基于坏腔的量子信息处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息科学是量子力学和计算科学、信息科学结合而形成的一门新兴交叉学科,它可以完成经典信息科学很难完成甚至无法完成的任务,其潜在的巨大应用前景引发了过去几十年来人们对量子信息的理论和实验研究。到目前为止,人们可以在不同的物理体系中实现量子信息处理,如线性光学、核磁共振、离子阱、量子点、纳米机械振子、电路量子电动力学和腔量子电动力学等。腔量子电动力学系统是被研究得较早,且和量子光学技术紧密相关的一个物理系统,从而被广泛认为是最有前途的系统之一。一方面,由于制备高品质光学腔对现有实验技术是一个较大的挑战;另一方面,高品质光学腔反而会降低腔量子电动力学系统的集成度,因此本论文致力于基于坏腔的量子信息处理理论研究。
     第一章的绪论中我们介绍腔量子电动力学中有关量子信息处理的相关背景知识,然后给出本文的研究动机以及主要内容和章节安排。
     第二章我们简要地介绍腔量子电动力学的相关知识。我们首先讨论Jaynes-Cummings模型及其动力学以及腔的输入—输出理论,然后简述腔量子电动力学物理实现系统,最后讨论腔量子电动力学中的一些基本概念和相关物理参数。
     第三章我们讨论基于坏腔的量子逻辑门。首先,我们介绍基于坏腔的光子输入—输出过程以及光子法拉第旋转效应,然后分别给出量子宇称门、光子—原子控制非门以及光子—原子受控相位门。最后,我们讨论基于坏腔量子逻辑门的实验可行性和误差分析。
     第四章我们讨论基于坏腔的量子纠缠态浓缩和纯化方案。对于量子纠缠态浓缩,我们采用两种不同的方法:一种是基于纠缠交换的方法,另一种是基于量子逻辑门和单比特测量的最优纠缠态浓缩方案。基于坏腔的光子输入—输出过程,我们可以同时实现光子和原子纠缠态浓缩。另外,我们也讨论基于弱相干光的原子纠缠态纯化,最后给出量子纠缠态浓缩和纯化的实验可行性和误差分析。
     第五章我们讨论基于坏腔的量子隐形传态方案。.首先,我们给出隐形传送多比特量子态的一般方案,表明该方案比以前的方案要节约量子纠缠、量子比特和经典信息资源。然后基于坏腔的光子输入—输出过程,我们提出原子和光子态的量子隐形传送方案,最后我们给出量子隐形传态方案的实验可行性和误差分析。
     第六章是对本文工作的总结和展望。
Quantum information science is an interdisciplinary which combines quantum mechanics, computer science and information science. It can be used to complete tasks which can not be realized with classical information science, and its potential applications lead to both theoretical and experimental studies in recent decades. Nowadays, quantum information processing may be implemented in many different physical systems such as linear quantum optics, nuclear magnetic resonance, ion trap, quantum dot, nanomechanical resonator, circuit quantum electrodynamics and cavity quantum electrodynamics. Cavity quantum electrodynamics system is widely regarded as one of the most promising platforms, as it has been investi-gated for decades and is closely related to experimental technology in quantum optics. Due to the fact that preparation of high-quality optical cavity is difficult with present experimental technology, and integration of cavity quantum electro-dynamics with high-quality optical cavity is a great challenge, in this thesis, we mainly investigate quantum information processing based on bad cavities theoret-ically.
     In chapter1, we introduce the relevant knowledge about quantum information processing within cavity quantum electrodynamics, then present the motivation and arrangement of our thesis.
     In chapter2, we briefly introduce relevant background of cavity quantum electrodynamics. We first discuss Jaynes-Cummings model and input-output the-ory of cavity, then introduce physical implementation systems for cavity quantum electrodynamics, and give some basic concepts and relevant parameters lastly.
     In chapter3, we discuss quantum logic gates based on bad cavities. Firstly, we recall photonic input-output process and photonic Faraday rotation, and then pro-pose quantum parity gate, atom-photon controlled-not gate and controlled phase gate, respectively. We also discuss their experimental feasibility and error analysis.
