太赫兹量子级联激光器电子输运及波导研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体太赫兹(THz)量子级联激光器(QCL)是一种重要的THz辐射源,THz波导传输对THz技术的发展也非常重要。本文主要研究了THz QCL的电子输运和波导特性,探索了THz金属丝波导的传输机理。研究结果对理解THz QCL中载流子的散射机制和波导特性,优化THz QCL设计有重要意义。本文的主要研究内容和结论如下:
     1.研究了THz QCL中电子-LO声子(受限制声子和界面声子)、电子-电子和电子-离化杂质等相互作用的散射率,并计算了温度和掺杂浓度等因素对散射率的影响。结果表明,LO声子散射和电子-电子散射是THz QCL的主要散射机制,在量子阱较宽的情况下,受限制声子的散射率可以与界面声子的散射率相比,在计算过程中应考虑到受限制声子的贡献。
     2.采用二维有限元方法研究了THz QCL的波导特性。结果表明,随着有源区掺杂浓度的提高,波导损耗增加,阈值电流增加,波导限制因子降低。双面金属波导具有良好的光模限制作用,限制因子较单面金属波导有明显提高,导热性良好。随着波长增加双面金属波导的优点更加突出。
     3.通过求解THz传播模的特征值方程研究了THz金属丝波导的传输特性。结果表明,随着频率增加,金属丝波导的群速度降低,损耗增加;随着金属丝半径增加,金属丝波导群速度和损耗降低。采用高介电常数的金属可提高金属丝波导的传输性能。改变金属丝表面包覆层的厚度可很好地调制金属丝波导的传输特性。
Terahertz (THz) quantum cascade lasers (QCL) is an important kind of semiconductor radiation sources. THz waveguide propagation is also very important in the development of THz technology. In this dissertation, we study the electron transport in THz QCL, compare and discuss the waveguide property, and investigate the propagation property of THz metal wire waveguide. The result is very helpful to understand the physical mechanism and waveguide property of THz QCL. The main conclusions are as follows:
     1. The scattering mechanisms in THz QCL, such as electron-LO phonon scattering and electron-electron scattering have been investigated. The results show that LO phonon scattering and electron-electron scattering are probably the main scattering mechanisms in THz QCL. If the quantum well is wide, the scattering rates by confined phonons is comparable to that by interface phonons and should be taken into consideration in the calculation.
     2. The main waveguide design methods of THz QCL have been given and discussed by using two dimensional finite element methods. The results indicate that metal-metal waveguide has high optical confinement, low confinement factor, and small waveguide width. The doping concentration in the active region has great effect on the waveguide property. With the increasing of doping concentration, the waveguide loss, threshold gain and current density of THz QCL increase, the confinement factor decrease.
     3. The propagation property of THz metal wire waveguide has been investigated by numerically solving the complex eigenvalue equation. It is shown that the group velocity decreases as frequency increase, while attenuation amplitude increases with the frequency. With the increasing of metal wire radius, the group velocity and attenuation amplitude decrease. The TM mode field exponentially decreases from the interface into metal and air, respectively. In addition, the metal wire waveguide property could be modified by changing the thickness of coating layer.
引文
[1] 曹俊诚.太赫兹量子级联激光器研究进展.物理,2006,35(8):699-703.
    [2] 曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003,9(2):111-117.
    [3] B. Ferguson and X. C. Zhang. Materials for terahertz science and technology. Nature materials, 2002, 1(1): 26-33.
    [4] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams. High-power terahertz radiation from relativistic electrons. Nature, 2002, 420(6912): 153-156.
    [5] J. Daiand, X. Xie, and X. C. Zhang. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett., 2006, 97: 103903.
    [6] N. Orihashi and S. Suzuki. one THz harmonic oscillation of resonant tunneling diodes. Appl. Phys. Lett., 2005, 87: 233501.
    [7] E. Alekseev and D. Pavlidis. Microwave potential of GaN-based Gunn devices. Electron. Lett., 2000, 36(2): 176-178.
    [8] J. T. Lv and J. C. Cao. Steady-state and small signal analysis of terahertz ballistic tunnel transit-time oscillator. J. Phys.: Condens. Matter, 2004, 16(4): 627-634.
    [9] J. T. Lv and J. C. Cao. Terahertz generation and chaotic dynamics in GaN NDR diode. Semi. Sci. Technol., 2004, 19(3): 451-456.
    [10] M. Koch. The search continues for efficient terahertz sources. Laser Focus World, 2005, 41(11): 991.
