高温超导dc-SQUIDs及其涡流无损检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文论述了直流超导量子干涉器(dc-SQUID)的基本物理原理。根据 dc-SQUID 的等效电路理论,推导了描述 dc-SQUID 特性的方程组。通过将方程组中相关参数的归一化处理,提出了一种基于 Matlab 工具软件对对称性高温超导双晶结 dc-SQUID 特性进行仿真研究的简便方法,仿真结果与理论分析结果一致,对实际设计和研制高温超导 dc-SQUID 器件时,各参量的确定提供了有力的依据。
    基于双晶晶界 Josephson 结,设计了一种磁聚焦 B 型方垫 dc-SQUID,SQUID 中心方孔尺寸为 30μm×30μm,外围方垫尺寸为 8mm×8 mm,电感约为 47pH。采用脉冲激光沉积工艺,在 STO(100)衬底基片上制备了纯 c取向、杂相很少的高质量高温超导 YBCO 薄膜。采用标准掩膜光刻和刻蚀工艺,将制备的 YBCO 薄膜成形为 dc-SQUID 器件。利用自行研制的一套基于 Labview 的计算机虚拟仪器数据采集测试系统,对 dc-SQUID 特性进行了测量。测试结果表明:所研制的垫圈型双晶结高温超导 dc-SQUID,临界电流约为 55μA,IcR 值达到 110μV。调制频率为 50kHz,磁通锁定模式下工作的磁强计,在无超导屏蔽的条件下,白噪声区磁场分辨率达到333fT/Hz1/2,磁通分辨率为 14.5μΦ_0/Hz~(1/2)。
    对于在无屏蔽环境下普遍采用的高温超导 dc-SQUID 一阶平面式磁场梯度计进行了图形结构的优化设计。外围天线尺寸为 9mm×9 mm 的一阶平面式梯度计,梯度计基线长度(b)为 6mm,中心 SQUID 环孔尺寸为 4μm×110μm,线宽为 5μm 时,bAeff 参数达 0.7mm~3。在 10×10mm2 基片上制备了这种高温超导 dc-SQUID 平面式梯度计,并对其性能进行了测量,测试结果表明:所研制的高温超导一阶平面式梯度计,白噪声区磁通分辨率为 15μΦ_0/Hz~(1/2),磁场梯度分辨率达到 443 fT/cmHz~(1/2)。
    应用所研制的磁强计建立了一套高温超导 dc-SQUID 无损检测系统。根据涡流检测的原理,对多层铝板进行了无损检测实验研究,结果表明:高温超导 dc-SQUID 能够有效的应用于无损检测中,多层铝板内部十几 mm甚至几十 mm 深度存在缺陷的情况下,可以明显地看到缺陷引起的附加信号,灵敏度很高,扫描出的图像可以显示出缺陷的位置。但是,到目前为止,由于还没有一个确定的数学模型能够定量地描述缺陷大小和附加信号大小之间的关系,因此我们还不能确定附加信号宽度和缺陷大小在数值上的对应关系。
In this thesis, we describe the basic physical principle of direct current superconducting quantum device (dc-SQUID). The equations describing the characteristics of dc-SQUID are derived according to the equivalent circuit theory of dc-SQUID. By normalizing the related parameters in these equations, a simple simulating way based on Matlab tool software for symmetrical high temperature superconducting (high-T_c) dc-SQUID with bicrystal junctions is proposed. The simulating results are very consistent with the theoretical analysis and provide reliable basis for ascertaining dc-SQUID parameters when we practically design and fabricate high-Tc dc-SQUID devices.
    We design a washer type of flux-focused dc-SQUID based on bicrystal grain boundary Josephson Junction. The central square hole and the outer square washer of the SQUID are 30μm×30μm and 8mm×8mm, respectively. The SQUID inductance is estimated about 47pH. High quality high-Tc YBCO thin films with pure c-axis orientation growth and few outgrowths are fabricated on STO(100) substrates by using pulsed laser deposition (PLD). The dc-SQUID devices are patterned with the fabricated YBCO thin films by standard mask photolithography and etching methods. The measurements of the characteristics of the dc-SQUIDs are carried out with a set of computer-controlled virtual instrument data acquisition system based on Labview which is developed by ourselves. The testing results show that the critical current of the fabricated washer-type high-Tc dc-SQUID with two bicrystal junctions is about 55μA with its IcR of about 110μV. For the magnetometer operated on flux locked mode with 50kHz modulation frequency, its magnetic field sensitivity is about 333 fT/Hz~(1/2) at white noise zone and the corresponding flux sensitivity is about 14.5μΦ_0/Hz~(1/2) in non-superconducting shielded environment.
