太赫兹场和磁场作用下超晶格非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹场和磁场与低维半导体的相互作用是当前理论和实验研究的热点。外场会强烈影响半导体系统的电学和光学特性,并表现出许多有趣的物理现象和丰富的物理内涵。本论文主要研究了电场和磁场共同作用下半导体超晶格中电子的动力学特性,研究内容和主要结论包括以下几个方面:
     1.利用离散的漂移扩散模型研究了电场和磁场共同作用下共振隧穿超晶格中电子的输运特性。通过考虑磁场对电子运动的操控,计算得到不同磁场下超晶格中电子的漂移速度-电场关系,利用漂移扩散方程计算了超晶格中电场的时空分布和电流随时间的演化关系。研究表明,随着磁场的变化,超晶格中周期性运动的动态电场畴可以转化为静态电场畴。
     2.研究了共振隧穿超晶格在电场和磁场作用下的混沌动力学特性。当外加一个小信号交流电场到自振荡的超晶格系统时,由于系统内部的自振荡与外加交流场的振荡相互竞争,超晶格表现出非常复杂的电流振荡特性,并且当外加电场的振荡频率与超晶格自振荡频率之比处于黄金分割率时,电流振荡最为复杂。利用庞加莱分形图、相图、第一返回图和付立叶变换谱等不同的混沌探测方法研究了周期、准周期和混沌状态的鉴别。
     3.利用平衡方程方法研究了太赫兹场作用下微带超晶格的电流响应特性。通过计算谐波随外加直流电场的变化关系,发现谐波电流在Bloch频率ω_B为外加电场频率ω的整数倍时出现共振峰。此外,还研究了超晶格对外加电场的直流-交流转换效率以及最大转换效率与外加电场的关系。
     4.研究了磁场垂直于超晶格生长方向时超晶格微带中的电子在周期性电场作用下的混沌动力学特性。结果表明,由于在微带中运动的电子与自洽电场耦合产生了协同非线性振荡模式,而外加电场引起的电子Bloch振荡以及磁场引起的电子回旋振荡与这一模式产生相互作用引起了周期、准周期以及混沌现象的产生。
Interaction between terahertz (THz) radiation and semiconductor nanostructures has been the subject of growing interest both theoretically and experimentally. When a magnetic field is applied to the system, the electronic and optical properties will be strongly modified and many interesting phenomena will show up. In this thesis, we study the nonlinear dynamics of electrons in superlattices (SLs) under THz electric field and magnetic field. The contents and main conclusions are listed as follows:
     1. Electron transport in resonant tunnelling SLs driven by crossed electric and magnetic fields has been studied using discrete drift diffusion model. By considering the effect of magnetic field on electron transport, we calculated the velocity-field characteristic under different magnetic fields. Spatiotemporal evolution of electric field domain and time-dependent current oscillation have been obtained by solving the drift diffusion equations. It is found that dynamic electric field domain can be converted to the stationary one by increasing the magnetic field.
     2. Chaotic dynamics in resonant tunnelling SLs driven by electric and magnetic fields has been studied. When a small ac signal is superimposed on the self-oscillating system, a typical nonlinear dynamic system is constructed and different current oscillation modes show up, which is attributed to the nonlinear interaction between the internally generated periodic motion of the accumulated charge wave and the external ac signal. Several kinds of chaos-detecting methods, including Poincare bifurcation diagram, phase plot, first return map, and Fourier spectra, were used to distinguish periodic, quasiperiodic, and chaotic states.
     3. We have numerically calculated the current characteristic of miniband SLs under THz electric field. It is found that harmonic current exhibits resonant peaks whenω_b = mω, whereω_B andωare frequencies of Bloch oscillation and external THz field, respectively. In addition, we have studied the dc-to-rf conversion efficiency and relation between maximum efficiency and dc electric field of the SL system.
     4. Chaotic dynamics in miniband SLs under crossed electric and magnetic fields has been investigated. It is shown that the coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field, the intrinsic Bloch-type oscillatory mode, and cyclotron oscillatory mode, leads to the appearance of complicated dynamics, including chaos.