    [11] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho. Quantum cascade laser. Science, 1994, 264(5158): 553-556.
    [12] R. Koehler, A. Tredicuccl, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi. Terahertz semiconductor heterostructure laser. Nature, 2002, 417(6885): 156-159.
    [13] H. Liu, Y. Chert, G. J. Bastiaans, and X. C. Zhang. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express, 2005, 14(1): 415-423.
    [14] S. Komiyama, O. Astafiev, and H. Hirai. A single-photon detector in the far-infrared range. Nature, 2000, 403(6768): 405-407.
    [15] K. Ikushima, Y. Yoshimura, T. Hasegawa, S. Komiyama, T. Ueda, and K. Hirrakawa. Photon-c0unting microscopy of terahertz radiation. Appl. Phys. Lett., 2006, 88: 152110.
    [16] J. C. Cao, Y. L. Chen, and H. C. Liu. Effect of optical phonons on the spectral shape ofterahertz quantum-well photodetectors. Superlattice and Microstructures, 2006, 40(2): 119-124.
    [17] 槽俊诚.太赫兹半导体探测器研究进展.物理,2006,35(11):847-851.
    [18] H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao. Terahertz quantum-well photodetector. Appl. Phys. Lett., 2004, 84(20): 4068-4070.
    [19] J. Kitagawa, T. Ohkubo, and Y. Kadoyab. THz spectroscopic characterization of biomolecule/water systems by compact sensor chips. Appl. Phys. Lett., 2006, 89: 041114.
    [20] C. K. Tiang, J. Cunningham, C. Wood, I. C. Hunter, and A. G. Davies. Electromagnetic simulation of terahertz frequency range filters for genetic sensing. J. Appl. Phys., 2006, 100: 066105.
    [21] R. A. Kaindl, M. A. Carnahan, and D. S. Chemla. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 2003, 423(6941): 734-738.
    [22] A. Cavalleri, S. Wall, and C. Simpson. Tracking the motion of charges in a terahertz fight field by femtosecond X-ray diffraction. Nature, 2006, 442(7103): 664-666.
    [23] J. C. Cao and X. L. Lei. Synchronization and chaos in miniband semiconductor superlattices. Phys. Rev. B, 1999, 60(3): 1871-1878.
    [24] R. A. Cheville and D. Grischkowsky. Time domain terahertz impulse ranging studies. Appl. Phys. Lett., 1995, 67(14): 1960-1962.
    [25] Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide. Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging. Appl. Phys. Lett., 2003, 83(4): 800-802.
    [26] J. Y. Lu, L. J. Chen, T. F. Kao, H. H. Chang, H. W. Chen, A. S. Liu, Y. C. Chen, R. B. Wu, W. S. Liu, J. I. Chyi, and C. K. Sun. Terahertz microchip for illicit drug detection. IEEE Photonics Technology Letters, 2006, 18(21): 2254-2256.
    [27] Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett., 2005, 86: 241116.
    [28] A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno. Real-time terahertz imaging over a standoff distance(>25m). Appl. Phys. Lett., 2006, 89: 141125.
    [29] M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosseerhoff, and R. Buether. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett., 2000, 77(24): 4049-4051.
    [30] C. Zandonell. Terahertz imaging: T-ray specs. Nature, 2003, 424(6950): 721-722.
    [31] J. C. Cao. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys. Rev. Lett., 2003, 91: 237401.
    [32] J. C. Cao and X. L. Lei. Multiphoton-assisted absorption of terahertz radiation in InAs/AlSb heterojunctions. Phys. Rev. B, 2003, 67: 085309.
    [33] X. L. Lei, B. Dong, and Y. Q. Chen. Nonlinear transport in quasi-two-dimensional systems driven by intense terahertz fields. Phys. Rev. B, 1997, 56: 12120.
    [34] X. L. Lei and N. J. M. Horing. Nonlinear balance equations for hot-electron transport with finite phononrelaxation time. Phys. Rev. B, 1987, 35: 6281.
    [35] X. L. Lei and M. W. Wu. Hot-electron energy-loss rate in polar semiconductor in a two-temperature model. Phys. Rev. B, 1993, 47: 13338.
    [36] P. G. Savvidis, B. Kolasa, G. Lee, and S. J. Allen. Resonant crossover of terahertz loss to the gain of a Bloch oscillating InAs/AlSb superlattice. Phys. Rev. Lett, 2004, 92:196802.
    