    The optimization for the configuration of first-order planar high-Tc dc-SQUID gradiometer which is widely used in unshielded environment is also involved in this thesis. For the optimized first-order planar gradiometer with the outer antenna size of 9mm×9 mm, the baseline length b is about 6mm. When the central SQUID hole is 4μm×110μm and the SQUID line width is 5 μm, the parameter bAeff for the planar gradiometer has the
    maximum value of 0.7mm~3. The first-order planar gradiometer is fabricated on 10×10mm2 substrate and its characteristics are also tested. The testing results show that the flux sensitivity of the fabricated high-Tc dc-SQUID first-order gradiometer is about 15μΦ0/Hz1/2 at white noise zone and the corresponding magnetic field gradient resolution is 443 fT/cmHz~(1/2). A nondestructive evaluation (NDE) system with the fabricated high-Tc dc-SQUID magnetometer has been built up based on eddy current NDE. The NDE experimental results for several aluminium plates show that the sensible high-Tc dc-SQUID NDE can be effectively applied in nondestructive evaluation. When flaws are over ten and even several tens millimeters below the sample surface, the additive signals from the flaws can be clearly identified. By mapping the electric field distribution, we can locate the flaw position. Up to now, however, no appropriate model can quantitatively describe the relationship between additive signals and the real size of the flaw. Therefore, we cannot determine the corresponding numeric relationship between observed additive signals and flaw shape.
引文
1 章立源,张金龙,崔广霁.超导物理学.北京:电子工业出版社,1995 年
    2 林良真,张金龙,李传义,等.超导电性及其应用.北京:北京工业大学出版社,1998 年
    3 B. D. Josephson. Possible New Effects in Superconductivity Tunneling. Phys. Lett., 1962,1(7):251-253
    4 J. G. Bednorz and K. A. Müller. Possible High Tc Superconductivity in the La-Ba-Cu-O System. Z. Phys. B:Condensed Matter,1986,64(2):189-193
    5 M. K. Wu, J. R. Ashburn, C. T. Torng, et al. Superconductivity at 93K in a New Mixed-phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett., 1987,58(9):908-910
    6 赵忠贤 , 陈立泉 , 杨乾声 , 等 .Ba-Y-Cu 氧化物液氮温区的超导电性 . 科学通报 . 1987, 32(6):412-414
    7 C. W. Chu, L. Gao, F. Chen, et al. Superconductivity above 150K in HgBa_2Ca_2Cu_3O_(8+δ) at high Pressure. Nature,1993,365(6444):323-325
    8 R. H. Koch, C. P. Umbach, G. J. Clark, et al. Quantum interference devices made from superconducting oxide thin films. Appl. Phys. Lett.,1987,51(3):200-202
    9 D. Dimos, P. Chaudhari, J. Mannhart, et al. Orientation dependence of grain-boundary critical currents in YBa_2Cu_3O_(7-δ) bicrystals. Phys. Rev. Lett.,1988, 61(2):219-222
    10 Z. G. Ivanov, P. A. Nilsson, D. Winkler, et al. Weak links and dc SQUIDs on artificial nonsymmetric grain boundaries in YBa2Cu3O7– . Appl. Phys. Lett.,1991, 59(23):3030- 3032
    11 J. Chen, T. Yamashita, H. Suzuki, et al. YBa_2Cu_3O_7– angle grain boundary junction on Si bicrystal substrate. Jpn. J. Appl. Phys.,1991,30(9A):1964-1968
    12 P. G. Quincey. High Tc Josephson junctions combining a grain boundary and local strain, using NdGaO_3 bicrystal substrates. Appl. Phys. Lett.,1994,64(4):517-519
    13 A. Beck, A. Stenzel, O. M. Froehlich, et al. Fabrication and superconducting transport properties of bicrystal grain boundary Josephson junctions on different substrates. IEEE Trans. Appl. Supercond.,1995,5(2):2192-2195
    14 Y. F. Chen, Z. G. Ivanov, E. A. Stepantsov, et al. Transport properties of Tl_2Ba_2CaCu_2O_8 weak links on LaAlO_3 bicrystal substrates. J. Appl. Phys.,1996, 79(12):9221-9223
