity of InGaAs and InAlAs lattice-matched layers grown on 2" InP substrates was studied. The composition fluctuation less than 0.1% was achieved for both materials, which guaranteed the uniformity for the growth of device structures. A monolayer control method was developed by using superlattice samples and XRD. This method was applied to calibrate the growth rate for both lattice-matched and strain-compensated QCL active cores. The thickness error between the real active core and the design is less than 2%.
     5. The origin of the surface defects of layers was studied. The defect density was reduced from 10~3/cm~2 to 10/cm~2 by using the cells with special temperature zone for Ga and In, which laid an excellent material foundation for the development of high quality lasers.
     6. Several kinds of F-P and DFB QCL structures were grown by GSMBE, during which the device performance was investigated and compared for different injector doping concentration, as well as binary or ternary waveguide cladding. Several multi-mode F-P QCLs in the range of 5-10μm were realized for the first time in Asia. The devices could operate in CW mode at LT and pulsed mode at RT. It was shown that low threshold current density could be achieved by reducing the injector doping concentration, and the waveguide cladding of InP had better thermal properties than InAlAs. Single-mode DFB-QCLs with the wavelength of 7.4, 7.6, 7.7, 8.4μm were also fabricated for the first time in Asia. The threshold current densities at LT and RT were as low as 574A/cm~2 (70K) and 970A/cm~2 respectively. CW operation in both F-P and DFB QCLs was achieved at 135K. N_2O gas sensing has been demonstrated by using our own DFB-QCLs as light sources.
引文
[1] K.G. Gunther, Z. Naturforsch, 13a, 1081 (1958).
    [2] John E. Davey, Titus Pankey, "Epitaxial GaAs Films Deposited by Vacuum Evaporation," J. Appl. Phys. 39, 1941 (1968).
    [3] J.R. Arthur, "Vapor pressures and phase equilibria in the Ga-As system," J. Phys. Chem. Solids 28, 2257(1967).
    [4] J.R. Arthur, Jr., "Interaction of Ga and As2 Molecular Beams with GaAs Surfaces," J. Appl. Phys. 39, 4032 (1968).
    [5] A.Y. Cho, "'Morphology of Epitaxial Growth of GaAs by a Molecular Beam Method: The Observation of Surface Structures," J. Appl. Phys. 41, 2780 (1970).
    [6] A.Y. Cho, "Film Deposition by Molecular Beam Techniques," J. Vac. Sci. Tech. 8, S31 (1971).
    [7] A.Y. Cho, "GaAs Epitaxy by a Molecular Beam Method: Observations of Surface Structure on the (001) Face," J. Appl. Phys. 42, 2074 (1971).
    [8] A.Y. Cho, J. Arthur, "Molecular Beam Epitaxy," Prog. Solid State Chem. 10, 157 (1975).
    [9] P.Clausing, "The Flow of Highly Rarefied Gases through Tubes of Arbitrary Length," Ann. Physik, 12,961 (1932), republished in J. Vac. Sci. Technol. 8, 636 (1971).
    [10] R.P. Iczkowski, J.L. Margrave, S.M. Robinson, "Effusion of Gases Through Conical Orifices," J. Phys. Chem. 67, 229 (1963).
    [11] H.M. Manasevit, "Single Crystal Gallium Arsenide on Insulating Substrates," Appl. Phys. Lett. 15, 156 (1968).
    [12] J.A. Venables. G. D. T Spiller, M. Hanbucken, "Nucleation and growth of thin films," Rep. Prog. Phys. 47, 399 (1984).
    [13] P. M. Petroff, S. P. DenBaars, "MBE and MOCVD growth and properties of self-assembling quantum dot arrays in Ⅲ-Ⅴ semiconductor structures," Superlatt. & Microstruc. 15, 15 (1994).
    [14] G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, "Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures," Science 290, 2277 (2000).
    [15] Y. Chang, J. Zhao, H. Abad, C. H. Grein, S. Sivananthan, T. Aoki, D. J. Smith, "Performance and reproducibility enhancement of HgCdTe molecular beam epitaxy growth on CdZnTe substrates using interfacial HgTe/CdTe superlattice layers," Appl. Phys. Lett. 86, 131924 (2005).
