纠缠态的制备及其在量子通信中应用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学是二十世纪八十年代兴起的一门融合了量子力学和信息科学的新兴学科。近20年来,人们对量子信息学的研究,不论是理论上还是实验上都取得了长足的发展。作为量子信息学的核心部分,量子纠缠不仅是量子力学区别于经典力学的重要特征之一,也是量子信息理论的重要组成部分。作为量子理论最显著的特征之一,量子纠缠被当作一种有效的资源广泛地应用于量子信息领域。纠缠在量子信息处理中已经产生了许多有趣的应用,如量子隐形传态、量子密集编码、量子态远程制备、量子安全直接通信、量子秘密共享等等。所以,研究量子纠缠及其在量子信息中的应用,不仅对深刻理解量子力学的特性有着重要的学术意义,而且对开发和利用新型的信息处理方法等有着重要的实用价值。因此,本文主要在理论上研究了纠缠态的制备及其在量子通信中的应用(主要包括量子隐形传态、量子态远程制备、量子秘密共享和量子安全直接通信)。全文共分为七章,其中第三章到第七章是本人的工作,整篇论文内容的具体安排为:
     第一章简要回顾了量子信息理论的提出和发展过程,简述了量子纠缠态的提出和定义,并在最后给出了本博士论文的主要研究内容和章节安排。
     第二章主要介绍了量子信息的基本理论。首先介绍了EPR佯谬和Bell不等式,几类常见的纠缠态,量子纠缠态的度量,量子不可克隆定理以及几种主要的纠缠操作;然后介绍了几个典型的量子信息处理任务说明量子纠缠作为一个重要的物理资源在量子信息理论中的应用。
     第三章主要讨论了利用线性光学元件制备多光子GHZ纠缠态。在这个方案中需要用到简单的线性光学元件,N对两光子极化纠缠态和常规光子探测器。因为实现本方案只需要在探测端口确认是否有光子,而不需要计数光子的数量,所以这就在一定程度上提高了实验上实现的可行性。
     第四章主要讨论了量子纠缠态在量子隐形传送方面的应用。两个量子隐形传送方案被提出:第一个方案是利用一个非最大纠缠EPR对作为量子通道来传送N粒子非最大纠缠GHZ态。在这个方案中考虑了量子通道中存在振幅噪音的情况,这个方案可以被推广到传送任意能级N粒子非最大纠缠GHZ态的情况;第二个方案中考虑了利用一维四粒子非最大纠缠Cluster态作为量子通道传送一个任意未知的两比特纠缠态的情况。
     第五章主要讨论了量子纠缠态在量子态远程制备中的应用。这一章中,不仅一对一的量子态远程制备的情况被考虑,而且多方联合远程制备量子纠缠态的情况也被考虑。
     第六章主要讨论了量子纠缠态在量子秘密共享方面的应用。本章指出,不仅可以用非最大纠缠态作为量子通道实现多方量子秘密共享量子信息,而且利用线性光学的方法也可以实现量子秘密共享量子态。这两种方法的都有各自的优点和缺点。
     第七章主要讨论了量子纠缠态在量子安全直接通信方面的应用。本章指出,利用非对称能级的纠缠态作为量子通道可以完美的实现受控量子安全直接通信。这个方案是安全的,高效的,每次信息传送量也大大提高了。而且这个方案可以推广到多方控制情况。
     最后给出了全文的总结与展望。
The quantum informatics is an intersection of quantum mechanics and information theory, arisen from 1980s.Over the last two decades,there has been rapid development in both theoretical and experimental studies on quantum information.Quantum entanglement is not only one of the major characteristics that distinguish quantum from classical mechanics, but also an essential ingredient of quantum information theory.As one of the most striking features of quantum formalism,quantum entanglement is used in the field of quantum information as an effective resource.The entanglement has involved many interesting applications without classical counterparts,such as quantum teleportation,quantum dense coding,remote state preparation,quantum secure direct communication,and quantum secret sharing.Therefore,the study of both quantum entanglement and its applications in quantum information theory are necessary and valuable not only to understand well the special properties of the quantum mechanics but also to develop and make use of the new information process methods.Taking the problems stated above into account,theoretical study on preparation of entangled states and their applications in quantum communication are mainly discussed in this dissertation.The thesis has been divided into seven chapters,and our works are included in the chapters from 3 to 7.
     In Chapter 1,the background of the study,the proposition and definition of quantum entanglement are introduced,and the major research subjects and the organization of the dissertation are given at the end of this chapter.