    [37] X. L. Lei and S. Y. Liu. Radiation-induced magnetoresistance oscillation in a two-dimensional electron gas in faraday geometry. Phys. Rev. Lett., 2003, 91:226805.
    
    [38] X. L. Lei. Radiation-induced magnetoresistance oscillations in two-dimensional electron systems under bichromatic irradiation. Phys. Rev. B, 2006, 73:235322.
    
    [39] N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kuemer, and D. Mittleman. Omnidirectional terahertz mirrors: A key element for future terahertz communication systems. Appl. Phys. Lett, 2006,88:202905.
    
    [40] C. Yeh, F. Shimabukuro, and P. Stanton. Communication at millimeter-submillimetre wavelengths using a ceramic ribbon. Nature, 2000, 404(6778):584-588.
    
    [41] R. D. Dupuis and P. D. Dapkus. Room-temperature operation of Al_xGa_(1-x)As/GaAs double-heterostructure lasers grown by metalorganic chemical vapor deposition. Appl. Phys. Lett., 1977, 31(7):466-468.
    
    [42] E. Kapon, S. Simhony, R. Bhat, and D. M. Hwang. Single quantum wire semiconductor lasers. Appl. Phys. Lett, 1989,55(26):2715-2717.
    
    [43] J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English. Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes. Appl. Phys. Lett, 1986,49(19): 1275-1277.
    
    [44] R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin. Room-temperature laser operation of quantum-well Al_xGa_(1-x)As/GaAs laser diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett, 1978, 32(5):295-297.
    
    [45] R. F. Kazarinov and R. A. Suris. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond., 1971, 5(4):707-709.
    
    [46] F. Capasso. Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. J. Quantum Electron, 1986, 22(9): 1853-1869.
    
    [47] H. C. Liu. Resonant tunneling through single layer heterostructures. Appl. Phys. Lett, 1987, 51(13):1019-1021.
    
    [48] M. Helm, P. England, E. Colas, and S. J. Allen. Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling. Phys. Rev. Lett, 1989, 63(l):74-77.
    
    [49] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho. Vertical transition quantum cascade laser with Bragg confined excited state. Appl. Phys. Lett, 1995, 66(5):538-540.
    
    [50] G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho. High-power infrared (8-micrometer wavelength) superlattice lasers. Science, 1997, 276(5313):773-775.
    
