半导体二维电子气太赫兹光吸收特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维半导体大部分特征能量处于太赫兹波段,因此太赫兹场与低维半导体有很强的相互作用。低维半导体中太赫兹光吸收谱的研究是目前太赫兹光电子研究领域的热点之一。本学位论文利用微扰理论和密度矩阵等方法研究了量子阱带内和带间的光吸收特性。主要研究内容和结论包括:
     1、考虑载流子与不同光学声子的散射机制,利用微扰理论计算了磁场作用下量子阱自由载流子太赫兹波段的光吸收系数。研究了量子阱阱宽和电子温度对光吸收系数的影响。计算结果表明,体声子模式、受限声子模式和界面声子模式与载流子耦合对光吸收的贡献较大,而半空间声子模式对光吸收的贡献相对较弱。这些由不同声子模式散射所引起的光吸收系数对电子温度和量子阱宽度有着不同的依赖关系。总的光吸收系数随着阱宽和电子温度的增大而增大。
     2、研究了在互相垂直的太赫兹场和磁场共同作用下抛物线形量子阱子带间等离子激元效应。利用幺正变换计算了强太赫兹场作用下的量子阱的等离子体激发谱。研究结果表明,多光子效应以及朗道能级间的跃迁使等离子激发谱产生振荡。量子阱的限制势随磁场的增强而减弱从而使得系统由二维向三维形态转化,并引起等离子体频率增加。
     3、利用密度矩阵方法研究了太赫兹场作用下双量子阱激子光吸收谱。研究表明,太赫兹场与激子相互作用使激子吸收谱出现卫星峰结构。其中一部分激子与自由载流子发生耦合形成带电激子,引起光吸收谱的卫星峰数目增加。
Many characteristic energies of low-dimensional semiconductor structures lie in the terahertz (THz) range. Therefore there is a strong interaction between electrons and the THz field in low-dimensional semiconductor structures. The study on the optical absorption in THz regime in low dimensional semiconductors is an importance topic in the research field of terahertz optoelectronics. By employing density matrix method and perturbation theory, the intra- and inter-band absorption properties have been investigated qualitatively and quantitatively. The main conclusions are as follows:
     1 .By taking in account the interaction of electrons with different phonon modes, the optical absorption coefficient of quantum wells under a static magnetic field in the THz regime has been calculated within the perturbation theory. The dependence of the optical absorption on the quantum well width and the electron temperature has been studied. The results indicate that the interaction of electrons with the bulk-, confined- and interface-phonon modes play an important role on the absorption while the effect due to the electron-half-space-phonon scattering is relatively weak. It is found that the absorptions due to different phonon modes depend on the well width and electron temperature quite differently. The total absorption increases with the well width and the electron temperature.
     2. The plasma absorption spectra of the parabolic quantum well under an electric field and a magnetic field in Voigt configuration is studied. By using a unitary transformation, the plasmon excitation spectra in a quantum well under an intense THz field has been calculated. It is found that the excitation spectra are discrete due the multi-photon processes and inter-Landau level transitions. The quantum well confining potential decreases as the magnetic field increases. This has led to the changeover to a 3 dimensional system and the increase of the plasmon energy.
     3. The exciton absorption spectrum in double quantum well is investigated by using the theory of density matrix. The results indicate that the satellite peaks show up due to the interaction between the exciton and THz field. There exist charged exciton due to the coupling between excitons with free carriers, which induce the increasing of the satellite peaks.
引文
[1] 曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,9:111-117,2003.
    [2] B.Ferguson and张希成.太赫兹科学与技术研究回顾.物理,32:286-293,2003.
    [3] 杨全魁.InGaAs/InAlAs量子级联激光器物理、材料及器件.PhD thesis,中国科学院上海冶金研究所,2002.
    [4] 高少文.太赫兹量子级联激光器电子动力学研究PhD thesis,中国科学院上海冶金研究所,2004.
    [5] J. C. Cao. Nonparabolic multivalley balance-equation approach to high-field electron transport and impact ionizationin zns: Comparision with full-band monte-carlo simulations. Phys. Rev. B, 69:163203, 2004.
    [6] J. C. Cao. Interband impact ionizationin and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys. Rev: Lett., 91:237401, 2003.
    [7] A.J. SpringThorp H. C. Liu, C. Y. Song and J. C. Cao. Terahertz quantum well photodetectoe. Appl. Phys. Lett., 84:4068-4070, 2004.
    [8] Z. R. Wasilewski A. J. SpringThorp J. C. Cao C. Dharma-wardana G. C. Aers D. J. Lockwood H. C. Liu, C. Y. Song and J. A. Gupta. Coupled electron-phonon modes in optically pumped resonant intersubband lasers. Phys. Rev. Lett., 90:077402, 2003.