引文
[1] P. H. Siegel. Terahertz Technology. IEEE Trans. Microwave Theory Tech., March 2002, 50(3): 910-928.
    [2] 贾刚,汪力,张希成.太赫兹波(Terahertz)科学与技术.中国科学基金,2002,第4期:200-203.
    [3] B.Ferguson and张希成.太赫兹科学与技术研究回顾.物理,2003,32(5):286-293.
    [4] 刘盛纲.太赫兹科学技术的新发展.中国基础科学,2006,第1期:7-12.
    [5] 曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003,9(2):111-117.
    [6] J. C. Cao. Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures. Phys. Rev. Lett., 2003, 91(23): 237401.
    [7] H. C. Liu, C. Y. Song, Z. R. Wasilewski, A. J. SpringThorpe, J. C. Cao, C. Dharmawardana, G. C. Aers, D. J. Lockwood, and J. A. Gupta. Coupled electron-phonon modes in optically pumped intersubband lasers. Phys. Rev. Lett., 2003, 90(7): 077402-077405.
    [8] A. G. Markelz, N. G. Asmar, B. Brar, and E. G. Gwinn. Interband impact ionization by terahertz illumination ofInAs heterostructures. Appl. Phys. Lett., 1996, 69(26): 3975-3977.
    [9] 曹俊诚.太赫兹量子级联激光器研究进展.物理,2006,35(8):632-636.
    [10] R. Koler, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, R. C. lotti, and F. Rossi. Teraherz semiconductor heterostructure laser. Nature, 2002, 417: 156-159.
    [11] M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie. Low-threshold terahertz quantum-cascade lasers. Appl. Phys. Lett., 2002, 81(8): 1381-1383.
    [12] B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno. Teraherz quantum cascade laser at λ≈100 μm using metal waveguide for mode confinment. Appl. Phys. Lett., 2003, 83(11): 2124-2126.
    [13] H. C. Liu, M. Wachter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu. Effect of doping concentration on the performance of terahertz quantum-cascade lasers. Appl. Phys. Lett., 2005, 87(14): 141102.
    [14] S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno. 1.9 THz quantum-cascade lasers with one-well injector. Appl. Phys. Lett., 2006, 88(12): 121123.
    [15] 曹俊诚.太赫兹半导体探测器研究进展.物理,2006,35(11):953-956.
    [16] H. C. Liu. Photoconductive gain mechanism of quantum-well intersubband infrared detectors. Appl. Phys. Lett., 1992, 60(12): 1507-1509.
    [17] B. F. Levine. Quantum-well infrared photodetectors. J. Appl. Phys., 1993, 74(8): R1-R81.
    [18] A. Goldberg, K. Choi, E. Cho, and B. McQuiston. Laboratory and field performance of megapixel QWIP focal plane arrays. Infrared Phys. Technol., 2005, 47(1-2): 91-105.
    [19] H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao. Terahertz quantum-well photodetector. Appl. Phys. Lett., 2004, 84(20): 4068-4070.
    [20] M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies. Terahertz range quantum well infrared photodetector. Appl. Phys. Lett., 2004, 84(4): 475-477.
    [21] H. Schneider and H. C. Liu. Quantum Well Infrared Photodetectors: Physics and Applications. Springer, Berlin, Heidelberg, NewYork, HongKong, London, Milan, Paris, and Tokyo, 2006.
    [22] 黄婉文,李宝军.太赫兹波导器件研究进展.激光与光电子学进展,2006,43(7):9-15.
    [23] A. Bingham, Y. Zhao, and D. Grischkowsky. THz parallel plate photonic waveguides. Appl. Phys. Lett., 2005, 87(5): 051101.
    [24] L. Esaki and R. Tsu. Superlattice and negative differential conductance in semiconductors. IBM J. Res. Dev., 1970, 14: 61-65.
    [25] F. Bloch. Uber die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys., 1928, 52: 555.
    [26] 夏键白,朱邦芬.半导体超晶格物理.上海科学技术出版社,上海,1995.