    [16] M. B. Panish, "Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P," J. Electrochem. Soc. 127, 2729 (1980).
    [17] F.J. Morris, H. Fukui, "A new GaAs, GaP, and GaAs_xP_(1-x) vacuum deposition technique using arsine and phosphine gas," J. Vac. Sci. Technol. 11, 506 (1974).
    [18] H. Hirayama, T. Tatsumi, A. Ogura, N. Aizaki, "Gas source silicon molecular beam epitaxy using silane," Appl. Phys. Lett. 52, 1484 (1988).
    [19] H. Hirayama, T. Tatsumi, N. Aizaki, "Gas source silicon molecular beam epitaxy using disilane," Appl. Phys. Lett. 51, 2213 (1987).
    [20] A. Yamada, M. Tanda, F. Kato, M. Konagai, K. Takahashi, "Gas source molecular-beam epitaxy of Si and SiGe using Si_2H_6 and GeH_4," J. Appl. Phys. 69, 1008 (1991).
    [21] W.T. Tsang, "Chemical beam epitaxy of InP and GaAs," Appl. Phys. Lett. 45, 1234 (1984).
    [22] E. Tokumitsu, Y. Kudou, M. Konagai, K. Takahashi, "Molecular beam epitaxial growth of GaAs using trimethylgallium as a Ga source," J. Appl. Phys. 55, 3163 (1984).
    [23] A. Robertson, Jr., T. H. Chiu, W. Y. Tsang, J. E. Cunningham, "A model for the surface chemical kinetics of GaAs deposition by chemical-beam epitaxy," J. Appl. Phys. 64, 877 (1988).
    [24] T. Martin, C. R. Whitehouse, "Modulated-beam mass spectrometry studies of the MOMBE growth of(100) GaAs and In_(0.1)Ga_(0.9)As," J. Cryst. Growth 105, 57 (1990).
    [25] M.T. Wauk, D. K. Winslow, "Vacuum Deposition of AIN Acoustic Transducers," Appl. Phys. Lett. 13, 286 (1968).
    [26] S. M. Bedair, M. A. Tischler, T. Katsuyama, N. A. El-Masry, "Atomic layer epitaxy of Ⅲ-Ⅴ binary compounds," Appl. Phys. Lett. 47, 51 (1985).
    [27] Y. Horikoshi, M. Kawashima, H. Yamaguchi, "Low-Temperature Growth of GaAs and AlAs-GaAs Quantum-Well Layers by Modified Molecular Beam Epitaxy," Jpn. J. Appl. Phys. 25, L868 (1986).
    [28] S. Nagata, T. Tanaka, "Self-masking selective epitaxy by molecular-beam method," J. Appl. Phys. 48, 940 (1977).
    [29] Y. Horikoshi, M. Kawashima, H. Yamaguchi, "Migration-Enhanced Epitaxy of GaAs and AlGaAs," Jpn. J. Appl. Phys. 27, 169 (1987).
    [30] R. Dingle, H. L. Stormer, A. C. Gossard, W. Wiegmann, "Electron mobilities in modulation-doped semiconductor heterojunction superlattices," Appl. Phys. Lett. 33, 665 (1978).
    [31] C. E. C. Wood, G. Metze, J. Berry, L. F. Eastman, "Complex free-carrier profile synthesis by "atomic-plane" doping of MBE GaAs," J. Appl. Phys. 51, 383 (1980).
    [32] J. H. English, A. C. Gossard, H. L. Stormer, K. W. Baldwin, "GaAs structures with electron mobility of 5×10~6 cm~2/V s," Appl. Phys. Lett. 50, 1826 (1987).
    [33] L. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, "Electron mobilities exceeding 10~7 cm~2/Vs in modulation-doped GaAs," Appl. Phys. Lett. 55, 1888 (1989).
    [34] A.Y. Cho, "How molecular beam epitaxy (MBE) began and its projection into the future," J. Cryst. Growth 201, 1 (1999).