    15 L. R. Vale, R. H. Ono and D. A. Rudman. YBa_2Cu_3O_7–x Josephson junctions on bicrystal Al2O3 and SrTiO_3 substrates. IEEE Trans. Appl. Supercond.,1997,7(2): 3193- 3196
    16 K. Char, M. S. ColClough, S. M. Garrison, et al. Bi-epitaxial grain boundary junctions in YBa_2Cu_3O_(7-δ). Appl. Phys. Lett.,1991,59(6):733-735
    17 R. W. Simon, J. B. Bulman, J. F. Burch, et al. Engineered HTS microbridges. IEEE Trans. Magn.,1991,27(2):3209-3214
    18 M. S. DiIorio, S. Yoshizumi, K. Y. Yang, et al. Practal high-Tc Josephson junctions and dc SQUIDs operating above 85K. Appl. Phys. Lett.,1991,58 (22):2552-2554
    19 J. Gao, W. A. M. Aarnink, G. J. Gerritsma, et al. Preparation and properties of all high-Tc SNS-type edge dc SQUIDs. IEEE Trans. Magn.,1991,27(2):3062-3065
    20 M. J. Zani, J. A. Luine, R. W. Simon, et al. Focused ion beam high-Tc superconductor dc SQUIDs. Appl. Phys. Lett.,1991,59(2):234-236
    21 D. Robbes, A. H. Miklich, J. J. Kingston, et al. Josephson weak links in thin films of YBa_2Cu_3O_(7-x) induced by electrical pulses. Appl. Phys. Lett.,1990,56(25):2540-2542
    22 张裕恒.超导物理.合肥:中国科学技术大学出版社,1997 年
    23 R. C. Jaklevic, J. Lambe, A. H. Silver, et al. Quantum Intereference from a Static Potential in a Field-free Region. Phys. Rev. Lett.,1964,12(11):274-275
    24 R. C. Jaklevic, J. Lambe, J. E. Mercereau, et al. Macroscopic Quantum Interference in Superconductors. Phys. Rev.,1965,140(5A):1628-1637
    25 D. E. McCumber. Effect of ac Impedance on dc Voltage-Current Characteristics of Superconductor Weak-Link Junctions. J. Appl. Phys.,1968,39(7):3113-3117
    26 D. Koelle, R. Kleiner, F. Ludwig, et al. High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys.,1999,71(3):631-686
    27 R. C. Jaklevic, J. Lambe, A. H. Silver, et al. Quantum Interference Effects in Josephson Tunneling. Phys. Rev. Lett.,1964,12(7):159-160
    28 J. E. Zimmerman, P. Thiene and J. T. Harding. Design and Operation of Stable rf-Biaesd Superconducting Point-Contact Quantum Devices, and a Note on the Properties of Perfectly Clean Metal Contacts. J. Appl. Phys. ,1970,41(4):1572-1580
    29 J. E. Mercereau. Superconducting Magnetometers. Rev. Phys. Appl.,1970, 5(1):13-20
    30 M. Nisenoff. Superconducting Magnetometers with Sensitivities Approaching 10-10 Gass. Rev. Phys. Appl.,1970,5(1):21-24
    31 R. P. Giffard, R. A. Webb and J. C. Wheatley. Principles and Methods of Low-Frequency Electric and Magnetic Measurements Using an rf-Biased Point-Contact Superconducting Device. J. Low Temp. Phys.,1972,6(5/6):533-610
    32 J. Clarke, W. M. Goubau and M. B. Ketchen. Tunnel Junction dc SQUID: Fabrication, Operation and Performance. J. Low Temp. Phys.,1976,25(1/2):99-144
    33 E. Dantsker, F. Ludwig, R. Kleiner, et al. Addendum: “ Low noise YBa_2Cu_3O_7–x-SrTiO-3-YBa_2Cu_3O_7–x multilayers for improved superconducting magnetometers” [Appl. Phys. Lett., 1995,66(3), 373-375]. Appl. Phys. Lett.,1995, 67(5):725-726
    34 D. Drung, F. Ludwig, W. Müller, et al. Integrated YBa2Cu3O7 – x magnetometer for biomagnetic measurements. Appl. Phys. Lett.,1996,68(10):1421-1423
    35 D. Drung, S. Knappe and H. Koch. Theory for the multiloop dc superconducting quantum interference device magnetometer and experimental verification. J. Appl. Phys., 1995,77(8):4088-4098
    36 F. Ludwig, E. Dantsker, R. Kleiner, et al. Integrated high-T_c multiloop magnetometer. Appl. Phys. Lett.,1995,66(11):1418-1420
    37 M. Matsuda, Y. Murayama, S. Kiryu, et al. Directly-coupled dc-SQUID magnetometers made of BSCCO oxide films. IEEE Trans. Magn.,1991,27(2),3043-3046