    [9] D. L. sivco C. Sirtori A. L. Hutchinson J. Faist, F. Capasso and A. Y. Cho. Quantum cascade laser. Science, 246:553, 1994.
    [10] F. Beltram H. E. Beere D. R. Ritchie R. C. Lotti R. Kler, A. Tredicucci and F. Rossi. Terahertz semiconductor heterostructure laser. Nature, 417:156, 2002.
    [11] Gray D Abbot D Zhang X C. Ferguson B, Wang S H. T-ray computed tomography. Optics Letters, 27:1312-1314, 2002.
    [12] X. L. Lei J. C. Cao, A. Z. Lei and S. L. Feng. Current self-oscillation and driving-frequency dependence of negtive-effective-mass diodes. Appl. Phys. Lett., 79:3524, 2001.
    [13] X. L. Lei J. C. Cao, H. C. Liu and A. G. U. Perera. Chaotic dynamics in terahertz-driven semiconductors with negative effective mass. Phys. Rev. B, 63:115308, 2001.
    [14] M. S. Sherwin A. Huntington M. Y. Su, S. G. Carter and L. A. Coldren. Strong-field thz optical mixing in excitons. Phys. Rev. B, 67:125307, 2003.
    [15] A.G. Markelz, A. Roitberg, and E. J. Heilwiel. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett., 320:42-48, 2000.
    [16] T. Dekorsy, H. Auer, C. Waschke, H. J. Bakker, H. G. Roskos, H. Kurz, V. Wagner, and P. Grosse. Emission of submillimeter electro-magnetic waves by coherent phonons. Phys. Rev. Left., 74:738-740, 1995.
    [17] M. Nagel, P. H. Bolivar, M. Brucherseifer, and H. Kuz. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Left., 80:154-156, 2002.
    [18] X.L. Lei J. C. Cao and H. C. Lui. Terahertz self-oscillation in negative-effective-mass terahertz oscillators. Soli-Stat Electronics, 47:1897, 2003.
    [19] Y. Yacoby. High-frequency franz-keldysh effect. Phys. Rev., 169:610, 1968.
    [20] A. E Jauho and K. Johnsen. Dynamical franz-keldysh effect. Phys. Rev. Lett, page 4576.
    [21] T. Inoshita M. S. Sherwin M. Sundaram J. eme, J. Kono and A. C. Gossard. Near-infrared sideband generation induced by intense far-infrared radiation in gaas quantum well. Appl. Phys. Lett., 70:3543, 1997.
    [22] J. C. Cao and X. L. Lei. Multiphoton-assisted absorption of terahertz radiation in inas/alsb heterojunctions. Phys. Rev. B, 67:085309, 2003.
    [23] J.C. Cao and H. C. Lui. Field-domain dynamics in negative-effective-mass terahertz oscillators. Euro. Phys. J. B, 36:313, 2003.
    [24] R. Kersting H.-T. Chen and G. C. Cho. Terahertz imaging with nanometer resolution. Appl. Phys. Lett., 83:3009, 2002.
    [25] M. Van Exter, C. Fattinger, and D. Grischkowsky. High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett., 55:337-339, 1989.
    [26] A. V. Maslov and D. S. Citrin. Optical absorption of thz-field-driven and dc-biased quantum wells. Phys. Rev. B, 64:155309, 2001.
    [27] A. V. Maslov and D. S. Citrin. Numerical calculation of the thz-field-induced changes in the absorption in quantum wells. 1EEE J. Sel.Top. Quantum electron, 8:457, 2002.
    [28] S.G. Carter M. Y. Su and M. S. Sherwin. Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum well. Appl. Phys. Lett., 81:1564, 2002.
    [29] L E. Vorob'ev, S N. Danilov, V N. Tulupenko, and D A. Firsov. Generation of millimeter radiation due to electric-field-induced electron-transit-time resonance in indium phosphide. JETP Lett., 73(5):219-222, 2001.
    [30] N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston. 500 GHz electrically steerable photoconducting antenna array. Appl.Phys. Lett., 58:446, 1991.
    [31] M. Mack X.-C. Zhang B. B. Hu, N. Froberg and D. H. Auston. Electrically controlled frequency scanning by a photoconducting antenna array. Appl. Phys. Lett., 58:1369-1371, I991.
    [32] D.S. Lee and K. J. Malloy. Analysis of reduced interband absorption mechanisms in semiconductor quantum well. IEEE:J. Quantum Electron, pages 85-92.
    [33] K.T. Lai and M. Missous. Analysis of reduced interband absorption mechanism in semiconductor quantum well. J. Appl. Phys., pages 6065-6065.