    [51] A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho. High-performance interminiband quantum cascade laser with graded superlattice. Appl. Phys. Lett, 1998, 73(15):2101 - 2103.
    [52] C. Sirtori, R Kruck, S. Barbieri, R Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle. GaAs/Al_xGa_(1-x)As quantum cascade lasers. Appl. Phys. Lett., 1998, 73(24): 3486-3488.
    [53] W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik. GaAs/A1GaAs distributed feedback quantum cascade lasers. Appl. Phys. Lett., 2000, 76(3): 253-255.
    [54] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 2002, 295(5553): 301-305.
    [55] F. Compagnone, A. D. Carlo, and P. Lugli. Monte Carlo simulation of electron dynamics in superlattice quantum cascade lasers. Appl. Phys. Lett., 2002, 80(6): 920-922.
    [56] K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho. Quantum cascade lasers with double metal-semiconductor waveguide resonators. Appl. Phys. Lett., 2002, 80(17): 3060-3062.
    [57] A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa. Quantum-cascade lasers without injector regions operating above room temperature. Appl. Phys. Lett., 2005, 86: 161114.
    [58] N. Ulbrich, G. Scarpa, and G. Abstreiter. Intersubband staircase laser. Appl. Phys. Lett., 2002, 80(23): 4312-4314.
    [59] 高少文.太赫兹量子级联激光器电子动力学研究.PhD thesis,中国科学院上海微系统与信息技术研究所,2004.
    [60] 吕京涛.太赫兹量子级联激光器及其它半导体辐射源研究.PhD thesis,中国科学院上海微系统与信息技术研究所,2006.
    [61] R. Koehler, R. C. Iotti, A. Tredicucci, and F. Rossi. Design and simulation of terahertz quantum cascade lasers. Appl. Phys. Lett., 2001, 79(24): 3920-3922.
    [62] R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori. High-performance continuous-wave operation of superlattice terahertz quantumcascade lasers. Appl. Phys. Lett., 2003, 82(10): 1518-1520.
    [63] L. Mahler, A. Tredicucci, R. Koehler, E Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie. Highperformance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Appl. Phys. Lett., 2005, 87: 181101.
    [64] M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davier, E. Linfield, and D. Ritchie. Low-threshold terahertz quantum-cascade lasers. Appl. Phys. Lett., 2002, 81(8): 1381-1383.
    [65] G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies. Far-infrared (λ≈87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl. Phys. Lett., 2002, 82(19): 3165-3167.
    [66] G. Scalari, N. Hoyler, and J. Faist. Terahertz bound-to-continuum quantum-cascade lasers based on optical phonon scattering extraction. Appl. Phys. Lett., 2005, 86: 181101.
    [67] L. Ajili, G. Scalari, and J. Faist. InGaAs-AlInAs/InP terahertz quantum cascade laser. Appl. Phys. Lett., 2005, 87: 141107.
    [68] G. Scalari, S. Blaser, and J. Faist. Terahertz emission from quantum cascade lasers in the quantum Hall regime: evidence for many body resonances and localization effects, Phys. Rev. Lett., 2004, 93: 237403.
    [69] C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, C. Sirtori, and D. Ritchie. Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz. Opt. Express, 2006, 14(1): 171-181.
    [70] C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie. Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett., 2006, 89: 231121.
    [71] B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett., 2003, 82(7): 1015-1017,
    [72] B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno. Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement. Appl. Phys. Lett., 2003, 83(11): 2124-2126.
    [73] B. S. Williams, S. Kumar, and Q. Hu. Operation of terahertz quantum- cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express, 2005, 13(9): 3331-3339.
    [74] S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno. 1.9 THz quantum-cascade laser with one-well injector. Appl. Phys. Lett., 2006, 88: 121123.
    [75] H. C. Liu, M. Waechter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu. Effect of doping concentration on the performance of terahertz quantum-cascade lasers. Appl. Phys. Lett., 2005, 87: 141102.
    [76] D. Ban, M. Waechter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers. Terahertz quantum cascade lasers: fabrication, characterization, and doping effect. J. Vac. Sci. Technol. A, 2006, 24(3): 778-782.
    [77] H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao. Terahertz quantum-cascade lasers based on a three-well active module. Appl. Phys. Lett., 2007, 90: 041112.
    [78] J. T. Lv and J. C. Cao. Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers. Appl. Phys. Lett., 2006, 88: 061119.