     In chapter4, we discuss quantum entanglement concentration and purification based on bad cavities. For quantum entanglement concentration, we present two different schemes:one is entanglement swapping, the other is optimal entangle-ment concentration based on quantum logic gate and single-qubit measurements. Bennifitting from photonic input-output process based on bad cavities, we can con-centrate both atomic and photonic entanglement. Furthermore, we also propose atomic entanglement purification with weak coherent light. Finally, we discuss their experimental feasibility and error analysis.
     In chapter5, we discuss quantum teleportation based on bad cavities. Firstly, we present teleportation protocol for multiqubit quantum state, and show that it consumes less quantum entanglement, qubits and classical information than previ-ous ones. Based on photonic input-output process in the bad cavity, we propose to teleport both atomic and photonic states, and discuss their experimental feasibility and error analysis.
     In chapter6, the summary and outlook are given.
引文
[1]E. M. Purcell, Spontaneous emission probability at Radio frequency. Phys. Rev., 1946,69:681.
    [2]H. B. G. Casimir, On the attraction between two perfectly conducting plates. Proc. Koninkl. Ned. Akad. Wetenschap,1948,51:793.
    [3]H. B. G. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces. Phys. Rev.,1948,73:360.
    [4]C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A. Hinds, Measure-ment of the Casimir-Polder force. Phys. Rev. Lett.,1993,70:560.
    [5]E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE,1963,51: 89.
    [6]I. I. Rabi, On the Process of Space Quantization. Phys. Rev.,1926,49:324.
    [7]I. I. Rabi, Space Quantization in a Gyrating Magnetic Field. Phys. Rev.,1937, 51:652.
    [8]J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Periodic Spontaneous Collapse and Revival in a Simple Quantum Model. Phys. Rev. Lett.,1980,44: 1323.
    [9]N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, Coherence versus incoherence:Collapse and revival in a simple quantum model. Phys. Rev. A, 1981,23:236.
    [10]H. J. Carmichael, Photon Antibunching and Squeezing for a Single Atom in a Resonant Cavity. Phys. Rev. Lett.,1985,55:2790.
    [11]M. Hennrich. A. Kuhn, and G. Rempe, Transition from Antibunching to Bunching in Cavity QED. Phys. Rev. Lett.,1985,94:053604.
    [12]A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche,13.Entanglement of a Mesoscopic Field with an Atom Induced by Photon Graininess in a Cavity. Phys. Rev. Lett.,2003,91:230405.
    [13]E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Generation of Einstein-Podolsky-Rosen Pairs of Atoms. Phys. Rev. Lett.,1997,79:1.
    [14]S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, Coherent Control of an Atomic Collision in a Cavity. Phys. Rev. Lett., 2001,87:037902.
    [15]A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, Controlled entanglement of two Held modes in a cavity quantum electrodynamics experiment. Phys. Rev. A,2001,64:050301.
    [16]A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED. Phys. Rev. Lett.,1999,83:5166.
    [17]Q. A. Turchette, C. J. Hood, W. Lange, Ⅱ. Mabuchi, and Ⅱ. J. Kimble, Measure-ment of conditional phase shifts for quantum logic. Phys. Rev. Lett.,1995,75: 4710.
    [18]A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, II. J. Kimble, and E. S. Polzik, Unconditional Quantum Teleportation. Science,1998,282:706.
    [19]B. Dayan, A. S. Parkins, T. Aoki, E. Ostby, K. J. Vahala, and H. J. Kimble, A Photon Turnstile Dynamically Regulated by One Atom. Science,2008,319: 1062.
    [20]Z. B. Birula, Cavity QED. Acta Physica Polonica B,1996,27:2409.
    [21]J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys.,2001,73:565.
    [22]H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys.,2006,69:1325.
    [23]H. J. Kimble, Strong interactions of single atoms and photons in cavity QED. Phys. Scr. T,1998,76:127.
    [24]D. Braak, Integrability of the Rabi Model. Phys. Rev. Lett.,2011,107:100401.
    [25]P. Forn-Diaz, J. Lisenfeld, D. Marcos, J. J. Garcia-Ripoll, E. Solano, C. J. P. M. Harmans, and J. E. Mooij, Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime. Phys. Rev. Lett.,2010, 105:237001.
    [26]J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll, and E. Solano, Deep Strong Coupling Regime of the Jaynes-Cummings Model. Phys. Rev. Lett., 2010,105:263603.