    [34] A. Liu and C. Z. Ning. Exciton absorption in semiconductor quantum wells diven by a strong intersubband pumped field. J. Opt. Soc. Amer. B, pages 433-438.
    [35] J. E Young S. M. Sadeghi and J. Meyer. Multi-subband dressing of exciton in quantum wells. Phys. Rev. B, pages R15557-R15560.
    [36] K. K. Choi. The physics quantum ,well infrared photodetectors. World Scientific, New York, 1997.
    [37] M. S.Sherwin J. Ko C. Phillips, M. Y. Su and L. Coldren. Generation of first-order terahertz optical sideband in asymmetric couples quantum well. Appl. Phys. Lett, 75:2728-2730, 1999.
    [38] Jr. Peter S. Zoty. Quantum Well Lasers. Acadamic Press, Boston, 1993.
    [39] H. C. Liu and E.Capasso. Intersubband transition in quantum wells:Physics and device application Ⅱ. Academical Press, San Diego, 2000.
    [40] H. C. Liu and E Capasso. Intersubband transition in quantum wells:Physics and device application I. Academical Press, San Diego, 2000.
    [41] Q. Hu I. LLyubomirsky and PAGES=3043-3045 YEAR=1998 VOLUME = 73 M. R. Melloch TITLE=Measurement of far-infrared intersubband spontaneous emission from optical pumped quantum well, JOURNAL = Appl. Phys. Lett.
    [42] V. Gruzinskis, P. Shiktorov, E. Starikov, and Jian H. Zhao. Comparative study of 200-300 ghz microwave power generation in gan reds by the monte carlo technique. Semicond. Sci. Technol., 16:798-805, 2001.
    [43] E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J C. Vaissiere, and Jian H. Zhao. Monte carlo calculations of thz generation in wide gap semiconductors. Physica B, 314:171-175, 2002.
    [44] E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J C. Vaissire, and Jian H. Zhao. Monte carlo simulation of thz maser based on optical phonon transit time resonance in gan. IEEE Trans. Electron Devices, 48(3):438-443, March 2001.
    [45] J. H. Smet, C. G. Fonstad, and Q. Hu. Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. J. Appl. Phys., 79:9305-9320, 1996.
    [46] E H. Julien O. Gauthier-Lafaye, P. Boucaud and S. Cabaret. Long-wavelength unipolar semiconductor laser in gaas quantum well. Appl. Phys. Lett, page 3619.
    [47] R. Q. Yang. Infrared laser based on intersubband transition in quantum well. Supperlattices Microstruct, pages 77-83.
    [48] J. Carroll, J. Whiteaway, and D. Plumb. Distributed Feedback Semiconductor Lasers. The institution of Enectrical Engineer, London, 1998.
    [49] J. Faist H. Beere G. Davis E. Linfield G. Scarari, L. Ajili and D. Ritchie. Far-infrared bound-to-continuum quantum-cascade lasers operating up to 90k. Appl. Phys. Lett, pages 3165-3167.
    [50] H. Willenberg J. Faist H. Beere G. Davis E. Linfield M. Rochat, L. Ajili and D. Ritchie. Low-threshold terahertz quantum-casade lasers. Appl. Phys. Lett, pages 1381-1383.
    [51] C. Sirtori, P. Kruck, and J. Faist. Gaas-al_xga_(1-x)as quantum cascade lasers. Appl. Phys. Lett., 73:3486, 1998.
    [52] R. Chen, D. L. Lin, and T. F. George. Phys. Rev. B, 41:1435, 1990.
    [53] P.Bordone and E Lugli. Phons. Rev. B, 49:8178, 1994.
    [54] R. Dingle, W. Wiegmann, and C. H. Henry. Quantum states of confined carriers in very thin alxgal-xas-gaas-alxgal-xas heterostructures. Phys. Rev. Lett., 33:827, 1974.
    [55] N, Takenaka, M. Inoue, and Y. lnuishi. Influence of inter-carrier scattering on hot electron distribution function in GaAs. J. Phys. Soc. Japan, 47:861, 1979.
    [56] Yanqing. Deng, Roland. Kersting, Jingzhou. Xu, Ricardo. Ascazubi, Xi-Cheng. Zhang, Michael S. Shur, Remis. Gaska, Grigory S. Simin, M Asif. Khan, and Victor. Ryzhii. Millimeter wave emission from gan high electron mobility transistor. Appl. Phys. Lett., 84:70, 2004.
    [57] A. Liu and C. Z. Ning. Near-infrared laser pumped intersubband thz laser gain in ingaas-alassb-inp quantum well. Appl. Phys. Lett, pages 1984-1986.