     In Chapter 2,the basic conception of quantum information is introduced.Firstly,EPR paradox and Bell inequality,and several kinds of entangled states,as well as their properties, are given.Then the measurement of the degree of quantum entanglement,quantum nocloning theorem,and manipulation of quantum entanglement are introduced.At last,several typical quantum information protocols are also introduced in order to demonstrate that quantum entanglement is an important physical resource.
     In Chapter 3,the protocol for generating Greenberger-Horne-Zeilinger(GHZ) state of N distant photons with linear optical elements is proposed.The proposed setup consist of simple linear optical elements,N pairs of the two-photon polarization entangled states,and the conventional photon detectors that only distinguish the vacuum and nonvacuum Fock number states.This makes the protocol more realizable in experiments.
     In chapter 4,the applications of entangled states in quantum teleportation is discussed and two theoretical protocols are developed.In the first protocol,an arbitrary N-qubit GHZ entangled state can be probabilistically teleported from the sender to the receiver via only one non-maximally two qubit entangled state.Without entanglement concentration,using standard Bell-state measurement and classical communication one cannot teleport the state with unit fidelity and unit probability.In the second protocol,an arbitrary and unknown two-qubit entangled state can be probabilistically teleported from the sender to the receiver via a one-dimensional four-particle non-maximally entangled cluster state.By construction, the four-particle state is not reducible to a pair of Bell states.
     In chapter 5,the applications of entangled states in remote state preparation is discussed and one theoretical protocol is proposed.In this protocol,one sender and one receiver case, and multiparty remote state preparation(That is two- or multi-party share a quantum state, and they want to remotely prepare it to the receiver) case are considered.
     In chapter 6,the applications of entangled states in quantum secret sharing is discussed. A protocol is proposed for multiparty quantum secret sharing via introducing auxiliary particles using a non-maximally entangled two-particle state without a Bell measurement first, and then two optical protocols are proposed for quantum state sharing of superposed coherent states and entangled states,respectively.
     In chapter 7,the applications of entangled states in quantum secret direct communication is discussed.A protocol is presented for controlled quantum secure direct communication that uses a 2-dimensional Greenberger-Horne-Zeilinger(GHZ) entangled state and a 3-dimensional Bell-basis state and employs the high-dimensional quantum superdense coding,local collective unitary operations and entanglement swapping.The proposed protocol is secure and of high source capacity.It can effectively protect the communication against a destroying-travelqubit -type attack.With this protocol,the information transmission is greatly increased. This protocol can also be modified,so that it can be used in a multi-party control system.
     Finally,the results are summarized at the end of the paper.
引文
[1]Feynman R.Simulating physics with computers[J].Int.J.Theor.Phys.,1982,21(6-7):467-488.
    [2]Feynman R.Quantum mechanical computers[J].Opt.News.,1985,11:11-20.
    [3]Benioff P.The computer as a physical system:A microscopic quantum mechanical hamiltonian model of computers as represented by Turing machines[J].J.Stat.Phys.,1980,22:563-591.
    [4]Deutsch D.Quatum theory,the Church Turing principle and the universal quantum computer[C].Proceedings Royal Society of London A,1985,400:97-117.
    [5]Deutsch D.Quantum computational nertworks[C].Proceedings Royal Society of London A.1989,425:73-90.
    [6]Shor P.Algorithms for quantum computation:discrete logarithm and factoring.Proc.of the 35th Annual Symposium on Foundations of Computer Science[C],IEEE ComputerSociety Press,1994,124-134.
    [7]Nielsen M A,Chuang I L.Quantum computation and quantum information[M].Cambridge:Cambridge Univ.Press,2000.
    [8]Grover L K.Quantum mechanics helps in searching for a needle in a haystack[J].Phys.Rev.Lett.,1997,79(2):325-328.
    [9]Grover L K.Quantum computers can search arbitrarily large databases by a single query[J].Phys.Rev.Lett.,1997,79(23):4709-4712.
    [10]Pellizzari T,Gardiner S A,Cirac J I,et al.Decoherence continuous observation and quan-tum computing:A cavity QED model[J].Phys.Rev.Lett.,1995,75(21):3788-3791.
    [11]Sleator T and Weinfurter H.Quantum teleportation and quantum computation based on cavity QED[J].Phys.Rev.Lett.,1995,74(20):4087-4090.