    [35] R.N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Carlson, "Coherent Light Emission From GaAs Junctions," Phys. Rev. Lett. 9, 366 (1962).
    [36] M.I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., G. Lasher, "Stimulated Emission of Radiation From GaAs p-n Junctions," Appl. Phys. Lett. 1, 62 (1962).
    [37] Nick Holonyak, Jr., S. F. Bevacqua, "Coherent (Visible) Light Emission From Ga(As_(1-x)P_x) Junctions," Appl. Phys. Left. 1, 82 (1962).
    [38] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, H. J. Zeigler, "Semiconductor Maser of GaAs," Appl. Phys. Lett. 1, 91 (1962).
    [39] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, "Quantum Cascade Laser," Science 264, 553 (1994).
    [40] R. F. Kazarinov, R. A. Suris, "Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice," Sov. Phys. Semicond. 5, 797 (1971).
    [41] R.Q. Yang, "Infrared laser based on intersubband transitions in quantum wells," Superlatt. & Microstruc. 17, 77 (1995).
    [42] C. H. Lin, R. Q. Yang, D. Zhang, S.J. Murry, S.S. Pei, A.A. Allerman, S.R. Kdrtz, "Type-Ⅱ interband quantum cascade laser at 3.8μm," Electron. Lett. 33, 598 (1997).
    [43] C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, "GaAs/Al_xGa_(1-x)As quantum cascade lasers," Appl. Phys. Lett. 73, 3486 (1998).
    [44] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, "Vertical transition quantum cascade laser with Bragg confined excited state," Appl. Phys. Lett. 66, 538 (1995).
    [45] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, "Continuous wave operation of a vertical transition quantum cascade laser above Y=80 K," Appl. Phys. Lett. 67, 3057 (1995).
    [46] F. Capasso, J. Faist, C. Sirtori, "Quantum cascade lasers for the mid-infrared region," Physica Scripta 66, 57 (1996).
    [47] F. Capasso, J. Faist, C. Sirtori, "Comments on quantum cascade lasers," Physica Scripta 66, 113 (1996).
    [48] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, "High power mid-infrared (λ~5 μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
    [49] J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, A. Y. Cho, "Quantum cascade disk lasers," Appl. Phys. Lett. 69, 2456 (1996).
    [50] J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
    [51] D. Hofstetter, J. Faist, M. Beck, U. Oesterle, "Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769 (1999).
    [52] G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers," Science 276, 773 (1997).
    [53] A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, J. Faist, G. Scamarciod, "High-power inter-miniband lasing in intrinsic superlattices," Appl. Phys. Lett. 72, 2388 (1998).
    [54] A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, "A multiwavelength semiconductor laser," Nature 396, 350 (1998).
    [55] A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, "High performance interminiband quantum cascade lasers with graded superlattices," Appl. Phys. Lett. 73, 2101 (1998).
    [56] A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, "Long wavelength superlattice quantum cascade lasers at λ~17 μm," Appl. Phys. Lett. 74, 638 (1999).
    [57] A. Tredicucci, C. Gmachl, M. C. Wanke, F. Capasso, A. L. Hutchinson, D. L. Sivco, S. N. G. Chu, A. Y. Cho, "Surface plasmon quantum cascade lasers at λ~19 μm," Appl. Phys. Lett. 77, 2286 (2000).
    [58] R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, "Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths," Appl. Phys. Lett. 78, 2620 (2001).
    [59] S. Slivken, C. Jelen, A. Rybaltowski, J. Diaz, M. Razeghi, "Gas-source molecular beam epitaxy growth of an 8.5 μm quantum cascade laser," Appl. Phys. Lett. 71, 2593 (1997).
    [60] S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, M. Razeghia, "High-temperature continuous-wave operation of λ~8 μm quantum cascade lasers," Appl. Phys. Lett. 74, 173 (1999).
    [61] S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu, M. Razeghi, "Low-threshold 7.3 μm quantum cascade lasers grown by gas-source molecular beam epitaxy," Appl. Phys. Lett. 74, 2758 (1999).