    38 R. Cantor, L. P. Lee, M. Teepe, et al. Low-noise, single-layer YBCO dc SQUID magnetometers at 77K. IEEE Trans. Appl. Supercond.,1995,5(2):2927-2930
    39 L. P. Lee, J. Longo, V. Vinetskiy, et al. Low-noise YBCO direct-current SQUID magnetometer with direct signal injection. Appl. Phys. Lett.,1995,66(12):1539-1541
    40 D. Koelle, A. H. Miklich, F. Ludwig, et al. DC SQUID magnetometer from single layers of YBCO. Appl. Phys. Lett.,1993,63(16):2271-2273
    41 J. M. Jaycox and M. B. Ketchen. Planar coupling scheme for ultra low noise dc SQUIDs, IEEE Trans. Magn.,1981, 17(2):400-403
    42 G. Hildebrand, and F. H. Uhlmann. Inductance calculation for integrated superconducting structures by minimizing free energy. IEEE Trans. Appl. Supercond.,1995,5(2):2766-2769
    43 H. Fuke, K. Saitoh, T. Utagawa, et al. Estimation of inductance for HTS dc SQUIDs in coplanar waveguide. Jpn. J. Appl. Phys.,1996,35(12A):L1582-L1584
    44 H. M. Cho, Y. T. Andresen, J. Clarke, et al. Low-frequency noise in high-transition-temperature superconducting multiplayer magnetometers in ambient magnetic fields. Appl. Phys. Lett.,2001,79(15):2438-2440
    45 J. R. Clem (Iowa State Univ. and Ames Laboratorw, Iowa), unpublished work, A. I. Braginski, H. J. Krause and J. Vrba. SQUID Magnetometers. Revised Manuscript Version 1.1, 1999,p35
    46 E. Dansker, S. Tanaka and J. Clarke. High-Tc superconducting quantum interference devices with slots and holes: Low 1/f noise in ambient magnetic fields. Appl. Phys. Lett., 1997,70(15): 2037-2039
    47 H. Weinstock. SQUID Sensors: Fundamentals, Fabrication and Applications. Dordrecht : Kluwer Academic,1996.
    48 J. E. Zimmerman. Sensitivity Enhancement of Superconducting Quantum Interference Devices through the use of Fractional-Turn Loops. J. Appl. Phys., 1971,42(11):4483-4487
    49 M. Hamlainen, R. Hari, R. J. Ilmoniemi, et al. Magnetoencephalography- theory, instrumentation, and application to noninvasive studies of the working human brain. Rev. Mod. Phy.,1993,65(2):413-497
    50 Y. Tavrin, Y. Zhang, M. Mück, et al. A YBa2Cu3O7 Thin Film SQUID Gradiometer for Measurements in Unshielded Space. IEEE Trans. Appl. Supercond., 1993, 3(1):2477-2480
    51 Y. Tavrin, Y. Zhang, W. Wolf, et al. A Second-order SQUID gradiometer operating at 77K. Supercond. Sci. Technol.,1994,7(5):265-268
    52 J. Borgmann, P. David, G. Ockenfuss, et al. Electronic high-temperature radio frequency superconducting quantum interference device gradiometers for unshielded enviroment. Rev. Sci.
    Instrum.,1997,68(7):2730-2734
    53 J. Borgmann, P. David, H. J. Krause, et al. Compensation techniques for high-temperature superconducting quantum interference device gradiometers operating in unshielded enviroment. Rev. Sci. Instrum.,1997,68(8):3082-3084
    54 B. David, O. Dossel, V. Doormann, et al. The Development of a High-Tc Magnetocardiography System for Unshielded Enviroment. IEEE Trans. Appl. Supercond., 1997,7(2):3267-3270
    55 H. J. M. ter Brake, N. Janssen, J. Flokstra, et al. Multichannel Heart Scanner based on High-Tc SQUIDs. IEEE Trans. Appl. Supercond.,1997,7(2):2545-2548
    56 Y. Zhang, G. Panaitov, S. G. Wang, et al. Second-order, high-temperature superconducting gradiometer for magnetocariography in unshielded enviroment. Appl. Phys. Lett.,2000,76(7): 906-908
    57 R. H. Koch, J. R. Rozen, J. Z. Sun, et al. Three SQUID gradiometer. Appl. Phys. Lett., 1993,63(19):403-405
    58 W. Eidelloth, B. Oh, R. P. Robertazzi, et al. YBa_2Cu_3O_(7-δ) thin-film gradiometers: Fabrication and performance. Appl. Phys. Lett.,1991,59(26):3473-3475
