量子时钟同步与量子相干控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自发参量下转换是高频泵浦光与非线性晶体相互作用过程时,湮灭高频泵浦光子,同时产生两个具有纠缠特性的低频信号光子和闲散光子。人们正是利用纠缠光子对的这种量子关联特性实现对时空的高精度测量。本文基于二阶量子相干原理,解析地描述了由第二类型参量下转换所产生的纠缠光子对实现远程时钟同步测量的机理。文中所描述的时钟同步测量方法可实现对空间位置的测量,同时又可用于测量纠缠光子对在非线性晶体中传输的时间差。结果表明,时间差越短,两个被探测事件的相干性越好,同步程度越高。
     利用自发参量下转换研究纠缠光子对在空间的传输问题与光场的二阶相关函数密切相关,这是一个双光子过程。而在研究光与原子相互作用的过程,同样涉及到双光子激发的物理过程,因此本文研究了可控啁啾脉冲光场与二能级原子系统的双光子作用过程。根据菲涅耳波带片思想讨论了如何实现对激发态布居几率的聚焦效应以及和频中的聚焦效应。结果表明,在啁啾脉冲光场作用下的双光子过程中,可通过对光场的裁剪实现双光子跃迁过程与和频过程的聚焦效应。文中主要以方脉冲为例讨论了这一过程的物理机理,这一方法对高斯脉冲作用下的双光子吸收与非线性光学效应中的参量过程都可实现聚焦效应。
     文章主要由五部分构成。
     第一部分
     这一部分主要介绍全量子化理论、二阶相关函数、自发参量下转换与双光子跃迁原理的有关定义与数学推导等基础理论知识,此部分是整篇论文的基石。
     第二部分
     主要讲述了第二类型光学参量下转换的具体原理与公式推导,为深刻理解每个表达式的物理意义奠定了基础。
     第三部分
     这一部分提出了一种量子纠缠、压缩光的方法。与经典方法比较,运用量子方法可提高测量精度,并从数学上推导出具体提高的数量。
     第四部分
     研究远程时钟同步的量子测量方法,运用纠缠光子对的量子特性可得到比经典测量精度更高的结果,量子测量方法得到的时间差为飞秒量级,故提高了测量精度。通过讨论基于参量下转换产生的纠缠光子对的量子特性及量子相干原理,研究远程时钟同步测量机理。结果表明,所描述的方案具有普遍性,可用于时钟同步又可用于空间定位的研究,同时也可用于测量纠缠光子对在非线性晶体中传输的时间差。结果表明,时间差越短,两个被探测事件的相干性越好,同步程度越高。
     第五部分
     研究了啁啾脉冲与二能级原子系统的相互作用过程中所发生的双光子跃迁现象。利用二阶微扰理论得到了激发态布居几率的解析表示。根据菲涅耳波带片思想讨论了如何实现对激发态布居几率的聚焦效应。同时讨论了二阶非线性光学中的和频问题。
The process of spontaneous parametric down-conversion involves sending a pump laser beam into a nonlinear material. Occasionally, the nonlinear interaction inside the crystal leads to the annihilation of a high frequency pump photon and the creation of two lower frequency photons named as signal and idler. The two photons are entangled. People just take advantage of entangled photo pairs whose quantum correlation characteristic achieves the high accuracy measurement for space-time. Based on second-order correlation principle, we describe a measurement method of the distant clock synchronization analytically, which is achieved by the entangled photon pairs produced with spontaneous-Ⅱparametric down-conversion. This method can not only be used in studding the distant clock synchronization and the quantum positioning, but is useful in measuring the time difference of a pair of entangled photon passing the nonlinear crystal. The results show that the shorter the time difference is, the better the coherence and synchronization of the two probed events are.
     The entangled photon pairs propagation in space is studied by spontaneous parametric down-conversion, which is closely correlative with second-order correlation function. This is a two-photon process. In the study of the interaction process of light and atom, physical process of the two-photon excitation is also involved. Therefore, action process of controllable chirped pulse light field and two-photon process in two levels atomic system is studied in this paper. In term of Fresnel Zone Plate theory, how to carry out focusing effect of excited-state population and focusing effect of sum frequency would be discussed. The results show that two-photon process in under action of the chirped pulse light field; the focusing effect in two-photon transitions process and sum frequency process is achieved by cutting light field. We mainly use square pulse as the example to discuss physical method in this process. Focusing effect can be realized by this method for Gaussian pulse under two-photon absorption and nonlinear optical effect in the parametric process. The paper could be divided into five parts.