    [62] J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, "Short wavelength (λ~3.4 μm quantum cascade laser based on strained compensated InGaAs/AlInAs," Appl. Phys. Lett. 72, 680 (1998).
    [63] M, P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, "Short-wavelength (λ≈3.05μm) InP-based strain-compensated quantum-cascade laser," Appl. Phys. Lett. 90, 051111 (2007).
    [64] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho, "High-Power Directional Emission from Microlasers with Chaotic Resonators," Science 280, 1556 (1998).
    [65] M. Beck, J. Faist, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, "Buried heterostructure quantum cascade lasers," Proc. SPIE 3284, 231 (1998).
    [66] C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286, 749 (1999).
    [67] C. Gmachl, A. Tredicucci, F. Capasso, A.L. Hutchinson, D.L. Sivco, A.M. Sergent, T. Mentzel, A.Y. Cho, "High temperature (T≥425K) pulsed operation of quantum cascade lasers," IEE Electron. Lett. 36, 723 (2000).
    [68] C. Gmachl, A. M. Sergent, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, A. Y. Cho, "Improved CW Operation of Quantum Cascade Lasers with Epitaxial-Side Heat-Sinking," IEEE Photon. Technol. Lett. 11, 1369 (1999).
    [69] M. Beck, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, "Buried Heterostructure Quantum Cascade Lasers with a Large Optical Cavity Waveguide," IEEE Photonics Technol. Lett 12, 1450 (2000).
    [70] D. Hofstetter, M. Beck, T. Aellen, J. Faist, "'High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm," Appl. Phys. Lett. 78, 396 (2001).
    [71] D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle M. Ilegems, E. Gini, H, Melchior, "Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler," Appl. Phys. Lett. 78, 1964 (2001).
    [72] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
    [73] T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929 (2003).
    [74] J. Faist, M. Beck, T. AeIlen, E. Gini, "Quantum-cascade lasers based on a bound-to-continuum transition," Appl. Phys. Lett. 78, 147 (2001).
    [75] G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W. Y. Hwang, B. Ishaug, J. Urm, J. N. Baillargeon, C. H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834 (2001).
    [76] R. Maulini, M. Beck, J. Faist, E. Gini, "Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 84, 1659 (2004).
    [77] S. Blasera, D. A. Yarekhab, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 μm," Appl. Phys. Lett. 86, 041109 (2005).
    [78] C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, A. Y. Cho, "Ultra-broadband semiconductorlaser," Nature 415, 883 (2002).
    [79] R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374 (2003).
    [80] A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
    [81] R. Maulini, A. Mohan, M. Giovannini, J. Faist, E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
    [82] L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, J. Faist, "InGaAs-AlInAs/InP terahertz quantum cascade laser," Appl. Phys. Lett. 87, 141107 (2005).
    [83] J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at ~4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
    [84] S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at ~7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
    [85] S.R. Darvish, S. Slivken, A. Evans, J. S. Yu, M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at ~9.6 μm," Appl. Phys. Lett. 88, 201114 (2006).
    [86] A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 ℃ at λ~5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
    [87] J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken, M. Razeghi, "Room-temperature continuous-wave operation of quantum-cascade lasers at λ~4 μm," Appl. Phys. Lett. 88, 041111 (2006).
    [88] J.S. Yu, A. Evans, S. Slivken, S. R. Darvish, M. Razeghi, "Temperature dependent characteristics of λ~3.8 μm room-temperature continuous-wave quantum-cascade lasers," Appl. Phys. Lett. 88, 251118 (2006).
    [89] A.Z. Li, J. X. Chen, Q. K. Yang, Y. C. Ren, "GSMBE grown infrared quantum cascade laser structures," J. Cryst. Growth 201,901 (1999).
    [90] G.Y. Xu, A. Z. Li, Y. G. Zhang, H. Li, "Continuous-wave operation quantum cascade lasers at 7.95 μm," J. Cryst. Growth 278, 780 (2005).