    [58] M. S. Sherwin A. Huntington V. Ciulin, S. G. Carter and L. A. Coldren. Terahertz optical mixing in biased gaas single quantum well. Phys. Rev. B, 70:115312, 2004.
    [59] T. Inoshita T. Nada M. S. Sherwin S. J. Allen Jr. J. Kono, M. Y. Su and H. Sakaki. Resonant terahertz optical sideband generation from confined magnetoexcitons. Phys. Rev. Lett, 79:1758, 1997.
    [60] S. J. Allen A. Jauho B. Birnir J. Kono T. Nada H. Akiyama K. B. Nordstrom, K. Johnsen and H. Sakaki. Exciton dynamics franz-keldysh effect. Phys. Rev. Lett, 81:4457, 1998.
    [61] T. Fromhertz. Floquet states and intersubband absorption in semiconductor quantum wells driven by strong intersubband pump field. Phys. Rev. B, pages 4772-4777.
    [62] 雷啸霖.半导体输运的平衡方程方法.上海科学技术出版社,2000.及书内参考文献.
    [63] J. Cai X. L. Lei and L. M. Xie. High-field balance equations for electronic transport in weakly nonuniform systems. Phys. Rev. B, 38:1529, 1988.
    [64] N. Read Adam C. Durst, Subir Sachdev and S. M. Girvin. Radiation-induced magnetoresistance oscillations in a 2d electron gas. Phys. Rev. Lett., 92:086803, 2003.
    [65] Junren Shi and X. C. Xie. Radiation-induced "zero-resistance state" and the photon-assisted transport. Phys. Rev. Lett., 91:086801, 2003.
    [66] C. Zhang. Frequency-dependent electrical transport under intense terahertz radiation. Phys. Rev. B., 66:081105, 2002.
    [67] N. G. Asmar et al. Optical absorption of thz-field-driven and dc-biased quantum wells. Appl Phys. Lett, 68:829, 1996.
    [68] Rita Gupta, N. Balkan, and B. K. Ridley. Hot-electron transport in gaas/ga_(1-x)al_xas quantum-well structures. Phys. Rev. B, 46:7745-7754, 1992.
    [69] V A. Kozlov, A V. Nikolaev, and A V. Samokhvalov. The population inversion and the terahertz negative differential conductivity induced by hot carriers transit time effects in coordinate and momentum spaces. Semicond. Sci. Technol., 19:S99-S101, 2004.
    [70] 沈学础.半导体光谱和光学性质.科学出版社,2001.及书内参考文献.
    [71] E.Schfll.Theory of transport properties of semiconductor nanostructures.champmanHALL,1998.及书内参考文献.
    [72] H. Haug. Quantum Theory of the optical and electronic properties of semiconductor. World Scientific, 1998.及书内参考文献.
    [73] J. Li and C. Z. Ning, Cyclotron resonance of an interacting polaron gas in a quantum well: Magnetoplasmonphonon. Phys. Rev. B, 68:245303, 2003.
    [74] J. Gleize, M. A. Renucci, J, Frandon, and F. Demangeot. Anisotropy effects on polar optical phonons in wurtzite gan/aln superlattices. 60(23): 15985-15992, December 1999.
    [75] D A. Romanov, V V. Mitin, and M A. Stroscio, Polar interface vibrations in gan/aln quantum dots: Essential effects of crystal anisotropy. 66: 115321, 2002.
    [76] Vladimir A. Fonoberov and Alexander A. Balandin. Interfacial and confined optical phonons in wurtzite nanocrystals. Phys. Rev. B, 70:233205, 2004.
    [77] Vladimir A. Fonoberov and Alexander A. Balandin. Interface and confined polar optical phonons in spherical zno quantum dots with wurtzite crystal structure, phys. stat. sol. (c), 1:2650, 2004.
    [78] J. M. Ziman. Electrons and Phonons. Oxford University Press, London, 1960.
    [79] M. A. Stroscio and M. Durra. Phonons in Nanostructures. Cambridge university press, Cambridge, 2001.
    [80] B. K. Ridley. Electrons and Phonons in Semiconductor multilayers. Cambridge university press, New York, 1997.
    [81] W. Cai, M. C. Marchetti, and M. Lax. Nonequilibrium electron-phonon scattering in semiconductor hetero-junctions. Phys. Rev. B, 34:8573-8580, 1986.
    [82] S.C. Lee and I. Galbraith. Intersubband and intrasubband electronic scattering rates in semiconductor quantum wells. Phys. Rev. B, 59:15796-15805, 1999.
    [83] K. Kempa, P. Bakshi, J. Engelbrecht, and Y. Zhou. Intersubband electron transitions due to electron-electron interactions in quantum well structures. Phys. Rev. B, 61:11083-11087, 2000.