    [27]A. Crespi, S. Longhi, and R. Osellame, Photonic Realization of the Quantum Rabi Model. Phys. Rev. Lett.,2012,108:163601.
    [28]M. O. Scully and M. S. Zubairy, Quantum Optics. Chapter 6.2.
    [29]J. Larson, Dynamics of the Jaynes-Cummings and Rabi models:old wine in new bottles. Phys. Scr.,2007,76:146.
    [30]M. Bina, The coherent interaction between matter and radiation. Eur. Phys. J. Special Topics,2012,203:163.
    [31]R. H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev,1954,93: 99.
    [32]C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A,1985,31:3761.
    [33]C. W. Gardiner and P. Zoller, Quantum Noise 2nd ed. (Springer-Verlag, Berlin, Heidelberg,2000).
    [34]A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits:An architecture for quantum computation. Phys. Rev. A,2004,69:062320.
    [35]A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a su-perconducting qubit using circuit quantum electrodynamics. Nature,2004,431: 162.
    [36]K. J. Vahala, Optical microcavities. Nature,2003,424:839.
    [37]P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of Cavity-Enhanced Single-Atom Spontaneous Emission. Phys. Rev. Lett.,1983,50:1903.
    [38]D. J. Heinzen, J. L. Childs, J. Thomas, and M. S. Feld, Enhanced and inhibited visible spontaneous emission by atoms in a con focal resonator. Phys. Rev. Lett., 1987,58:1320.
    [39]D. J. Heinzen and M. S. Feld, Vacuum Radiative Level Shift and Spontaneous-Emission Linewidth of an Atom in an Optical Resonator. Phys. Rev. Lett.,1987, 59:2623.
    [40]K. H. Drexhage, Progress in Optics vol 12 ed E Wolf. (Amsterdam:North Holland) pp 165-229,1974.
    [41]G. Gabrielse and H. Dehmelt, Observation of inhibited spontaneous emission. Phys. Rev. Lett.,1985,55:67.
    [42]R. G. Hulet, E. Hilfer, and D. Kleppner, Inhibited Spontaneous Emission by a Rydberg Atom. Phys. Rev. Lett.,1985,55:2137.
    [43]W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, Suppres-sion of spontaneous decay at optical frequencies:Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett.,1987,58:666.
    [44]D. L. McAuslan, J. J. Longdell, and M. J. Sollars, Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators:What you can do with a weak oscillator. Phys. Rev. A,2009,80:062307.
    [45]D. I. Schuster, Circuit Quantum Electrodynamics. Ph.D thesis Yale Univer-sity,2007.
    [46]L. M. Duan and H. J. Kimnble, Scalable Photonic Quantum Computation through Cavity-Assisted Interactions. Phys. Rev. Lett.,2004,92:127902.
    [47]W. J. Munro, R. Van Meter, S. G. R. Louis, and K. Nemoto, High-Bandwidth Hybrid Quantum Repeater. Phys. Rev. Lett.,2008,101:040502.
    [48]P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, Hybrid Quantum Repeater Using Bright Coherent Light. Phys. Rev. Lett.,2006,96:240501.
    [49]Y. L. Zhou and C. Z. Li, Robust quantum gates via a photon triggering electro-magnetically induced transparency. Phys. Rev. A,2011,84:044304.
    [50]R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of normal-mode split-ting for an atom in an optical cavity. Phys. Rev. Lett.,1992,68:1132.
    [51]S. Fan, S. E. Kocabas, and J. T. Shen, Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A,2010,82:063821.
    [52]E. Waks and J. Vuckovic, Dipole Induced Transparency in Drop-Filter Cavity-Waveguide Systems. Phys. Rev. Lett.,2006,96:153601.
    [53]A. Auffeves-Garnier, C. Simon, J. M. Gerard, and J. P. Poizat, Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A,2007,75:053823.
    [54]J. H. An, M. Feng, and C. H. Oh, Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A,2009,79:032303.
    [55]C. Y. Hu, A. Young, J. L. O'Brien, W. J. Munro, and.J. G. Rarity, Giant optical Faraday rotation induced by a single-electron spin in a quantum dot:Applications to entangling remote spins via a single photon. Phys. Rev. B,2008,78:085307.
    [56]J. Oreg, F. T. Hioe, and J. H. Eberly, Adiabatic following in multilevel systems. Phys. Rev. A,1984,29:690.