    [79] J. T. Lv and J. C. Cao. Coulomb scattering in the Monte Carlo simulation of terahertz quantum cascade laser. Appl. Phys. Lett., 2006, 89: 211115.
    [80] S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonic, R. W. Kelsall, P. Harrison, D. D. Amone, and C. R. Pidgeon. Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies. AppL Phys. Lett., 2002, 81(9): 1543-1545.
    [81] A. Borak. Toward bridging the terahertz gap with silicon-based laser. Science, 2005, 308(5722): 638-639,
    [82] M. Popadic, V. Milanovic, and D. Indjin. Simulation of a tunable pumped terahertz intersubband laser with diluted magnetic semiconductor. J. Appl. Phys., 2006, 100: 073709.
    [83] K. L. Wang and D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 2004, 432(7015): 376-379.
    [84] S. P. Jamison, R. W. McGowan, and D. Grischkowsky. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers. Appl. Phys. Lett., 2000, 76(15): 1987-1989.
    [85] R. Mendis and D. Grischkowsky. Plastic ribbon THz waveguides. J. Appl. Phys., 2000, 88(7): 4449-4452.
    [86] H. Han, H. Park, M. Cho, and J. Kim. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett., 2002, 80(15): 2634-2636.
    [87] 周梅,陈效双,王少伟,张建标,陆卫.THz波段的F-P光子晶体滤波器.物理学报,2006,55(7):3725-3728.
    [88] K. L. Wang and D. M. Mittleman. Guided propagation of terahertz pulses on metal wires. J. Opt. Soc. Am. B, 2005, 22(9): 2001-2008.
    [89] J. A. Deibel, K. L. Wang, and D. M. Mittleman. Enhanced coupling of terahertz radiation to cylindrical wire waveguides. Opt. Express, 2006, 14(1): 279-290.
    [90] T. Jeon, J. Zhang, and D. Grischkowsky. THz Sommerfeld wave propagation on a single metal wire. Appl. Phys. Lett., 2005, 86: 161904.
    [91] N. C. Valk and P. C. M. Planken. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires. Appl. Phys. Lett., 2005, 87: 071106.
    [92] H. Cao and A. Nahata. Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves. Opt. Express, 2005, 13(18): 7028-7034.
    [93] J. Faist, F. Capasso, and A. Y. Cho. Quantum cascade lasers without intersubband population inversion. Phys. Rev. Lett., 1999, 76(3): 411-414.
    [94] J. Faist, M. Beck, and T. Aellen. Quantum-cascade lasers based on abound-to-continuum transition. Appl. Phys. Lett., 2001, 78(2): 147-149.
    [95] Q. K. Yang, C. Mann, F. Fuchs, R. Kiefer, K. Koehler, N. Rollbuehler, H. Schneider, and J. Wagner. Improvement λ≈5μm quantum cascade lasers by blocking barriers in the active regions. Appl. Phys. Lett., 2001, 80(12): 2048-2050.
    [96] V. M. Menon, W. D. Goodhue, A. S. Karakashian, and L. R. Rammhhan. Phonon mediated lifetimes in intersubband terahertz lasers. J. Appl. Phys., 2000, 88(9): 5262-5267.
    [97] B. S. Williams and Q. Hu. Optimized energy separation for phonon scattering in three-level terahertz intersubband lasers. J. Appl. Phys., 2001, 90(11): 5504-5511.
    [98] B. S. Williams. Terahertz quantum cascade lasers. PhD thesis, MIT, 2003.
    [99] C. Kittel. Introduction to solid state physics. John Wiley & Sons Inc, New York, 1996.
    [100] R. K. Willardson and A. C. Bee. The k. p method in semiconductors and semimetals. Academic press, New York, 1996.
    [101] S. W. Gao, J. C. Cao, and S. L. Feng. An emphasis for the electron energy calculation in the quantum wells. Commun. Theor. Phys., 2002, 42(9): 435-439.
    [102] S. Yu, K. W. Kim, M. A. Stroscio, G. J. Iafrate, J. P. Sun, and G. I. Haddad. Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems. J. Appl. Phys., 1997, 82(7): 3363-3367.
    [103] L. R. R. Mohan, K. H. Yoo, and R. L. Aggarwal. Transfer-matrix algorithm for the calculation of the band structure of semiconductor superlattices. Phys. Rev. B, 1988, 38(9): 6151-6259.
    [104] Z. Y. Li and K. M. Ho. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides. Phys. Rev. B, 2003, 68: 245117.
    [105] 傅英,陆卫.半导体量子器件物理.科学技术出版社,北京,2005.
    [106] H. Schneider and H. C. Liu. Quantum well infrared photodetectors. Springer, New York, 2006.
    [107] 于冰.太赫兹量子级联激光器有源区的数值模拟.PhD thesis,中国科学院上海微系统与信息技术研究所,2005.
    [108] E. J. Roan and S. L. Chuang. Linear and nonlinear intersubband electroabsorptions in a modulation doped quantum well. J. Appl. Phys., 1991, 69(5): 3249-3260.
    [109] N. Vukmirovic, V. D. Jovanovic, D. Indjin, Z. Ikonic, P. Harrison, and V. Milanovic. Optically pumped terahertz laser based on intersubband transitions in a GaN/A1GaN double quantum well. J. Appl. Phys., 2005, 97: 103106.
    [110] V. D. Jovanovic, Z. Ikonic, D. Indjin, P. Harrison, V. Milannovic, and R. A. Soref. Designing strain-balanced GaN/AlGaN quantum well structures: application to intersubband devices at 1.3 and 1.55 μm wavelengths. J. Appl. Phys., 2003, 93(6): 3194-3197.