    [84] E. Vass. Theory of the hot free carrier intraband-absorption coefficient of n-inversion layers. Solid State Communications, 60:603, 1986.
    [85] Vladimir A. Fonoberov, Evghenii P. Pokatilov, Vladimir M. Fomin, and Jozef T. Devreese. Photoluminescence of tetrahedral quantum-dot quantum wells. 92:127402, March 2004.
    [86] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma. Size dependence of exciton Hongitudinal-optical-phonon coupling in zno/mg_0.27zn_0.73o quantum wells. 66:233305, 2002.
    [87] Dmitri Romanova, Vladimir Mitin, and Michael Stroscio. Polar surface vibration strips on gan/aln quantum dots and their interaction with confined electrons. Physica E, 12:491-494, 2002.
    [88] Dmitri Romanova, Vladimir Mitin, and Michael Stroscio. Optical phonons in gan/aln quantumdots: leaky modes. Physica B, 316-317:359-361, 2002.
    [89] F. Comas and C. Trallero-Giner. Surface optical phonons in spherically capped quantum-dot quantum-well heterostructures. 94(9):6203-6209, November 2003.
    [90] Kun Huang and Bang-Fen Zhu. Long-wavelength optic vibrations in a superlattice. Phys. Rev. B, 38:2183, 1988.
    [91] S.S. Kubakaddi J.S. Bhat and B.G. Mulimani. Free carrier absorption in semiconducting quantum wells for confined lo phonon scattering. J. Appl. Phys., 54:437, 1992.
    [92] M. Agethle and E. Vass. Intraband photon absortion coefficient of hot 2d-electrons interacting with polar-optical phonon modes in n-gaas-sqws. Solid State Communication, 125:591, 2003.
    [93] S. L. Chuang. Efficient band structure caculations of strained quantum wells. Phys. Rev.B, 43:9649-9661, 1991.
    [94] K. H. Yoo. Effect of nonparabolicity in GaAs/Ga_(1-x)Al_xAs semiconductor quantum wells. Phys. Rev. B, 39:12808-12813, 1989.
    [95] D. E Nelson, R. C. Miller, and D. A. Kleinman. Band nonparabolicity effects in semiconductor quantum wells. Phys. Rev. B, 35:7770-7773, 1987.
    [96] W. Liang, K. T. Tsen, D. K. Ferry, Hai. Lu, .and William J. Schaff. Field-induced nonequilibrium electron distribution and electron transport in a high-quality inn thin film grown on gan. Appl. Phys. Lett., 84(18):3681, May 2004.
    [97] W. Liang, K. T. Tsen, D. K. Ferry, K. H. Kim, J. Y. Lin, and H. X. Jiang. Studies of field-induced nonequilib- rium electron transport in an in_xga_(1-x)n(x=0.6) epilayer grown on gan. Appl. Phys. Lett., 82(9): 1413, March 2003.
    [98] E. A. Barry, K. W. Kim, and V. A. Kochelap. Hot electrons in group-iii nitrides at moderate electric fields. Appl. Phys. Lett., 80(13):2317-2319, April 2002.
    [99] K W. Kim, V V. Korotyeyev, V A. Kochelap, A A. Klimov, and D L. Woolard. Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-iii nitrides. J. Appl. Phys., 96(11):6488-6491, December 2004.
    [100] X. L. Lei and C. S. Ting. Theory of nonlinear electron transport for solids in a strong electric field. Phys. Rev. B, 30:4809, 1984.
    [101] B. Dong X. L. Lei and Y. Q. Chen. Nonlinear transport in quasi-two-dimensional systems driven by intense terahertz fields. Phys. Rev. B, 56:12120, 1997.
    [102] A. Hernandez-Cabrera and P. Aceituno. Electron energy spectrum and density of states for nonsymmetric semiconductor heterostructrures in ab in-plan magnetic field. Phys. Rev,. B, 74:035330, 2006.
    [103] C. Zhang. Electronic states and dielectric response of a two-dimensional electron gas in a strong magnetic field and an intense laser field. Phys. Rev. B, 65:155301, 2002.
    [104] S. Yu, K. W. Kim, M. A. Stroscio, G. J. Iafrate, J. P. Sun, and G. I. Haddad. Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems. J. Appl. Phys., 82:3363-3367, 1997.
    [105] Bin He. Wu, Jun Cheng. Cao, Guan Qun. Xia, and Hui Chun. Liu. Interface phonon assisted transition in double quantum well. Eur. Phys. J. B, 33:9, 2003.
    [106] K. Sabeeh and M. Tahir. Collective excitations spectrum of density modulated quasi-one-dimensional electron gas in a magnetic field. Phys. Rev. B, 71:035325, 2005.
    