     Part one
     In this part, it mainly introduces the fundamental theories, including the concept and mathematical reasoning of full Quantization theory, second-order correlation function, spontaneous parametric down conversion and two-photon transition principle. It is the theoretical foundation of this paper.
     Part two
     In this part, it mainly describes specific principles and mathematical reasoning of theⅡtype optical parametric down conversion, which help the understanding of physics meaning of each expression.
     Part three
     In this part, it proposes a method of quantum entangled and squeezed light. Comparing with classic methods, the application of quantum method can improve the accuracy and the specific improved numerical value can be deduced.
     Part four
     In this part, the quantum measurement of the distant clock synchronization would be studied. The usage of quantum characteristic of entangled photon pairs enables the researcher to gain the higher accuracy than that of Classic measurement. The time difference is femtosecond order, which improve the accuracy. Based on the quantum feature of the entangled photon pairs produced with the spontaneous parametric down-conversion and the quantum coherent principle, the method of the distant clock synchronization is studied. The results show that the core method of the distant clock synchronization described in this paper is also the same with quantum positioning and measurement the time difference of a pair of entangled photon passing the nonlinear crystal. The results show that the shorter the time difference is, the better the cohence and synchronization of the two events probed are.
     Part five
     In this part, it gives two-photon transition phenomenon in the process of the interaction of the chirped pulse and two-level system. Analytic representations of excited-state position probability would be obtained by using second-order perturbation theory. In term of Fresnel Zone Plate theory, how to carry out focusing effect of excited-state population would be discussed, as well as the second-order nonlinear optical sum frequency problems.
引文
[1]Einstiein A, Podolsky B,Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? [J]. Phys. Rev,1935,47:777-780.
    [2]Fan H.Y,Klauder J R. Eigenvectors of two particles'relative position and total momentum [J]. Phys. Rev.A,1994,49:704-707.
    [3]Fan H.Y,Ye Xiong.Common eigenstates of two particles'center-of-mass coordinates and mass-weighted relative momentum[J]. Phys.Rev.A,1995,51:3343-3346.
    [4]范洪义。量子力学纠缠态表象及应用[M]。上海:上海交通大学出版社,2001:5-6。
    [5]赵颖。量子技术将改善GPS定位精度[J]。遥测遥控,2001,20。
    [6]程代展。量子控制——一个全新的学科领域[J]。控制与决策.2002,17:513-516。
    [7]Tarn T J, Huang G, Clark J W.Modeling of quantum mechanical control systems[J]. Mathem article Modrlling,1980,1:109-121.
    [8]Huang G, Tarn T J. On the controll ability of quantum-mechanical systems[J]. American Institute of Physics,1983,24:2608-2618.
    [9]Ong C K, Huang G, Tran T J,et al. Invertibility of quantum mechnical control systems [J].Mathematical Systems Theory,1984,17:335-350.
    [10]Tarn T J, Hazewinkel M, Ong C K.Quantum mechanical system symmetry[C]//In: Proceedings of the 23rd IEEE conference on Decision and Control, Las Vegas,1984:1587-1592.
    [11]Clark J W,Ong C K,Tarn T J,et al. Quantum nondemolition filters[J].Mathematical Systems Theory,1985,18:33-55.
    [12]Wiener N,Cy bernetics[M].New York:John Wiley and Sons,1948:1-30.
    [13]钱学森,宋健。工程控制论[M]。北京:科学出版社,1980:1-12。
    [14]丛爽。量子力学系统控制论[M]。北京:科学出版社,2006:1-2。
    [15]干耀国,金荧荧。量子控制[J]。甘肃联合大学学报(自然科学版),2008,22:45-47。
    [16]曾谨言。量子力学导论[M]。北京:北京大学出版社,1992:1-9。
    [17]苏汝铿。量子力学[M]。上海:复旦大学出版社,1997:237-308。
    [18]熊钰庆,何宝鹏。量子力学导论[M]。广州:广东高等教育出版社,2000:1。
    [19]Greiner W, Miiller B. Quantum Mechanics Synmetries[M].2nd ed. Berlin: Springer,1989:1-55.
    [20]Brandt S, Dahmen H D. The Picture Book of Quantum Mechanics[M]. New York: Springer-Verlag,1985:77-123.
    [21]Holland P R. The Quantum Theory of Motion[M]. New York:Cambridge University Press,1995:1-24.
    [22]吴国林。量子控制的基本概念及其哲学意义[J]。科学技术与辩证法,2007,24:26-30。
    [23]Tarn T J, Clark J W, Lucarelli D G. Controllability of quantum mechanical systems with continuous spectra [C]//In:Proceedings of the 39th IEEE conference on Decision and Control, Sydney,2000.943-948.