    [91] A.Z. Li, G. Y. Xu, Y. G. Zhang, H. Li, X. Zhang, "Low threshold distribution feedback quantum cascade lasers at 7.6 μm grown by gas source molecular beam epitaxy," J. Cryst. Growth 278, 770 (2005).
    [92] G.Y. Xu, A. Z. Li, Y. Y. Li, L. Wei, Y. G. Zhang, C. Lin, H. Li, "Low threshold current density distributed feedback quantum cascade lasers with deep top gratings," Appl. Phys. Lett. 89, 161102 (2006).
    [93] F. Q. Liu, D. Ding, B. Xu, Y. Z. Zhang, Q. S. Zhang, Z. G. Wang, D. S. Jiang, B. Q. Sun, "Strain-compensated quantum cascade lasers operating at room temperature," J. Cryst. Growth 220, 439 (2000).
    [94] Y. Guo, F. Q. Liu, J. Q. Liu, C. M. Li, Z. G. Wang, "8 μm strain-compensated quantum cascade laser operating at room temperature," Semicond. Sci. Technol. 20, 844 (2005).
    [95] X. Z. Lu, F. Q. Liu, J. Q. Liu, P. Jin, Z. G. Wang, "High Temperature Operation of 5.5 μm Strain-Compensated Quantum Cascade Lasers," Chin. Phys. Lett. 22, 3077 (2005).
    [96] G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, "GaAs/AlGaAs superlattice quantum cascade lasers at λ≈13 μm," Appl. Phys. Lett. 75, 1345 (1999).
    [97] S. Gianordoli, L. Hvozdara, G. Strasser, W. Schrenk, K. Unterrainer, E. Gornik, "GaAs/AlGaAs-based microcylinder lasers emitting at 10 μm," Appl. Phys. Lett. 75, 1045 (1999).
    [98] S. Gianordoli, L. Hvozdara, G. Strasser, W. Schrenk, J. Faist, E. Gornik, "Long-Wavelength (λ=10 μm) Quadrupolar-Shaped GaAs-AlGaAs Microlasers," IEEE J. Quantum Electron. 36, 458 (2002).
    [99] W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, E. Gornik, "GaAs/AlGaAs distributed feedback quantum cascade lasers," Appl. Phys. Lett. 76, 253 (2000).
    [100] W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086 (2000).
    [101] C. Becket, C. Sirtori, H. Page, G. Glastre, V. Ortiz, "AlAs/GaAs quantum cascade lasers based on large direct conduction band discontinuity," Appl. Phys. Lett. 77, 463 (2000).
    [102] W. Schrenk, N. Finger, S. Gianordoli, E. Gornik, G. Strasser, "Continuous-wave operation of distributed feedback AlAs/GaAs superlattice quantum-cascade lasers," Appl. Phys. Lett. 77, 3328 (2000).
    [103] D. Indjin, P. Harrison, R. W. Kelsall, Z. Ikonic, "Influence of leakage current on temperature performance of GaAs/AlGaAs quantum cascade lasers," Appl. Phys. Lett. 81,400 (2002).
    [104] C. Sirtori, H. Page, C. Becker, V. Ortiz, "GaAs-AlGaAs Quantum Cascade Lasers: Physics, Technology, and Prospects," IEEE J. Quantum Electron. 38, 547 (2002).
    [105] H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, "300 K operation of a GaAs-based quantum-cascade laser at λ9 μm," Appl. Phys. Lett. 78, 3529 (2001).
    [106] S. Anders, W. Schrenk, E. Gornik, G. Strasser, "Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 μm," Appl. Phys. Lett. 80, 1864 (2001).
    [107] G. Strasser, W. Schrenk, S. Anders, E. Gornik, "Single mode GaAs quantum cascade laser," Microelectron. Eng. 63, 179(2002).
    [108] C. Pflugl, W. Schrenk, S. Anders, G. Strasser, C. Becket, C. Sirtori, Y. Bonetti, A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698 (2003).
    [109] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, "Terahertz semiconductor heterostructure laser," Nature 417, 156 (2002).
    [110] B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003).
    [111] B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, "Terahertz quantum-cascade laser at λ~100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124 (2003).