    [27] N. Sekine and K. Hirakawa. Dispersive Terahertz Gain of a Nonclassical Oscillator: Bloch Oscillation in Semiconductor Superlattices. Phys. Rev. Lett., 2005, 94(5): 057408.
    [28] L. Esaki and L. L. Chang. New transport phenomenon in a semiconductor "superlattice". Phys. Rev. Lett., 1974, 33(8): -468.
    [29] A. Y. Cho. Growth of Periodic Structures by the Molecular-Beam Method. Appl. Phys. Lett., 1971, 19(11): 467-468.
    [30] P. J. Price. Transport Properties of the Semiconductor Superlattice. IBM J Res. Dev., 1973, 17: 39-46.
    [31] X. L. Lei, N. J. M. Horing, and H. L. Cui. Theory of Negative Differential Conductance in a Superlattice Miniband. Phys. Rev. Lett., 1991, 66(25): 3277-3280.
    [32] A. Sibille, J. F. Palmier, H. Wang, and F. Mollot. Observation of Esaki-Tsu negative differential velocity in GaAs/A1As superlattices. Phys. Rev. Lett., 1990, 64(1): 52-55.
    [33] H. T. Grahn, R. J. Haug, W. Muller, and K. Ploog. Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems. Phys. Rev. Lett., 1991, 67(12): 1618-1621.
    [34] F. Prengel, A. Wacker, and E. Sch611. Simple model for multistability and domain formation in semiconductor superlattices. Phys. Rev. B, 1994, 50(3): 1705-1712.
    [35] X. R. Wang and Q. Niu. General analysis of instabilities and oscillations of the sequential tunneling in superlattices. Phys. Rev. B, 1999, 59(20): R12755-R12758.
    [36] D. Sanchez, M. Moscoso, L. L. Bonilla, G. Platero, and R. Aguado. Current selfoscillations, spikes, and crossover between charge monopole and dipole waves in semiconductor superlattices. Phys. Rev. B, 1999, 60(7): 4489-4492.
    [37] P. S. S. Guimaraes, B. J. Keay, J. P. Kaminski, S. J. Allen, Jr., P. F. Hopkins, A. C. Gossard, L. T. Florez, and J. P. Harbison. Photon-mediated sequential resonant tunneling in intense terahertz electric fields. Phys. Rev. Lett., 1993, 70(24): 3792-3795.
    [38] B. J. Keay, S. J. Allen, Jr., J. Galan, J. R Kaminski, K. L. Campman, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell. Photon-Assisted Electric Field Domains and Multiphoton-Assisted Tunneling in Semiconductor Superlattices. Phys. Rev. Lett., 1995, 75(22): 4098-4101.
    [39] R. Aguado and G. Platero. Photoinduced Multistable Phenomena in the Tunneling Current through Doped Superlattices. Phys. Rev. Lett., 1998, 81(22): 4971-4974.
    [40] C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Kohler. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett., 1993, 70(21): 3319-3322.
    [41] M. Holthaus. Collapse of minibands in far-infrared irradiated superlattices. Phys. Rev. Lett., 1992, 69(2): 351-354.
    [42] B. J. Keay, S. Zeuner, S. J. Allen, Jr., K. D. Maranowski, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell. Dynamic Localization, Absolute Negative Conductance, and Stimulated, Multiphoton Emission in Sequential Resonant Tunneling Semiconductor Superlattices. Phys. Rev. Lett., 1995, 75(22): 4102-4105.
    [43] A. Wacker and A. -P. Jauho. Quantum Transport: The Link between Standard Approaches in Superlattices. Phys. Rev. Lett., 1998, 80(2): 369-372.
    [44] L. Esaki and R. Tsu. Tunnelling in a finite superlattice. Appl. Phys. Lett., 1973, 22(11): 562-564.
    [45] L. L. Chang, L. Esaki, and R. Tsu. Resonant tunnelling in semiconductor double barriers. Appl. Phys. Lett., 1974, 24(12): 593-595.