    59 M. N. Keene, N. G. Chew, S. W. Goodyear, et al. High-temperature superconducting gradiometric SQUIDs and flux transformers. Physica C,1994,230(1&2):110-114
    60 N. M. Keene, J. S. Satchell, S. W. Goodyear, et al. Low Noise HTS Gradiometers and Magnetometers Constructed from YBa_2Cu_3O_(7-x)/PrBa_2Cu_3O_(7-y) Thin Films. IEEE Trans. Appl. Supercond.,1995,5(2):2923-2926
    61 S. Knappe, D. Drung, T. Schurig, et al. A planar YBa2Cu3O7 gradiometer at 77K. Cryogenics, 1992,32(10):881-884
    62 V. Zakosarenko, F. Schmidl, H. Schneidewind, et al. Thin-film dc SQUID gradiometer using a single YBa_2Cu_3O_(7-x) layer. Appl. Phys. Lett.,1994,65(6):779-780
    63 G. M. Daalmans, L. B?r, M. Kühnl, et al. Single Layer YbaCuO-Gradiometer. IEEE Trans. Appl. Supercond.,1995,5(2):3109-3112
    64 V. Schultze, R. Stolz, R. Ijsselsteijn, et al. Integrated SQUID Gradiometer for Measurement in Disturbed Environments. IEEE Trans. Appl. Supercond.,1997, 7(2):3473-3476
    65 S. Wundderlich, F. Schmidl, H. Specht, et al. Planar gradiometers with high-Tc DC Squids for non-destructive testing. Supercond, Sci. Technol.,1998,11(3):315-321
    66 A. J. Millar, E. J. Romans, C. Carr, et al. High-T_c gradiometric superconding quantum interference device and its incorporation into a single-layer gradiometer. Applied Phys. Lett.,2000, 76(17):2445-2447
    67 韩冰,陈赓华,徐凤枝等.高温超导台阶结 YBCO dc-SQUID 一阶平面梯度计.物理学报,2000,49(10):2051-2053
    68 S. Wunderlich, F. Schmidl, L. D?rrer, et al. Improment of Sensor Performance of High-Tc Thin Film Planar Gradiometers by Ion Beam Eching. IEEE Trans. Appl. Supercond.,1999,9(1): 71-76.
    69 Y. Zhang, H. Soltner, H. –J. Krause, et al. Planar HTS Gradiometers with Large Baseline. IEEE Trans. Appl. Supercond.,1997,7(2):2866-2869
    70 M. I. Farley, U. Poppe, K. Urban, et al. DC-SQUID Magnetometers and Gradiometers on the Basis of Quasiplanar Ramp-Type Josephson Josephson Junctions. IEEE Trans. Appl. Supercond.,1997,7(2):3702-3705
    71 Y. J. Tian, T. S. Wang, K. Chen, et al. Flip-chip-type high-T_c gradiometer for biomagnetic measurement in unshielded enviroment. SCIENCE IN CHINA(Series A), 2000,43(1):82-87
    72 E. Danstker, O. M. Froehlich, S. Tanaka, et al. High-T_c superconducting gradiometer with a long baseline asymmetric flux transformer. Appl. Phys. Lett., 1997,71(12):1712-1714
    73 K. A. Kouznetsov, J. Borgmann and J. Clarke. High T_c superconducting asymmetric gradiometer for biomagnetic applications. Rev. Sci. Instru.,2000, 71(7):2873-2881
    74 Schultze, R. Ijsselsteijn, A. Chwala, et al. HTS SQUID gradiometer for application without shielding. Supercond. Sci. Technol.,2002,15(1):120-125
    75 A. Eulenburg, E. J. Romans, C. Carr, et al. Highly balanced long-baseline single-layer high-Tc superconducting quantum interference device gradiometer. Appl. Phys. Lett.,1999,75(15): 2301-2303
    76 C. M. Pegrum, A. Eulenburg, E. J. Romans, et al. High-temperature single-layer SQUID gradiometers with long baseline and parasitic effective area compensation. Supercond. Sci. Technol.,1999,12(11):766-768
    77 K. A. Kouznetsov, J. Borgman and J. Clarke. High-T_c gradiometer for magnetocardiography in an unshielded enviroment. Appl. Phys. Lett.,1999, 75(13):1979-1981
    78 A. Kittel, K. A. Kouznetsov, R. McDermott, et al. High T_c superconducting second-order gradiometer. Appl. Phys. Lett.,1998,73(15):2197-2199
    79 S. G. Lee, Y. Hwang, B. C. Nam, et al. Direct-coupled second-order superconducting quantum interference device gradiometer from single layer of high temperature superconductor. Appl. Phys. Lett.,1998,73(16):2345-2347