    [24]Turinici G. Controllable quantities for bilinear quantum systems[C]//In: Proceedings of the 39th IEEE conference on Decision and Control, Sydney,2000,1364-1369.
    [25]Clark J W, Tarn T J. Non-demolition filters for quantum systems[C]//In: Proceedings of the 40th IEEE conference on Decision and Control, Orlando,2001, 287-291.
    [26]Zanardi P, Symmetrizing evolutions[J]. Phys. Lett.A,1999,258:77-82.
    [27]Apagyi B, Gabor Endredi, evay P L, et al. Inverse and A lgebraic Quantum Scattering Theory [M]. Berlin:Springer,1996:1.
    [28]Doherty A C, Habib S, Jacobs K, et al. Quantum feedback control and classical control theory [J].Phys. Rev. A,2000,62:2105-2118.
    [29]Lloyd S. Coherent quantum feedback [J]. Phys. Rev. A,2000,62:2108-2114.
    [30]Doherty A, Doyle J, Mabuchi H, et al. Robust control on the quantum domain[C]// In:Proceedings of the 39th IEEE conference on Decision and Control, Sydney,2000, 949-954.
    [31]Yanaqisawa M, Kimura H. Transfer function approach to quantum control systems [C]//In:Proceedings of the 40th IEEE conference on Decision and Control,Or lando,2001,1595-1600.
    [32]Alessandro D D, Dahleh M. Optimal control of two level quantum systems[J]. IEEE Trans on Automatic Control,2001,46:866-876.
    [33]Brochett R W. System theory on group manifolds and coset spaces[J]. SIAM Journal Control and Optimization,1972,10:265-284.
    [34]Cheng D, Dayawansa W P, Martin C F. Observability of systems on Lie groups and coset spaces [J]. SIAM Journal Control and Optimization,1990,28:570-581.
    [35]Khaneja N, Brockett R. Time optimal control in spin systems[J]. Phys. Rev. A, 2001,63:2308.
    [36]Liola L, Lloyd S. Dynamical generation of noiseless quantum subsystems[J]. Phys. Rev. Lett,2000,85:3520-3524.
    [37]Ting Yu. Decoherence and localization in quantum two-level systems[J]. Physica A,1998,248:393-418.
    [38]Viola L, loyd L S. Dynamical suppression of decoherence in two-state quantum systems[J]. Phys. Rev. A,1998,58:2733-2744.
    [39]Alber G. Quantum Information:An Introduction to Basic Theoretical Concepts and Experiments[M]. New York:Springer,2001:1.
    [40]Hirvensalo M. Quantum Computing [M]. New York:Springer,2001:1.
    [41]Pastirk I, Brown E J, Zhang Q, et al. Quantum control of the yield of a chemical reaction [J]. J Chemical Physics,1998,108:4375-4378.
    [42]张明,李明山,胡小平。量子控制的述评与展望,尖端科技[J]。2007,23-28。
    [1]过巳吉。非线性光学[M]。空军导弹学院:西北电讯工程学院出版社,1986:255-265。
    [2]Glauber R J.The Quantum Theory of Optical Coherence[J].Phys.Rev,1963, 130:2529-2539.
    [3]黄运锋,江云坤,张永生,郭光灿。自发参量下转换制备双光子纠缠态在量子信息学中的应用[J]。激光与光电子学进展,2002,39:16-19。
    [4]过巳吉。非线性光学[M]。空军导弹学院:西北电讯工程学院出版社,1986:128-281。
    [5]过巳吉。非线性光学[M]。空军导弹学院:西北电讯工程学院出版社,1986:294-296。
    [1]Morton H,Rubin,David N,Klyshko,Hshih Y,Sergienko A V.Theory of two-photon entanglement in type-Ⅱ optical parametric down-conversion [J].Phys.Rev. A,1994, 50:5122-5133.
    [2]Klyshko D. N. Photons and Nonlinear Optics[M]. New York:Gordon and Breach Science Publishers,1988:1.
    [3]Alejandra Valencia, Maria V. Chekhova,Alexei Trifonov, Yanhua Shih.Entangled Two-Photon Wave Packet in a Dispersive Medium[J]. Phys. Rev. Lett,2002,88: 183601(1-4).
    [1]Bennett C H,Brassard G, Mermin N D, Quantum cryptography without Bell's theorem[J].Phys. Rev.Lett,1992,68:557-559.
    [2]Caves C M, Quantum-mechanical noise in an interferometer[J]. Phys. Rev. D,1981, 23:1693-1708.