    [46] M. Biittiker. Coherent and sequential tunnelling in series barriers. IBMJ. Res. Dev., 1988, 32(1): 63-75.
    [47] R. Agaudo, J. Inarrea, and G. Platero. Coherent resonant tunnelling in ac fields. Phys. Rev. B, 1996, 53(15): 10030-10041.
    [48] J. Bardeen. Tunnelling from a Many-Particle Point of View. Phys. Rev. Lett., 1961, 6(2): 57-59.
    [49] A. Chomette, B. Deveaud, A. Regreny, and G. Bastard. Observation of Carrier Localization in Intentionally Disordered GaAs/GaAlAs Superlattices. Phys. Rev. Lett., 1986, 57(12): 1464-1467.
    [50] G. Belle, J. C. Maan, and G. Weimann. Observation of magnetic levels in a superlattice with a magnetic field parallel to the layers. Surface Science, 1986, 170: 611-617.
    [51] X. L. Lei. Effect of a transverse magnetic field on superlattice miniband transport. Phys. Rev. B, 1992, 45(24): 14384-14387.
    [52] W. M. Shu and X. L. Lei. Miniband transport in semiconductor superlattices in a quantized magnetic field. Phys. Rev. B, 1995, 50(23): 17378-17382.
    [53] X. L. Lei and H. L. Cui. Balance equations for electron transport in an arbitrary energy band driven by an intense terahertz field: Application to superlattice miniband transport. Eur. Phys. J. B, 1998, 4: 513-518.
    [54] F. Q. Yan and X. L. Lei. The effect of an intense terahertz irradiation on magneto-miniband transport in semiconductor superlattices. J Phys.: Condens. Matter, 2001, 13: 6625-6632.
    [55] X. L. Lei and C. S. Ting. Green's-function approach to nonlinear electronic transport for an electron-impurity-phonon system in a strong electric field. Phys. Rev. B, 1985, 32(2): 1112-1132.
    [56] 雷啸霖.半导体输运的平衡方程方法.上海科学技术出版社,上海,2000.
    [57] S. Brandl, E. Schomburg, R. Scheuerer, K. Hofbeck, J. Grenzer, K. F. Renk, D. G. Pavel'ev, Y. Koschurinov, A. Zhukov, A. Kovsch, V. Ustinov, S. Ivanov, and P. S. Kop'ev. Millimeter wave generation by a self-sustained current oscillation in an InGaAs/InA1As superlattice. Appl. Phys. Lett., 1998, 73(21): 3117-3119.
    [58] E. Schomburg, R. Scheuerer, S. Brandl, K. F. Renk, D. G. Pavel'ev, Y. Koschurinov, V. Ustinov, A. Zhukov, A. Kovsch, S. Ivanov, and P. S. Kop'ev. InGaAs/InA1As superlattice oscillator at 147 GHz. Electron. Lett., 1999, 35(17): 1491-1492.
    [59] E. Schomburg, A. A. Ignatov, J. Grenzer, K. F. Renk, D. G. Pavel'ev, Y. Koschurinov, B. J. Melzer, S. Ivanov, S. Schaposchnikov, and P. S. Kop'ev. Suppression of current through an Esaki-Tsu GaAs/AlAs superlattice by millimeter wave irradiation. Appl. Phys. Lett., 1996, 68(8): 1096-1098.
    [60] J. C. Cao and X. L. Lei. Hydrodynamic balance-equation analysis of spatiotemporal domains and negative differential conductance in a voltage-biased GaAs superlattice. Phys. Rev. B, 1999, 59(3): 2199-2206.
    [61] E. E. Mendez, F. Agullo-Rueda, and J. M. Hong. Stark Localization in GaAs-GaAlAs Superlattices under an Electric Field. Phys. Rev. Lett., 1988, 60(23): 2426-2429.
    [62] M. Kast, C. Pacher, G. Strasser, E. Gomik, and W. S. M. Werner. Wannier-Stark States in Finite Superlattices. Phys. Rev. Lett., 2002, 89(13): 136803.