    [12]van E S J,Cirac J I,Zoller P.Purifying two-bit quantum gates and joint measurements in cavity QED[J].Phys.Rev.Left.,1997,79(25):5178-5181.
    [13]Yang C P,Chu S I,Han S Y.Quantum information transfer and entanglement with SQUID qubits in cavity QED:A dark-state scheme with tolerance for nonuniform device parameter[J].Phys.Rev.Lett.,2004,92(11):117902(1-4).
    [14]Chuang I L,Gersehenfeld N and Kubinec M.Experimental implementation of fast quantum searching [J].Phys.Rev.Lett.,1998,80(15):3408-3411.
    [15]Kane B E.A silicon-based nuclear spin quantum computer[J].Nature,1998,393:133-137.
    [16]Averin D V.Adiabatic quantum computation with Cooper pairs[J].Solid State Commun.,1998,105(10):659-664.
    [17]宋鹤山.量子力学[M].大连:大连理工大学出版社,2004.
    [18]周世勋.量子力学教程[M].北京:高等教育出版社,2003.
    [19]喀兴林.高等量子力学fM].北京:高等教育出版社,2003.
    [20]Wootters W K,Zurek W H.A single quantum cannot be cloned[J].Nature,1982,299:802-803.
    [21]D'Ariano G M,Yuen H P.Impossibility of measuring the wave function of a single quantum system [J].Phys.Rev.Lett.,1996,76(16):2832-2835.
    [22]Barnum H,Caves C M,Fuchs C A,et al.Noncommuting mixed states cannot Be broadcast[J].Phys.Rev.Lett.,1996,76(15):2818-2821.
    [23]Bennett C H,Brassard G.Quantum cryptography:public key distribution and coin toss-ing[c].Proc.IEEE Int.Conf.on Computers,Systems and Signal Processing,Bangalore,India(IEEE,New York),1984:175-179.
    [24]Einstein A,Podolsky B,Rosen N.Can quantum mechanical description of physical reality be considered complete?[J].Phys.Rev.,1935,47(10):777-780.
    [25]Schrodinger E.Discussion of probability relations seperated systems[J].Proc.Cambridge Phil.Soc.,1935,31:555-558.
    [26]曾谨言.量子力学(第二卷)[M].北京:科学出版社,2001.
    [27]李承祖,黄秋明,陈平行等.量子通信和量子计算[M].长沙:国防科技大学出版社,2000.
    [28]宋鹤山,宋天.量子信息论[M].大连:大连理工大学出版社,2007.
    [29]Bohm D,侯得彭译.量子理论[M].北京:商务译书馆,1982.
    [30]Bell J S.on the Einstein-Podolsky-Rosen paradox[J],physics.1964,1:195-198.
    [31]Aspect A,Grangier P,Roger G.Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment:a new violation of Bell's inequalities[3].Phys.Rev.Lett.,1982,49(2):91-94.
    [32]Weihs G,Jennewein T,Simon C,et al.Violation of Bell's inequality under strict Einstein locality conditions[J].Phys.Rev.Lett.,1998,81(23):5039-5042.
    [33]Greenberger G,Home M,Zeilinger A.Bell's theorem,quantum theory,and conceptions of the universe[M].edited by M.Kafatos(Kluwer,Dordrecht),1998.
    [34]D(u|¨)r W,Vidal G,Cirac J I.Three qubits can be entangled in two ineqnivalent ways[J].Phys.Rev.A,2000,62(6):062314(1-12).
    [35]Briegel H J,Raussendorf R.Persistent entanglement in arrays of interacting particles[J].Phys.Rev.Lett.,2001,86(5):910-913.
    [36]Sackett C,Kielpinski D,King B,et al.Experimental entanglement of four particles[J].Nature (London),2000,404:256-259.
    [37]Rauschenbeutel A,Nogues G,Osnaghi S,et al.Step-by-step engineered multiparticle entanglement [J].Science,2000,288:2024-2028.
    [38]Hagley E,Maitre X,Nogues G,et al.Generation of Einstein-Podolsky-Rosen pairs of atoms[J].Phys.Rev.Lett.,1997,79(1):1-4.
    [39]Knill E,Laflamme R,Martinez R,et al.An algoritthmic benchmark for quantum information processing[J].Nature(London),2000,404:368-370.
    [40]Shih Y H,Alley C O.New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quantum produced by optical parametric down conversion[J].Phys.Rev.Lett.,1988,61(26):2921-2924.