    [112] B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, "Terahertz quantum-cascade laser operating up to 137 K," Appl. Phys. Lett. 83, 5142 (2003).
    [113] S. Kumar, B. S. Williams, S. Kohen, Q. Hu, J. L. Reno, "Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84, 2494 (2004).
    [114] B. S. Williams, S. Kumar, Q. Hu, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005).
    [115] G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, "Far-infrared (λ~87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K," Appl. Phys. Lett. 82, 3165 (2003).
    [116] R. Kohler, A. Tredicucci, E Beltram, H.E. Beere, E.H. Linfield, D.A. Ritchie, A.G. Davies, "Quantum cascade lasers emitting at lambda greater than 100 μm," Electron. Lett. 39, 1254 (2003).
    [117] L. Ajili, G. Scalari, J. Faist, H. Beere, E. Linfield, D. Ritchie, O. Davies, "High power quantum cascade lasers operating at λ~87 and 130μm," Appl. Phys. Lett. 85, 3986 (2004).
    [118] S. Barbieria, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, D. A. Ritchie, "2.9 THz quantum cascade lasers operating up to 70 K in continuous wave," Appl. Phys. Lett. 85, 1674 (2004).
    [119] C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, C. Sirtori, "Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz," Opt. Express 14, 171 (2006).
    [120] S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121123 (2006).
    [121] C. Walther, G. Scalari, J. Faist, H. Beere, D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89, 231121 (2006).
    [122] G. Scalari, C. Walther, J. Faist, H. Beere, D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88, 141102 (2006).
    [123] J. Q. Liu, F. Q. Liu, X. Z. Lu, Y. Guo, Z. G. Wang, "Quasi-continuous-wave operation of AlGaAs/GaAs quantum cascade lasers," Physica E 30, 21 (2005).
    [124] H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu. J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007).
    [125] Rui Q. Yang, B. H. Yang, D. Zhang, C. H. Lin, S. J. Murry, H. Wu, S. S. Pei, "High power mid-infrared interband cascade lasers based on type-Ⅱ quantum wells," Appl. Phys. Lett. 71, 2409 (1997).
    [126] C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, D. Zhang, C. H. Lin, R. Q. Yang, S. S. Pei, "Interband Cascade Laser Emitting>1 Photon per Injected Electron," IEEE Photon. Technol. Lett. 9, 1433 (1997).
    [127] L. J. Olafsen,a) E. H. Aifer, I. Vurgaftman, W. W. Bewley, C. L. Felix, J. R. Meyer, D. Zhang, C.-H. Lin, S. S. Pei, "Near-room-temperature mid-infrared interband cascade laser," Appl. Phys. Lett. 72, 2370 (1998).
    [128] R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, D. E. Wortman, "Mid-infrared type-Ⅱ interband cascade lasers," in ARO Quantum Cascade Laser Workshop, Arlington, VA, Oct. 9-10, 2001.
    [129] C. J. Hill, B. Yang, R. Q. Yang, "Low-threshold interband cascade lasers operating above room temperature," Physica E 20, 486 (2004).
    [130] W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ=3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
    [131] C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, "High-power and high-efficiency midwave-infrared interband cascade lasers," Appl. Phys. Lett. 88, 161103 (2006).
    [132] Y. Sun, Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, "Optimized cleaning method for producing device quality InP(100) surfaces," J. Appl. Phys. 97, 124902 (2005).
    [133] S. Gonda, Y. Matsushima, Y. Makita, S. Mukai, "Characterization and Substrate-Temperature Dependence of Crystalline State of GaAs Grown by Molecular Beam Epitaxy," Jpn. J. Appl. Phys. 14, 935 (1975).
    [134] H. Casey, Jr., A. Y. Cho, P. A. Barnes, "Application of molecular-beam epitaxial layers to heterostructure lasers," IEEE J. Quantum Electron. 11,467 (1975).
    [135] T. Shimanoe, T. Murotani, M. Nakatani, M. Otsubo, S. Mitsui, "High quality Si-doped GaAs layers grown by molecular beam epitaxy," Surf. Sci. 86, 126 (1979).