    [63] T. Schmidt, A. G. M. Jansen, R. J. Haug, K. v. Klitzing, and K. Eberl. Magnetic Control of Electric-Field Domains in Semiconductor Superlattices. Phys. Rev. Lett., 1998, 81 (18): 3928-3931.
    [64] T. Y. Li and J. A. Yorke. Period three implies chaos. Am. Math. Monthly, 1975, 82: 985-992.
    [65] 吴祥兴,陈忠.混沌学导论.上海科学技术文献出版社,上海,1996.
    [66] O. M. Bulashenko and L. L. Bonilla. Chaos in resonant-tunnelling superlattices. Phys. Rev. B, 1995, 52(11): 7849-7852.
    [67] O. M. Bulashenko, M. J. Garcia, and L. L. Bonilla. Chaotic dynamics of electric-field domains in periodically driven superlattices. Phys. Rev. B, 1996, 53(15): 10008-10018.
    [68] Y. Zhang, J. Kastrup, R. Klann, K. H. Ploog, and H. T. Grahn. Synchronization and Chaos Induced by Resonant Tunneling in GaAs/AlAs Superlattices. Phys. Rev. Lett., 1996, 77(14): 3001-3004.
    [69] K. J. Luo, H. T. Grahn, K. H. Ploog, and L. L. Bonilla. Explosive Bifurcation to Chaos in Weakly Coupled Semiconductor Superlattices. Phys. Rev. Lett., 1998, 81(6): 1290-1293.
    [70] C. Wang and J. C. Cao. Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields. Chaos, 2005, 15(1): 013111.
    [71] J. C. Cao and X. L. Lei. Synchronization and chaos in miniband semiconductor superlattices. Phys. Rev. B, 1999, 60(3): 1871-1878.
    [72] K. N. Alekseev, G. P. Berman, D. K. Campbell, E. H. Cannon, and M. C. Cargo. Dissipative chaos in semiconductor superlattices. Phys. Rev. B, 1996, 54(15): 10625-10636.
    [73] J. C. Cao, H. C. Liu, and X. L. Lei. Chaotic dynamics in quantum-dot miniband superlattices. Phys. Rev. B, 2000, 61(8): 5546-5555.
    [74] C. Wang and J. C. Cao. Chaotic dynamics in miniband semiconductor superlattices under crossed electric and magnetic fields. Phys. Rev. B, 2005, 72(4): 045339.
    [75] J. P. Nougier, J. C. Vaissiere, D. Gasquet, J. Zimmermann, and E. Constant. Determination of transient regime of hot carriers in semiconductors, using the relaxation time approximations. J. Appl. Phys, 1981, 52(2): 825-832.
    [76] M. Jaros. Physics and Applications of Semiconductor Microstructures. Clarendon Press, Oxford, 1989.
    [77] P. Harrison. Quantum Wells, Wires and Dots. John Wiley and Sons, Inc., New York, 1999.
    [78] C. Jacoboni and L. Reggiani. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 1983, 55: 645-705.
    [79] C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. Springer Verlag, Vienna, 1989.
    [80] K. Hess. Monte Carlo Device Simulation: Full Band and Beyond. Kluwer Academic Publishers, 1991.
    [81] M. V. Fischetti. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures-part Ⅰ: Homogeneous transport. IEEE Trans. Electron Devices, 1991, 38(3): 634-649.
    [82] M. V. Fischetti and S. E. Laux. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures-part Ⅱ: Submicron MOSFET's. IEEE Trans. Electron Devices, 1991, 38(3): 650-660.
    [83] X. L. Lei, N. J. M. Horing, H. L. Cui, and K. K. Thornber. Frequency limitations of negative differential mobility in vertical conduction in superlattices. Appl. Phys. Lett., 1994, 65(23): 2984-2986.
    [84] E. Schomburg, N. V. Demarina, and K. F. Renk. Amplification of a terahertz field in a semiconductor superlattice via phase-locked k-space bunches of Bloch oscillating electrons. Phys. Rev. B, 2003, 67(15): 155302.