    [3]Bollinger J J, Itano W M, Wineland D J, Heinzen D J. Optimal frequency measurements with maximally correlated states [J]. Phys.Rev.A,1996,54: R4649-R4652.
    [4]Huelga S F, Macchiavello C, Pellizzari T, Ekert M A, Plenio K B, Cirac J I. Improvement of Frequency Standards with Quantum Entanglement[J].Phys. Rev. Lett,1997,79:3865-3868.
    [5]Boto A N, Kok P,Abrams D S, Braunstein S L,Williams C P, Dowling J P.Quantum Interferometric Optical Lithography:Exploiting Entanglement to Beat the Diffraction Limit[J].Phys. Rev. Lett,2000,85:2733-2736.
    [6]Grover L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J].Phys. Rev. Lett,1997,79:325-328.
    [7]Giovannetti V, Lloyd S, Maccone L.Quantum-enhanced positioning and clock synchronization[J].Nature,2001,412:417-419.
    [8]Titulaer U M,Glauber R J. Correlation Functions for Coherent Fields [J].Phys. Rev., 1965,140:B676-B682.
    [9]Mandel L,Wolf E. Optical Coherence and Quantum Optics[M].New York: Cambridge University Press,1995:487-488.
    [10]Peres A.Quantum Theory:Concepts and Methods[M].New York,Boston, Dordrecht, Moscow:Kluwer Academic Publishers,1995:137-141.
    [1]Einstein A.On the electrodynamics of moving bodies[J].Annalen der Physik.1905,17:891-921.
    [2]Eddington A S.The mathematical theory of relativity[M].Londen:Cambridge Unversity,1923:33-36.
    [3]Josza R, Abrams D S, Dowling J P, Williams C P. Quantum clock synchronization based on shared prior entanglement[J].Phys. Rev. Lett,2000,85:2010-2013.
    [4]Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature,2001,412:417-419.
    [5].Giovannetti V, Lloyd S, Maccone L, Wong F. N. C. Clock synchronization with dispersion cancellation[J].Phys. Rev. Lett,2001,87:117902-1-117902-4.
    [6]Alejandra Valencia, Giuliano Scarcelli, Yanhua Shih. Distant clock synchronization using entangled photon pairs[J].Appl. Phys. Lett,2004,85:2655-2657.
    [7]Rubin M H, Klyshko D N, Shih Y H, Sergienko A V. Theory of two-photon entanglement in type-II optical parametric down-conversion[J].Phys. Rev. A,1994, 50:5122-5133.
    [1]李永放,任立庆, 马瑞琼, 仇旭, 刘娟, 樊荣, 伏振兴。波函数的时域衍射[J]。中国科学G辑,2009,39(4):600-605。
    [2]Rickes T, Yatsenko L P, Steuerward S, Halfmann T, Shore B W, Vitanov N V,Bergmann K, Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift [J]. Chem. Phys,2000,113:534-546.
    [3]Broers B, Noordam L D. Diffraction and focusing of spectral energy in multiphoton processes[J].Phys. Rev. A,1992,46:2749-2756.
    [4]Doron Meshulach, Yaron Silberberg. Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses[J]. Phys. Rev. A,1999,60:1287-1292.
    [5]Barak Dayan, Avi Pe'er, Asher A. Friesem, Yaron Silberberg. Two Photon Absorption and Coherent Control with Broadband Down-Converted Light[J]. Phys.Rev.Lett,2004,93:023005(1-4).
    [6]Nirit Dudovich, Dan Oron, Yaron Silberberg. Quantum Control of the Angular Momentum Distribution in Multiphoton Absorption Processes[J]. Phys.Rev.Lett,2004,92:103003(1-4).
    [7]Jerome Degert, Wendel Wohlleben, Beatrice Chatel, Marcus Motzkus, Bertrand Girard. Realization of a Time-Domain Fresnel Lens with Coherent Control[J]. Phys. Rev. Lett,2002,89:203003 (1-4).
    [8]Nirit Dudovich, Dan Oron, Yaron Silberberg. Coherent Transient Enhancement of Optically Induced Resonant Transitions[J]. Phys. Rev. Lett,2002,88:123004 (1-4).
    [9]Rubin M H, Klyshko D N, Shih Y H, Sergienko A V. Theory of two-photon entanglement in type-II optical parametric down-conversion[J].Phys. Rev. A,1994, 50:5122-5133.
    [10]Grice W P, Walmsley I A. Spectral information and distinguishability in type-II down-conversion with a broadband pump[J]. Phys. Rev. A,1997,56:1627-1634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700