    [57]U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Knlz, and K. Bergmann, Population switching between vibrational levels in molecular beams. Chem. Phys. Lett.,1988,149:463.
    [58]K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys.,1998,70:1003.
    [59]P. Kral, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage. Rev. Mod. Phys.,2007,79:53.
    [60]Z. Kis and F. Renzoni, Qubit rotation by stimulated Raman adiabatic passage. Phys. Rev. A,2002,65:032318.
    [61]D. Moller, Adiabatic Processes in Quantum Computation. Ph.D thesis, De-partment of Physics and Astronomy, University of Aarhus,2008.
    [62]Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature,2007,450:272.
    [63]J. L. O'Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, Quantum Process Tomography of a Controlled-NOT Gate. Phys. Rev. Lett.,2004,93:080502.
    [64]A. Gilchrist, N. K. Lang-ford, and M. A. Nielsen, Distance measures to compare real and ideal quantum processes. Phys. Rev. A,2005,71:062310.
    [65]C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett.,1996,76:722.
    [66]C. H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A,1996,53:2046.
    [67]S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement. Phys. Rev. A,1999,60:194.
    [68]B. S. Shi, Y. K. Jiang, and G. C. Guo, Optimal entanglement purification via entanglement swapping. Phys. Rev. A,2000,62:054301.
    [69]S. Bandyopadhyay, Qubit-and entanglement-assisted optimal entanglement con-centration. Phys. Rev. A,2000,62:032308.
    [70]Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, Experimental Re-alization of Entanglement Concentration and a Quantum Repeater. Phys. Rev. Lett.,2003,90:207901.
    [71]M. Yang, Y. Zhao, W. Song, and Z. L. Cao, Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A, 2005,71:044302. Phys. Rev. A 71,
    [72]Z. L. Cao, L. H. Zhang, and M. Yang, Concentration for unknown atomic entangled states via cavity decay. Phys. Rev. A,2006,73:014303.
    [73]C. D. Ogden, M. Paternostro, and M. S. Kim, Concentration and purification of entanglement for qubit systems with ancillary cavity fields. Phys. Rev. A,2007, 75:042325.
    [74]Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concen-tration. Phys. Rev. A,2001,64:014301.
    [75]T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A,2001,64:012304.
    [76]K. Nemoto and W. J. Munro, Nearly Deterministic Linear Optical Controlled-NOT Gate. Phys. Rev. Lett.,2004,93:250502.
    [77]Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A,2008,77:062325.
    [78]J. W. Pan, C. Simon, and A. Zellinger, Entanglement purification for quantum communication. Nature (London),2001,410:1067.
    [79]Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlin-earity. Phys. Rev. A,2008,77:042308.
    [80]Y. B. Sheng and F. G. Deng, Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A,2010,81: 032307.
    [81]F. G. Deng, Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A,2011,84:052312.
    [82]P. Lougovski, E. Solano, and H. Walther, Generation and purification of maximally entangled atomic states in optical cavities. Phys. Rev. A,2005,71:013811.
    [83]C. Wang, Y. Zhang, and G. S. Jin, Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A,2011,84:032307.
    [84]F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A,2012,85:022311.
    [85]Y. B. Sheng, L. Zhou, S. M. Zhao and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A, 2012,85:012307.
    [86]L. Zhou, Optimal multi-photon entanglement concentration with the photonic Faraday rotation. arXiv:1211.0351,2012.
    [87]L. Zhou, Efficient entanglement concentration for arbitrary less-entangled N-atom state. arXiv:1210.6178,2012.
    [88]C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.,1993,70:1895.
    [89]D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation. Nature (London),1997,390:575.
    [90]M. A. Nielsen, E. Knill, and R. Laflamme, Complete quantum teleportation using nuclear magnetic resonance. Nature (London),1998,396:52.
    [91]M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfied, R. Ozeri, and D. J. Wineland, Deterministic quantum teleportation of atomic qubits. Nature (London),2004,429:737.
    [92]Y. Yeo and W. K. Chua, Teleportation and Dense Coding with Genuine Multi-partite Entanglement. Phys. Rev. Lett.,2006,96:060502.
    [93]P. X. Chen, S. Y. Zhu, and G. C Guo, General form of genuine multipartite entan-glement quantum channels for teleportation. Phys. Rev. A,2006,74:032324.