    [107] T. C. Dammen A. G. Gossard W. Wiegmann T. H. Wood D. A. B. Miller, D. S. Chemla and C. A. Burris.Electric-field dependence of optical absorption near the band gap of quantum -well structures. Phys. Rev. B,32:1043, 1985.
    
    [108] C. A. Duque M. deDios Leyva and L. E. Oliveira. Effects of crossed electric and magnetic fields on the electronic and excitonic states in bulk gaas and gaas/ga_(1-x)al_xas quantum wells. Phys. Rev. B, 75:035303,2007.
    
    [109] A. N. Borges. Subbands, exchange, and correlation effects on collective excitations in parabolic-quantum-well wires. Phys. Rev. B, 55:4680, 1997.
    
    [110] T.E. Lamas C.S. Sergio A.A. Quivyb G.M. Gusev A. Tabata, J.B.B. Oliveira and J.R. Leite. Optical properties of remotely doped parabolic quantum wells. Physica. E, 17:262, 2003.
    
    [111] L. G. Guimares and Rosana B Santiago. Finite parabolic quantum well under crossed electric and magnetic field: a double quantum-well problem. J. Phys: Condens. Matt, 10:9755-9762, 1998.
    
    [112] T. E. Lamas C. S. Sergio A. A. Quivy G. M. Gusev A. Tabat, J. B. B. Oliveira and J. R. Leite. Optical properties of remotely doped parabolic quantum wells. Physica. E, 17:262, 2003.
    
    [113] L. G. Guimaraes and Rosana B. Santiago. Finite parabolic quantum well under crossed electric field and magnetic field: a double quantum well. J. Phys. : Condens. Matter, 10:9755, 1998.
    
    [114] G. Q. Hai and F. M. Peeters. Magnetopolaron effect in parabolic quantum well in tilted magnetic field. Phys.Rev. B, 60:8984, 1999.
    
    [115] V. L. Gurevich V. V. Afonin and R. Laiho. Theory of double magnetophonon resonance in a two-dimensional electron gas in a tilted magnetic field. Phys. Rev. B, 65:155301, 2002.
    