    80 Ya. S. Greenberg. Theory of the voltage-current characteristic of high T_c DC SQUID. Physica C, 2002,371(2):156-172
    81 Ya. S. Greenberg, V. Schultze, H. –G. Meyer. Theory of the voltage-current characteristic of high Tc DC SQUIDs and its experimental verification. Physica C,2002,368(1-4):236-240
    82 G. Testa, E. Sarnelli, S. Pagano, et al. Characteristics of asymmetric superconducting quantum interference devices. J. Appl. Phys.,2001,89(9):5145-5150
    83 G. Testa, C. Granata, C. Calidonna, et al. Performance of asymmetric superconducting quantum interference devices. Physica C,2002,368(1-4):232-235
    84 G. Testa, S. Pagano, E. Sarnelli, et al. Properties of asymmetric high critical temperature dc SQUIDs. IEEE Trans. Appl. Supercond.,2001,11(1):908-911
    85 J. Muller, S. Weiss, R. Gross, et al. Voltage-flux-characteristics of asymmetric dc SQUIDs. IEEE Trans. Appl. Supercond.,2001,11(1):912-915
    86 Ya. S. Greenberg. Theory of the voltage-current characteristics of high T_c asymmetric DC SQUIDs. Physica C,2003,383(4):354-364
    87 G. Testa, A. Monaco, E. Sarnelli, et al. Submicron YBa2Cu3O7-x bicrystal grain boundary junctions by focused ion beam. Supercond. Sci. Techno.,2004,17(2):287-290
    88 F. Carillo, F. Lombardi, F. M. Granozio, et al. Transport properties of Josephson junctions and SQUIDs employing different types of YBCO grain boundaries obtained througj the biepitaxial technique. Inter. J. Mod. Phys. B,2000,14(25-27):3074-3079
    89 T. Q. Yang, K. Enpuku. SQUID magnetometer utilizing normal pickup coil and resonant-type coupling circuit. Physica C, 2003,392(Part 2):1396-1400
    90 C. S. Kang, Y. H. Lee, H. Kwon, et al. A multichannel double relaxation osicillation SQUID magnetometer system for magnetoencephalogram. Physica Status Solidi A-Applied Research, 2004,201(8):1956-1960
    91 Y. H. Lee, H. Kwon, J. M. Kim, et al. A multichannel SQUID magnetometer system based on double relaxation oscillation SQUIDs. IEEE Trans. Appl. Supercond.,2003,13(2):755-758
    92 J. Kawai, Y. Adachi, N. Tsuyuguchi, et al. A 9-channel relaxation oscillation SQUID magnetometer system integrated in a 16mmx16mm area. Supercond. Sci. Techno., 2001,14(12):1081-1085
    93 S. M. Ishikaev. An optimal configuation of pickup coils of a SQUID magnetometer. Instru. Exper. Tech.,2002,45(3):426-430
    94 V. Schultze, R. Ijsselsteijn, T. May, et al. Highly balanced single-layer high-temperature superconductor SQUID gradiometer freely movable within the earth’s magnetic field. Supercond. Sci. Techno.,2003,13(2):356-359
    95 S. G. Lee, Y. S. Hwang, H. C. Kwon, et al. Improvement of the balance of the single-layer second-order high Tc SQUID gradiometer. Physica C,2002,372(Part 1):221-224
    96 Y. S. Hwang, J. R. Ahn, S. G. Lee, et al. Balancing of the single-layer second-order high Tc SQUID gradiometer. IEEE Trans. Appl. Supercond.,2001,11(1):1343-1346
    97 S. G. Lee, Y. Hwang, I. S. Kim. Off-diagonal 2nd-order SQUID gradiometer made from a single layer of high T_c superconductor film. IEEE Trans. Appl. Supercond.,2003,13(2):857-860
    98 S. Kuriki, A. Hayashi, Y. Hirata, et al. High T_c SQUID magnetometer for measurement of heart-rate signal of small animals. Chinese Journal of Physics,2004,42(4):501-507
    99 K. Yokosawa, A. Tsukamoto, D. Suzuki, et al. A 16-channel High-Tc SQUID-magnetometer system for magnetocardiogram mapping. Supercond. Sci. Techno.,2003,16(12):1383-1386
    100 K. Kobayashi, Y. Uchkawa. Development of a high spatial resolution SQUID magnetometer for biomagnetic measurement. IEEE Trans. Mag.,2003,39(5):3378-3380