    [111] J. T. Lv and J. C. Cao. Confined optical phonon modes and electron-phonon interactions in wurtzite GaN/ZnO quantum wells. Phys. Rev. B, 2005, 71: 155304.
    [112] R. Fuchs and K. L. Kliewer. Optical modes of vibration in an ionic crystal slab. Phys. Rev., 1965, 140(6A): A2076-A2088.
    [113] J. J. Licari and R. Evrard. Electron-phonon interaction in a dielectric slab: effect of the electronic polarizability. Phys. Rev. B, 1977, 15(4): 2254-2264.
    [114] P. Bordone and P. Lugli. Effect of half-space and interface phonons on the transport properties of Al_xGa_(1-x)As/GaAs single heterostructure. Phys. Rev. B, 1994, 49(12): 8178-8190.
    [115] H. B. Teng, J. P. Sun, G. I. Haddad, M. A. Stroscio, S. Yu, and K. W, Kim. Phonon assisted intersubband transitions in step quantum well structures. J. Appl. Phys., 1998, 84(4): 2155-2164.
    [116] P. Harrison. Quantum well, wires and dots. John Wiley & Sons Inc, San Francisco, 2005.
    [117] P. Kinsler. Tech. Report. Imperial College, United Kingdom, 2002.
    [118] B. K. Ridley, B. E. Foutz, and L. F. Eastman. Mobility of electrons in bulk GaN and Al_xGa_(1-x)N/GaN heterostructure. Phys. Rev. B, 2000, 61(24): 16862-16869.
    [119] S. Borenstain and J. Katz. Intersubband Auger recombination and population inversion in quantum-well subbands. Phys. Rev. B, 1989, 39(15): 10852-10857.
    [120] B. K. Ridley. Electrons and phonons in semiconductor multilayers. Cambridge University Press, United Kingdom, 2005.
    [121] J. H. Smet, C. G. Fonstad, and Q. Hu. Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. J. Appl. Phys., 1996, 79(12): 9305-9320.
    [122] P. Kinsler, P. Harrison, and R. W. Kelsall. Intersubband electron-electron scattering in asymmetric quantum wells designed for far-infrared emission. Phys. Rev. B, 1998, 58(8): 4771-4778.
    [123] H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J, L. Reno. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett., 2004, 84(5): 645-647.
    [124] K. Yokoyama and K. Hess. Monte Carlo study of electronic transport in Al_(1-x)Ga_xAs/GaAs single-wall heterostructres. Phys. Rev. B, 1986, 33(8): 5595-5606.
    [125] J. R. Watling, A. B. W. J. J. Harris, and J. M. Roberts. Monte Carlo simulation of electron transport in highly delta-doped GaAs/AlGaAs quantum wells. Semicond. Sci. Technol., 1998, 13(1): 43-53.
    [126] B. S. Sernelius. Surface modes in physics. Wiley-Vch, Berlin, 2000.
    [127] S. M. Kohen. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. PhD thesis, MIT, 2004.
    [128] A. K. Azad. Resonant terahertz transmission ofplasmonic subwavelength hole arrays. PhD thesis, Oklahoma State University, 2006.
    [129] J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express, 2006, 14(24): 11672-11680.
    [130] D. Indjin, Z. Ikonic, P. Harrison, and R. W. Kelsall. Surface plasmon waveguides with gradually doped or NiAl intermetallic compound buried contact for terahertz quantum cascade lasers. J. Appl. Phys., 2003, 94(5): 3249-3252.
    [131] D. Hofstetter, M. Beck, and J. Faist. High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm. Appl. Phys. Lett., 2001, 78(4): 396-398.
    [132] J. M. Jin. Thefinite element method in electromagnetics. John Wiley & Sons Inc, New York, 1993.
    [133] M. A. Ordal, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared. Appl. Opt., 1983, 22(7): 1099-1119.
    [134] S. M. Kohen, B. S. Williams, and Q. Hu. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. J. Appl. Phys., 2005, 97: 053106.
    [135] A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser. Influence of doping on the performance of terahertz quantum-cascade lasers. Appl. Phys. Lett., 2007, 90: 101107.
    [136] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry. Optical properties of fourteen metals in the infrared and far infrared: A1, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt., 1985, 24(24): 4493-4499.
    [137] G. Goubau. Surface waves and their application to transmission lines. J. Appl. Phys., 1950, 21(11): 1119-1128.
    [138] M. J. King and J. C. Wiltse. Surface wave propagation on coated or uncoated metal wires at millimeter wavelength. IEEE Trans. Ant. and Prop., 1962, 10(3): 246-254.
    [139] K. L. Wang and D. M. Mittleman. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett., 2006, 96:157401.
    [140] N. C. Valk. Towards terahertz microscopy. PhD thesis, Delft University of technology, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700