    [136] N. Duhamel, P. Henoc, F. Alexandre, E. V. K. Rao, "Influence of growth temperature on Be incorporation in molecular beam epitaxy GaAs epilayers," Appl. Phys. Lett. 39, 49 (1981).
    [137] S. Hiyamizu, J. Saito, K. Nanbu, T. Ishikawa, "Improved Electron Mobility Higher than 10~6cm2/Vs in Selectively Doped GaAs/N-AlGaAs Heterostructures Grown by MBE," Jpn. J. Appl. Phys. 22, L609 (1983).
    [138] G. Wicks, W. I. Wang, C. E. C. Wood, L. F. Eastman, L. Rathbun, "Photoluminescence of Al_xGa_(1-x)As grown by molecular beam epitaxy," J. Appl. Phys. 52, 5792 (1981).
    [139] V. Swaminathan, W. T. Tsang, "Effect of growth temperature on the photoluminescent spectra from Sn-doped Ga_(1-x)Al_xAs grown by molecular beam epitaxy," Appl. Phys. Lett. 38, 347 (1981).
    [140] W. J. Barrels, "Characterization of thin layers on perfect crystals with a multipurpose high resolution x-ray diffractometer," J. Vac. Sci. Technol. B1,338 (1983).
    [141] L. J. van der Pauw, "A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shapes," Philips Res. Repts. 13, 1 (1958).
    [142] L. J. van der Pauw, "A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape," Philips Tech. Rev. 20, 220 (1958).
    [143] D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, P. M. Petroff, "Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces," Appl. Phys. Lett. 63, 3203 (1993).
    [144] A. Okamoto, K. Ohata, "Selective epitaxial growth of gallium arsenide by molecular beam epitaxy," Appl. Phys. Lett. 51, 1512 (1987).
    [145] Y. Tanaka, Y. Kunitsugu, I. Suemune, Y. Honda, Y. Kan, M. Yamanishi, "Low-temperature GaAs epitaxial growth using electron-cyclotron resonance/metalorganic-molecular-beam epitaxy," J. Appl. Phys. 64, 2778 (1988).
    [146] M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters, Vol. 2 (World Scientific, Singapore, 1999).
    [147] I. Vurgaftman, J. R. Meyer L. R. Ram-Mohan, "Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys," J. Appl. Phys. 89, 5815(2001).
    [148] S. Tiwari, D. J. Frank, "Empirical fit to band discontinuities and barrier heights in Ⅲ-Ⅴ alloy systems," Appl. Phys. Lett. 60, 630(1992).
    [149] J. A. VanVechten, T. K. Bergstresser, "Electronic Structures of Semiconductor Alloys," Phys. Rev. B1, 3351(1970).
    [150] G. E. Stillman, C. M. Wolfe, "Electrical characterization of epitaxial layers," Thin Solid Films 31, 69(1976).
    [151] W. Walukiewicz, J. Lagowski, H. C. Gatos, "Electron mobility in n-type GaAs at 77 K: Determination of the compensation ratio," J. Appl. Phys. 53, 769(1982).
    [152] W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, H. C. Gatos, "Electron mobility and free-carrier absorption in InP; determination of the compensation ratio." J. Appl, Phys. 51, 2659(1980).
    [153] E. H. C. Parker, The Technology and Physics of Molecular Beam Epitaxy,(Plenum Press, New York, 1985).
    [154] M. Sotoodeh, A. H. Khalid, A. A. Rezazadeh, "Empirical low-field mobility model for Ⅲ-Ⅴ compounds applicable in device simulation codes," J. Appl. Phys. 87, 2890(2000).
    [155] K. Muraki, S. Fukatsu, Y. Shiraki, R. Ito, "Surface segregation of In atoms and its influence on the quantized levels in InGaAs/GaAs quantum wells," J. Cryst. Growth 127, 546(1993).
    [156] T. P. Pearsall, "Ga_(0.47)In_(0.53)As: A ternary semiconductor for photodetector applications," IEEE J. Quantum Electron. 16, 709(1980).