    101 K. Enpuku, T. Minotani, M. Hotta, et al. Application of High T_c SQUID magnetometer to biological immunoassays. IEEE trans. Appl. Supercond.,2001,11(1):661-664
    102 K. Enpuku, T. Minotani. Biological immunoassay with High T_c superconducting quantum interference device (SQUID) magnetometer. IEEE Trans. Electron.,2001,E84C(1):43-48
    103 S. H. Liao, S. C. Hsu, C. C. Lin, et al. High T_c SQUID gradiometer system for magneto- cardiography in an unshielded environment. Supercond. Sci. Techno.,2003,16(12):1426-1429
    104 R. Stolz, V. Zakosarenko, N. Bondarenko, et al. Integrated SQUID-gradiometer system for mag- netocardiography without magnetic shielding. IEEE Trans. Appl. Supercond.,2003,13(2):356-359
    105 Y. Zhang, N. Wolters, E. Schubert, et al. HTS SQUID gradiometer using substrate resonators operating in an unshielded environment-a portable MCG system. IEEE Trans. Appl. Supercond.,2003,13(2):389-392
    106 V. Schultze, R. Ijsselsteign, A. Chwala, et al. HTS SQUID gradiometer for application without shielding. Supercond. Sci Techno.,2002,15(1):120-125
    107 D. F. He, M. Yoshizawa. Mobile high-T_c DC SQUID magnetometer. Physica B-condensed matter,2003,329(Part 2):1489-1490
    108 Y. Tavrin, H. J. Krause, W. Wolf, et al. Eddy current technique with high temperature SQUID for non-destructive evaluation of non-magnetic metallic structures. Cryogenics, 1996,36(2):83-86
    109 C. Carr, D. McA. Mckirdy, E. J. Romans, et al. Electromagnetic Nondestructive Evaluation:Moving HTS SQUIDs, Inducting Field Nulling and Dual Frequency Measurements. IEEE Trans. Appl. Supercond., 1997,7(2):3275-3278
    110 F. Schmidl, S. Wunderlich, L. Dorrer, et al. High-T_c DC-SQUID System for Nondestructive Evaluation. IEEE Trans. Appl. Supercond.,1997,7(2):2756-2759
    111 N. Kasai, N. Ishikawa, H. Yamakawa, et al. Nondestructive Dection of Dislocations in Steel Using a SQUID Gradiometer. IEEE Trans. Appl. Supercond., 1997,7(2):2315-2318
    112 T. Nagaishi, H. Kugai, H. Toyoda, et al. NDT of High Speed Fine Particles by High Tc SQUID. IEEE Trans. Appl. Supercond.,1997,7(2):2886-2889
    113 G. Panaitov, M. Bick, Y. Zhang, et al. Peculiarities of SQUID magnetometer application in TEM. Geophysics, 2002,67(3):739-745
    114 J. B. Lee, D. L. Dart, R. J. Turner, et al. Airborne TEM surveying with a SQUID magnetometer sensor. Geophysics,2002,67(2):468-477
    115 B. R. Spies. Discussion on “Peculiarities of SQUID magnetometer application in TEM”. Geophysics, 2004,69(2):624-625
    116 K. Allweins, G. Gierelt, M. von Kreutzbruck. Defect detecting in thick aircraft lap-joint structures using HTS SQUID NDE. Inter. J. Appl. Electromag. Mech.,2004,19(1-4):29-33
    117 R. Hohmann, D. Lomparski, H. J. Krause, et al. Aircraft wheel testing with remote eddy current technique using a HTS SQUID magnetometer. IEEE Trans. Appl. Supercond.,2001,11(1): 1279-1282
    118 H. J. Krause, G. I. Panaitov, Y. Zhang. Conductivity tomography for non-destructive evaluation using pulsed eddy current with HTS SQUID magbetometer. IEEE Trans. Appl. Supercond.,
    2003,13(2):215-218
    119 G. Panaitov, H. J. Klause, Y. Zhang. Pulsed eddy current transient technique with HTS SQUID magnetometer for non-destructive evaluation. Physica C,2002,372(Part 1):278-281
    120 Y. Hatsukade, M. S. Aly-Hassan, N. Kasai, et al. SQUID-NDE method on damaged area and damage degree of defects in composite materials. IEEE Trans. Appl. Supercond., 2003, 13(2):207-210