    [85] N. V. Demarina and K. F. Renk. Bloch gain for terahertz radiation in semiconductor superlattices of different miniband widths mediated by acoustic and optical phonons. Phys. Rev. B, 2005, 71(3): 035341.
    [86] E. Schomburg, N. V. Demarina, and K. F. Renk. Amplification of a terahertz field in a semiconductor superlattice via phase-locked k-space bunches of Bloch oscillating electrons. Phys. Rev. B, 2003, 67(15): 155302.
    [87] J. T. Lu and J. C. Cao. Monte Carlo simulation of hot phonon effects in resonant-phononassisted terahertz quantum-cascade lasers. Appl. Phys. Lett., 2006, 88(6): 061119.
    [88] J. T. Lii and J. C. Cao. Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers. Appl. Phys. Lett., 2006, 89(21): 211115.
    [89] R. R. Gerhardts. Effect of elastic scattering on miniband transport in semiconductor superlattices. Phys. Rev. B, 1993, 48(12): R9178-R9181.
    [90] Y. A. Romanov, L. G. Mourokh, and N. J. M. Horing. Negative high-frequency differential conductivity in semiconductor superlattices. J. Appl. Phys., 2003, 93(8): 4696-4703.
    [91] R. Scheuerer, E. Schomburg, K. F. Renk, A. Wacker, and E. Scholl. Feasibility of a semiconductor superlattice oscillator based on quenched domains for the generation of submillimeter waves. Appl. Phys. Lett., 2002, 81 (8): 1515-1517.
    [92] X. L. Lei. The effect of electron confinement on the transient velocity response in a superlattice miniband. J. Phys.: Condens. Matter, 1994, 6: 3749-3758.
    [93] L. G. Mourokh and A. Y. Smirnov. Theory of electron transport in a superlattice miniband. J. Phys.: Condens. Matter, 1998, 10: 3213-3221.
    [94] L. L. Bonilla. Theory of nonlinear charge transport, wave propagation, and selfoscillations in semiconductor superlattices. J. Phys.: Condens. Matter, 2002, 14: R341-R381.
    [95] A. Wacker. Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep., 2002, 357: 1-111.
    [96] Z. Z. Sun, H. T. He, J. N. Wang, S. dong Wang, and X. R. Wang. Limit-cycle-induced frequency locking in self-sustained current oscillations in superlattices. Phys. Rev. B, 2004, 69(4): 045315.
    [97] G. Platero and R. Aguado. Photon-assisted transport in semiconductor nanostructures. Phys. Rep., 2004, 395: 1-157.
    [98] H. Grahn, J. Kastrup, K. Ploog, L. Bonilla, and J. Galan. Self-Oscillation of the Current in Doped Semiconductor Superlattices. Jpn. J. Appl. Phys., 1995, 34(Part 1, 8B): 4526-4528.
    [99] B. Q. Sun, J. N. Wang, W. K. Ge, Y. Q. Wang, D. S. Jiang, H. J. Zhu, H. L. Wang, Y. M. Deng, and S. L. Feng. Current self-oscillation induced by a transverse magnetic field in a doped GaAs/AlAs superlattice. Phys. Rev. B, 1999, 60(12): 8866-8870.
    [100] L. L. Bonilla and H. Y. Grahn. Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys., 2005, 68: 577-683.
    [101] E. Schomburg, K. Hofbeck, J. Grenzer, T. Blomeier, A. A. Ignatov, K. F. Renk, D. G. Pavel'ev, Y. Koschurinov, V. Ustinov, A. Zhukov, S. Ivanov, and P. S. Kop'ev. Millimeter wave oscillator based on a quasiplanar superlattice electronic device. Appl. Phys. Lett., 1997, 71(3): 401-403.
    [102] E. Schomburg, K. Hofbeck, R. Scheuerer, M. Haeussler, K. F. Renk, A. -K. Jappsen, A. Amann, A. Wacker, E. Scholl, D. G. Pavel'ev, and Y. Koschurinov. Control of the dipole domain propagation in a GaAs/AlAs superlattice with a high-frequency field. Phys. Rev. B, 2002, 65(15): 155320.