    [94]S. L. Braunstein and H. J. Kimble, Teleportation of Continuous Quantum Vari-ables. Phys. Rev. Lett.,1998,80:869.
    [95]D. M. Greenberger, M. A. Home, A. Shimony, and A. Zeilinger, Bell's theorem without inequalities. Am. J. Phys.,1990,58:1131.
    [96]W. Diir, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequiv-alent ways. Phys. Rev. A,2000,62:062314.
    [97]Z. X. Man, Y. J. Xia, and N. B. An, Genuine multiqubit entanglement and con-trolled teleportation. Phys. Rev. A,2007,75:052306.
    [98]M. J. Zhao, Z. G. Li, X. Li-Jost, and S. M. Fei, Multiqubit quantum teleportation. J. Phys. A:Math. Theor.,2012,45:405303.
    [99]R. Raussendorf and H. J. Briegel, A One-Way Quantum Computer. Phys. Rev. Lett.,2001,86:5188.
    [100]Z. H. Peng, J. Zou, and X. J. Liu, Perfect quantum information processing with Dicke-class state. Eur. Phys. J. D,2010,58:403.
    [101]S. Ghosh, G. Kar, A. Roy, D. Sarkar, and U. Sen, Entanglement teleportation through GHZ-class states. New J. Phys.,2002,4:48.1.
    [102]A. Karlsson and M. Bourennane, Quantum teleportation using three-particle en-tanglement. Phys. Rev. A,1998,58:4394.
    [103]M. Hillery, V. Buzek, and A. Berthiaume, Quantum secret sharing. Phys. Rev. A,1999,59:1829.
    [104]P. W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A,1995,52:R2493.
    [105]M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states. Phys. Rev. A,2004,69:062311.
    [106]P. Agrawal and B. Pradhan, Task-oriented maximally entangled states. J. Phys. A:Math. Theor.,2010,43:235302.
    [107]J. Zhou, G. Hou, and Y. Zhang, Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Bosen states. Phys. Rev. A,2001,64: 012301.
    [108]C. P. Yang, Shih-I. Chu, and S. Han, Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A,2004,70: 022329.
    [109]S. Albeverio, S. M. Fei, and W. L. Yang, Optimal teleportation based on bell measurements. Phys. Rev. A,2002,66:012301.
    [110]L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. Haroche, Telepor-tation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A,1994,50:R895.
    [111]S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, Proposal for Teleportation of an Atomic State via Cavity Decay. Phys. Rev. Lett.,1999,83:5158.
    [112]S. B. Zheng and G. C. Guo, Efficient, Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. Rev. Lett.,2000,85: 2392.
    [113]B. Yu, Z. W. Zhou, Y. Zhang, G. Y. Xiang, and G. C Guo, Robust high-fidelity teleportation of an atomic state through the detection of cavity decay. Phys. Rev. A,2004,70:014302.
    [114]T. Di, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, Quantum teleportation of an arbitrary superposition of atomic Dicke states. Phys. Rev. A,2005,71: 062308.
    [115]G. Chimczak, R. Tanas, and A. Miranowicz, Teleportation with insurance of an entangled atomic state via cavity decay. Phys. Rev. A,2005,71:032316.
    [116]D. Vitali, M. Fortunato, and P. Tombesi, Complete Quantum Teleportation with a Kerr Nonlinearity. Phys. Rev. Lett.,2000,85:445.
    [117]Y. H. Kim, S. P. Kulik, and Y. Shih, Quantum Teleportation of a Polarization State with a Complete Bell State Measurement. Phys. Rev. Lett.,2001,86: 1370.
    [118]S. J. van Enk and O. Hirota, Entangled coherent states:Teleportation and deco-herence. Phys. Rev. A,2001,64:022313.
    [119]F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A,2010,82:052315.
    [120]J. J. Chen, J. H. An, M. Feng, and G. Liu, Teleportation of an arbitrary mul-tipartite state via photonic Faraday rotation. Journal of Physics B:Atomic, Molecular and Optical Physics,2010,43:095505.
    [121]W. P. Bastos, W. B. Cardoso, A. T. Avelar, N. G. de Almeida, and B. Baseia, Con-trolled teleportation via photonic Faraday rotations in low-Q cavities. Quantum. Inf. Process,2012,11:1867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700