    121 A. Ruosi, M. Valentino, V. Lopresto, et al. Magnetic response of damaged carbon fibre reinforced plastics measured by a HTS-SQUID magbetometer. Compo. Struct.,2002,56(2):141-149
    122 Y. Isobe, T. Aoki. Detection of thermal aging of duplex stainless steels with SQUID magnetometer. Materials Science Research Internation,1999,5(1):51-56
    123 K. K. Likharev. Dynamics of Josephson Junctions and Circuits. Netherlands:Gordon and Beach Science Publishers SA,1986
    124 L. Solymar. Superconductive Tunnelling and Application. Chap. 13, Chapman and Hall London,1972
    125 J. Clarke. in Superconductor Applications:SQUIDs and Machines, Chap. 3, ed. by B. Schwarts and S. Foner, Plemum, New York,1977
    126 C. D. Tecshe and J. Clarke. dc SQUID:Noise and Optimization. J. Low Temp. Phys.,1977,29(3/4):301-331
    127 郑智琴.Simulink 电子通信仿真与应用. 北京:国防工业出版社,2002 年
    128 J. T. Anderson and J. M. Goldman. Thermal Fluctuations and the Josephson Supercurrent. Phys. Rev. Lett.,1969,23(3):128-131
    129 C. D. Tecshe and J. Clarke. dc SQUID:Current Noise. J. Low Temp. Phys., 1979,37(3/4): 397-403
    130 David A. Glocker and S. Ismat. Shah. Handbook of thin film process technology. IOP Publishing, 1997
    131 P. R. Willmott and J. R. Huber. Pulsed laser vaporization and deposition. Rev. Mod. Phys.,2000,72(1):315-328
    132 胡文斐 . 高温超导氧化物薄膜外延机制研究 .[中国科学院物理研究所理学博士论文].2001:13-16
    133 陈珂,漆汉宏,魏艳君等.高温超导薄膜器件的计算机数据采集测量系统.计算机自动测量与控制.2000,8(3):16-18
    134 陈珂.YBa_2Cu_3O_(7-δ) dc SQUID 研究及其应用于无损检测和扫描 SQUID 显微镜. [中国科学院物理研究所理学博士论文]. 2001:51-53
    135 D. Drung. in SQUID Sensors:Fundamentals, Fabrication and Applications. NATO ASI series, Kluwer Academic Publishers,1996
    136 薄膜工艺编译组.薄膜工艺.北京:科学出版社,1972 年
    137 D. Drung. DC SQUID system overview. Supercond. Sci. Technol.,1991, 4(9):377-385
    138 R. H. Koch, J. Clarke, W.M. Goubau, et al. Flicker (1/f) noise in tunnel junction dc SQUIDs. J. Low Temp. Phys.,1983,51(1-2):207-224
    139 M. J. Ferrari, M. Johnson, F. C. Wellstood, et al. Magnetic flux noise in thin-film rings of YBa_2Cu_3O_(7-δ). Appl. Phys. Lett.,1988,53(8):695-697
    140 李喜孟.无损检测.北京:机械工业出版社,2001 年
    141 J. Banchet, J. Jouglar, P. L. Vuillermoz, et al. Magnetomechanical Behavior of Steel via SQUID Magnetometry. IEEE Trans. Appl. Supercond.,1995,5(2):2486-2489
    142 Y. P. Ma and J. P. Wikswo. Imaging subsurface defects using SQUID magnetometers. in Review of Progress in QNDE, D. O. Thompson and D. E. Chimenti eds. Plenum,New York,1993
    143 A. Cochran and G. B. Donaldson. NDE Review. Glasgow:ISEC,1991
    144 H. Weistock, T. Erber and M. Nisenoff. Threshold of Barkhausen emission and onset of hysteresis in iron. Phys. Rev. B,1985,31(3):1535-1553
    145 Y. P. Ma, I. M. Thomas, A. Lauder, et al. A high resolution imaging susceptometer. IEEE Trans. Appl. Supercond.,1993,3(1):1941-1944
    146 I. M. Thomas, Y. P. Ma, S. Tan, et al. Spatial resolution and sensitivity of magnetic susceptibility imaging. IEEE Trans. Appl. Supercond.,1993,3(1):1937-1940
    147 I. M. Thomas, Y. P. Ma and J. P. Wiksow Jr. SQUID NDE:Dection of surface flaws by magnetic decoration. IEEE Trans. Appl. Supercond.,1993,3(1):1949-1952
    148 B. A. Hands (ed). Cryogenic engineer. Academic Press Inc.,1986
    149 Advanced Electronics Cooling Group, Carrier Corporation, P O Box 4808. Carrier Parkway, Syracuse NY 13221 USA
    150 王俊平.双晶 DC SQUID 磁强计在无损检测上的应用研究.[北京有色金属研究总院博士学位论文].1999:50-53
    151 K. Chen, L. Chen, T. Yang, et al. High-T_c SQUID magnetometer with grain boundary junctions and its application in non-destructive evaluation. Physica C, 2000,329(2):102-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700