    [116] C. Zhang and W. Xu. Electronic states and dielectric response of a two-dimensional electron gas in a strong magnetic field and an intense laser field. Physica B, 298:333-338, 2001.
    
    [117] W. Xu and C. Zhang. Magneto-photon-phonon resonances in two-dimensional semiconductor systems driven by terahertz electromagnetic fields. Phys. Rev. B, 54:4907, 1996.
    
    [118] W. Xu and C. Zhang. Dynamical franz-keldysh effect of an electron gas in high magnetic fields and intense laser fields. Physica B, 298:339-343, 2001.
    
    [119] W. Xu. Elementary electronic excitation in three-dimensional eletron gases under free-electron laser radia-tions. Phys. Rev. B, 57:15282, 1998.
    
    [120] J. H. Smet M. Hauser W. Dietsche I. V. Kukushkin, V. M. Muravev and K. von Klitzing. Electronic states and dielectric response of a two-dimensional electron gas in a strong magnetic field and an intense laser field.Phys. Rev. 5,65:155301,2002.
    
    [121] V V. Korotyeyev, V A. Kochelap, K W. Kim, and D L. Woolard. Streaming distribution of two-dimensional electrons in iii-n heterostructures for electrically pumped terahertz generation. Appl. Phys. Lett., 82(16):2643-2645, April 2003.
    [122] C. Thomsen K. Ebert E Giudici, A. R. Goni and M. Hauser. Coupling between charge-density excitations and polar optical phonons in single quantum wells. Phys. Rev. B, 73:045315, 2006.
    [123] S. N. Klimin and J. T. Devreese. Cyclotron resonance of an interacting polaron gas in a quantum well: Magnetoplasmon-phonon. Phys. Rev. B, 68:245303, 2003.
    [124] C. Zhang. Dynamic screening and collective excitation of an electron gas under intense terahertz radiation. Phys. Rev. B, 65:153107, 2002.
    [125] J. C. Cao M. Fujita, T. Toyota and C. Zhang. Induced charge-density oscillation under a quantizing magnetic field and intense terahertz radiation. Phys. Rev. B., 67:075105, 2003.
    [126] Vladimir A. Fonoberov and Alexander A. Balandin. Excitonic properties of strained wurtzite and zinc-blende gan/al_xga_(1-x)n quantum dots. J. Appl. Phys., 94(11):7178, December 2003.
    [127] S. Kalliakos, X. B. Zhang, T. Taliercio, P. Lefebvre, and B. Gila. Large size dependence of exciton-longitudinal-optical-phonon coupling in nitride-based quantum wells and quantum boxes. 80(3):428-430, January 2002.
    [128] Pawe Redliski and Boldizsar Jank6. Binding energy of shallow donors in a quantum well in the presence of a tilted magnetic field. Phys. Rev. B, 71:113309, 2005.
    [129] M. Henini T. Vanhoucke, M. Hayne and V. V. Moshchalkov. Binding energy of charged excitons in semicon-ductor quantum wells in the presence of longitudinal electric fields. Phys. Rev. B, 63:125331, 2001.
    [130] M.M. Dignam and J. E. Sipe. Exciton states in coupled double quantum wells in a static electric field. Phys. Rev. B, 43:4084, 1991.
    [131] J. Cen and K. K. Bajaj. Binding energies of excitons and donors in a double quantum well in a magnetic field. Phys. Rev. B, 46:15280, 1992.
    [132] Murray A. Lampert. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett., 1:450, 1958.
    [133] B. Stebeand A. Moradi. Charged excitons in a low magnetic field in gaas/gal-xalxas and cdte/cdl-xznxte semiconductor quantum wells. Phys. Rev. B, 61:2888, 2000.
    [134] H. Shtrikman G. Finkelstein and I. Bar-Joseph. Negatively and positively charged excitons in gaas/alxgal-xas quantum wells. Phys. Rev. B, 47:R1709, 1996.
    [135] Y. Merle d' Aubigne E Bassani K, Saminadayar K. Kheng, R. T. Cox and S. Tatarenko. Observation of negatively charged excitons x- in semiconductor quantum wells. Phys. Rev. Left., 71:1752, 1994.
    [136] G. Munschy and 13. Stebe Existence and binding energy of the excitonic ion. Physica Status Solidi B, 64:213, 1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700