    [103] J. B. Gunn. Microwave oscillations of current in Ⅲ-Ⅴ semiconductors. Solid State Communications, 1963, 1 (4): 88-91.
    [104] J. Kastrup, R. Hey, K. H. Ploog, H. T. Grahn, L. L. Bonilla, M. Kindelan, M. Moscoso, A. Wacker, and J. Galan. Electrically tunable GHz oscillations in doped GaAs-A1As superlattices. Phys. Rev. B, 1997, 55(4): 2476-2488.
    [105] L. L. Bonilla, J. Galan, J. A. Cuesta, F. C. Martinez, and J. M. Molera. Dynamics of electric-field domains and oscillations of the photocurrent in a simple superlattice model. Phys. Rev. B, 1994, 50(12): 8644-8657.
    [106] W. Muller, H. T. Grahn, K. von Klitzing, and K. Ploog. Resonant tunnelling in a crossed electric and magnetic fields in GaAs-AlAs superlattices. Phys. Rev. B, 1993, 48(15): 11176-11183.
    [107] R. F. Kazarinov and R. A. Suris. Electric and Electromagnetic Properties of Semiconductors with a Superlattce. Soy. Phys.: Semicond., 1972, 6(1): 120-131.
    [108] S. B. Amor, J. J. L. Rascol, K. P. Martin, R. J. Higgins, R. C. Doher, and H. Hier. Transverse magnetic field studies in Al_(1-y)In_yAs-Ga_(1-x)In_x As quantum-well tunneling structures. Phys. Rev. B, 1990, 41(11): 7860-7863.
    [109] C. Wang and J. T. Lu. Current Oscillation and dc-Voltage-Controlled Chaotic Dynamics in Semiconductor Superlattices. Cornmun. Theor. Phys., 2006, 45(2): 363-368.
    [110] V. I. Litvinov and A. Manasson. Large-signal negative dynamic conductivity and highharmonic oscillations in a superlattice. Phys. Rev. B, 2004, 70(19): 195323.
    [111] S. Winnerl, E. Schomburg, J. Grenzer, H. -J. Regl, A. A. Ignatov, A. D. Semenov, K. F. Renk, D. G. Pavel'ev, Y. Koschurinov, B. Melzer, V. Ustinov, S. Ivanov, S. Schaposchnikov, and P. S. Kop'ev. Quasistatic and dynamic interaction of high-frequency fields with miniband electrons in semiconductor superlattices. Phys. Rev. B, 1997, 56(16): 10303.
    [112] A. A. Ignatov, F. Klappenberger, E. Schomburg, and K. F. Renk. Detection of THz radiation with semiconductor superlattices at polar-optic phonon frequencies. J. Appl. Phys., 2002, 91(3): 1281-1286.
    [113] S. Winnerl, E. Schomburg, S. Brandl, O. Kus, K. F. Renk, M. C. Wanke, S. J. Allen, A. A. Ignatov, V. Ustinov, A. Zhukov, and P. S. Kop'ev. Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations. Appl. Phys. Lett., 2000, 77(9): 1259-1261.
    [114] M. Shur. GaAs Devices and Circuits. Plenum, New York, 1987.
    [115] J. A. Copeland. LSA Oscillator-Diode Theory. J. Appl. Phys., 1967, 38(8): 3096-3101.
    [116] X. L. Lei. Current suppression and harmonic generation by intense terahertz fields in semiconductor superlattices. J. Appl. Phys., 1997, 82(2): 718-721.
    [117] J. B. Xia. Theory of terahertz-photocurrent resonance in miniband superlattices. Phys. Rev. B, 1998, 58(7): 3565-3567.
    [118] K. Hess, J. P. Leburton, and U. Ravaioli. Hot Carriers in Semiconductors. Plenum, New York, 1996.
    [119] X. L. Lei, I. C. da Cunha Lima, and A. Troper. Effect of high-lying minibands on superlattice vertical transport. J. Appl. Phys., 1997, 82(8): 3906-3910.