    [157] K. Alavi, R. L. Aggarwal, S. H. Groves, "Interband magnetoabsorption of In_(0.53)Ga_(0.47)As," Phys. Rev. B 21, 1311(1980).
    [158] S. Paul, J. B. Roy, P. K. Basu, "Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in Ga_xIn_(1-x)As," J. Appl. Phys. 69, 827(1991).
    [159] A. Pinczuk, J. M. Worlock, R. E. Nahory, M. A. Pollack, "Lattice vibrations of In_(1-x)Ga_xAs_yP_(1-y) quaternary compounds," Appl. Phys. Lett. 33, 461(1978).
    [160] J. Shah, R. F. Leheny, R. E. Nahory, M. A. Pollack, "Hot-carrier relaxation in photoexcited In_(0.53)Ga_(0.47)As," Appl. Phys. Lett. 37, 475(1980).
    [161] H. Morkoc, A. Y. Cho, C. Radice, Jr. "Transport properties of Sn-doped Al_xGa_(1-x)As grown by molecular beam epitaxy," J. Appl. Phys. 51, 4882(1980).
    [162] G. Wicks, W. I. Wang, C. E. C. Wood, L. F. Eastman, L. Rathbun, "Photoluminescence of Al_xGa_(1-x)As grown by molecular beam epitaxy," J. Appl. Phys. 52, 5792(1981).
    [163] L. Pavesi, M. Guzzi, "Photoluminescence of Al_xGa_(1-x)As alloys," J. Appl. Phys. 75, 4779(1994).
    [164] J. W. Matthews, A. E. Blakeslee, S. Mader, "Use of misfit strain to remove dislocations from epitaxial thin films," Thin Solid Films 33, 253(1976).
    [165] R. People, J. C. Bean, "Calculation of critical layer thickness versus lattice mismatch for Ge_xSi_(1-x)/Si strained-layer heterostructures," Appl. Phys. Lett. 47, 322(1985).
    [166] F. R. N. Nabarro, Theory of Crystal Dislocations, (Clarendon Oxford, 1967).
    [167] S. Adachi, "Material parameters of In_(1-x)Ga_xAs_yP_(1-y) and related binaries," J. Appl. Phys. 53, 8775(1982).
    [168] H. Nagai, "Structure of Vapor-deposited Ga_xIn_(1-x)As crystals," J. Appl. Phys. 45, 3789(1974).
    [169] 胡福义,李爱珍,王建新,“MBE GaAs/Si材料应力性质的研究”,半导体学报 12,588(1991).
    [170] 杨全魁,李爱珍,“异质外延错向角的X射线精确测量”,功能材料与器件学报,4,187(1998).
    [171] T. Ishikawa, J. Saito, S. Sasa, S. Hiyamizu, "Electrical Properties of Si-Doped Al_xGa_(1-x)As Layers Grown by MBE," Jpn. J. Appl. Phys. 21, L675(1982).
    [172] D. V. Lang, R. A. Logan, M. Jaros, "Trapping characteristics and a donor-complex(DX) model for the persistent-photoconductivity trapping center in Te-doped Al_xGa_(1-x)As," Phys. Rev. B19, 1015(1979).
    [173] B. L. Zhou, K. Ploog, E. Gmelin, X. Q. Zheng, M. Schulz, "Assessment of persistent-photoconductivity centers in MBE grown Al_xGa_(1-x)as using capacitance spectroscopy measurements," Appl. Phys. B28, 223(1982).
    [174] L. W. Aukerman, R. K. Willardson, "High-Temperature Hall Coefficient in GaAs," J. Appl. Phys. 31, 939(1960).
    [175] E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, Y. Bruynseraede, "Structural refinement of superlattices from x-ray diffraction," Phys. Rev. B 45, 9292(1992).
    [176] C. Zhu, Y. G. Zhang, A. Z. Li, Z. B. Tian, "Analysis of key parameters affecting the thermal behavior and performance of quantum cascade lasers," J. Appl. Phys. 100, 053105(2006).
    [177] T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, E. Gini, "Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices," J. Appl. Phys. 100, 043101(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700