    [120] V. N. Sokolov, K. W. Kim, V. A. Kochelap, and D. L. Woolard. Terahertz generation in submicron GaN diodes within the limited space-charge accumulation regime. J. Appl. Phys., 2005, 98(6): 064507.
    [121] W. K. Kennedy and L. F. Eastman. LSA operation of large volume bulk GaAs samples. IEEE Trans. Electron Devices, 1967, ED-14(9): 500.
    [122] T. Ikoma, H. Torizuka, and H. Yanai. Observation of voltage and current waveforms of the transferred-electron oscillators. Proc. IEEE, 1969, 57: 340.
    [123] H. Kroemer. Hot-electron relaxation effects in devices. Solid-State Electronics, 1978, 21(1): 61-67.
    [124] D. Jones and H. D. Rees. A reappraisal of instabilities due to the transferred electron effect. J. Phys. C, 1973, 6: 1781.
    [125] M. R. Friscourt, P. A. Rolland, A. Cappy, E. Constant, and G. Salmer. Theoretical contribution to the design of millimeter wave TEO's. IEEE Trans. Electron Devices, 1983, ED-30(3): 223.
    [126] M. Sucheka. The doping notch in the numerical modelling of'uniformly doped transferred electron devices. Electron Technology, 1998, 31 (2): 242.
    [127] G. M. Dunn and M. J. Kearney. A theoretical study of differing active region profiles for W-band (75-110GHz) InP Gunn diodes. Semicon. Sci. Technol., 2003, 18(8): 7921-802.
    [128] A. A. Ignatov, K. F. Renk, and E. P. Dodin. Esaki-Tsu superlattice oscillator: Josephsonlike dynamics of carriers. Phys. Rev. Lett., 1993, 70(13): 1996-1999.
    [129] H. Kroemer. Large-amplitude oscillation dynamics and domain suppression in a superlattice Bloch oscillator. Cond-mat/0009311, 2000, pages 1-21.
    [130] K. Unterrainer, B. J. Keay, M. C. Wanke, S. J. Allen, U. B. D. Leonard, G. Medeiros-Ribeiro, and M. J. W. Rodwell. Inverse Bloch Oscillator: Strong Terahertz-Photocurrent Resonances at the Bloch Frequency. Phys. Rev. Lett., 1996, 76(16): 2973-2976.
    [131] F. Loser, M. M. Dignam, Y. A. Kosevich, K. K6hler, and K. Leo. Self-Induced Shapiro Effect in Semiconductor Superlattices. Phys. Rev. Lett., 2000, 85(22): 4763-4766.
    [132] E. H. Cannon, F. V. Kusmartsev, K. N. Alekseev, and D. K. Campbell l. Absolute Negative Conductivity and Spontaneous Current Generation in Semiconductor Superlattices with Hot Electrons. Phys. Rev. Lett., 2000, 85(6): 1302-1305.
    [133] A. A. Krokhin, T. M. Fromhold, A. E. Belyaev, H. M. Murphy, L. Eaves, D. Sherwood, R C. Main,, and M. Henini. Suppression of electron injection into a finite superlattice in an applied magnetic field. Phys. Rev. B, 2001, 63(19): 195323.
    [134] T. M. Fromhold, A. A. Krokhin, C. R. Tench, S. Bujkiewicz, P. B. Wilkinson, F. Sheard, and L. Eaves. Effects of Stochastic Webs on Chaotic Electron Transport in Semiconductor Superlattices. Phys. Rev. Lett., 2001, 87(4): 046803.
    [135] K. N. Alekseev, E. H. Cannon, J. C. McKirmey, F. V. Kusmartsev, and D. K. Campbelll. Spontaneous dc Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a Terahertz Field. Phys. Rev. Lett., 1998, 80(12): 2669-2672.
    [136] Y. A. Kosevich. Anomalous Hall velocity, transient weak supercurrent, and coherent Meissner effect in semiconductor superlattices. Phys. Rev. B, 2001, 63(20): 205313.
    [137] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge, 1993.
    [138] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 1985, 16(3): 285-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700