    [41]Pan J W,Daniell M,Gasparoni S,et al.Experimental demonstration of four-photon entanglement and high-fidelity teleportation[J].Phys.Rev.Lett.,2001,86(20):4435-4438.
    [42]Bouwmeester D,Pan J W,Daniell M,et al.Observation of three-photon Greenberger-Horne-Zeilinger entanglement[J].Phys.Rev.Lett.,1999,82(7):1345-1348.
    [43]Walther P,Resch K J,Rudolph T,et al.Experiment one-way quantum computing[J].Nature (London),2005,434:169-176.
    [44]Moore M G,Meystre P.Generating entangled atom-photon pairs from Bose-Einstein condensates [J].Phys.Rev.Lett.,2000,85(24):5026-5029.
    [45].Sφrensen A,Duan L M,Cirac J I,et al.Many-particle entanglement with Bose-Einstein condensates [J].Nature(London),2001,409:63-66.
    [46]Chiorescu I,Nakamura Y,Harmans C J P M,et al.Coherent quantum dynamics of a superconducting flux qubit[J].Science,2003,299:1869-1871.
    [47]Day P K,LeDuc H G,Mazin B A,et al.A broadband superconducting detector suitable for use in large arrays[J].Nature(London),2003,425:817-821.
    [48]Nakamura Y,Pashkin Y A,Tsai J S.Coherent control of macroscopic quantum states in a single-Cooper-Pair box[J].Nature(London),1999,398:786-788.
    [49]张永德.量子信息物理原理[M].北京:科学出版社,2006.
    [50]Vedral V,Plenio M B,Rippin M A,et al.Quantifying entanglement[J].Phys.Rev.Lett.,1997,78(12):2275-2278.
    [51]Vedral V,Plenio M B.Entanglement measures and purification procedures[J].Phys.Rev.A,1998,57(3):1619-1633.
    [52]Priskill J.Quantum informaiton and computation[M].California Institute of Technology,1998.
    [53]Vedral V,Plenio M B,Jacobs K,et al.Statistical inference,distinguishability of quantum states,and quantum entanglement[J].Phys.Rev.A,1997,56(6):4452-4455.
    [54]Wootters W K.Entanglement of formation of an arbitrary state of two qubits[J].Phys.Rev.Lett.,1998,80(10):2245-2248.
    [55]Terhal B M,Vollbrecht K G H.Entanglement of formation for isotropic states[J].Phys.Rev.Lett.,2000,85(12):2625-2628.
    [56]Audenaert K,Verstraete F,De Moor B.Variational characterizations of separability and entanglement of formation[J].Phys.Rev.A,2001,64(5):052304(1-13).
    [57]Bennett C H,DiVincenzo D P,Smolin J A,et al.Mixed-state entanglement and quantum error correction[J].Phys.Rev.A.1996,54(5):3824-3851.
    [58]Lo H K.Concentrating entanglement by local actions:Beyond mean values[J].Phys.Rev.A,2001,63(2):022301(1-16).
    [59]Wu S J,Wu Q,Zhang Y D.Two theorems on calculating the relative entropy of entanglement[J].Chin.Phys.Lett.,2001,18(2):160-162.
    [60]Bennett C H,Brassard G,Cr(?)peau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.1993,70(13):1895-1899.
    [61]Ban M.Properties of continuous variable quantum[J].J.Opt.B:Quantum Semiclass.Opt.,2004,6(2):224-226.
    [62]Dai H Y,Chen P X,Li C Z.Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states[J].J.Opt.B:Quantum Semiclass.Opt.,2004,6(1):106-113.
    [63]Li F L,Li H R,Zhang J X,et al.Teleported State and its Fidelity in Quantum Teleportation of Continuous Variables[J].Chin.Phys.Lett.,2003,20(1):14-17.
    [64]Ban M,Sasaki M,Takeoka M.Continuous variable teleportation as a generalized thermalizing quantum channel[J].J.Phys.A:Math.Gen.,2002,35(28):L401-L411.
    [65]Cola M M,Paris M G A.Teleportation of bipartite states using a single entangled pair[J].Phys.Lett.A,2005,337(1-2):10-16.
    [66]Cao Z L,Song W.Teleportation of a two-particle entangled state via W class states[J].Physica A:Statistical and Theoretical Physics,2005,347:177-185.
    [67]Guerra E S.Teleportation of atomic states via cavity quantum electrodynamics[J].Opt.Commun.,2004,242(4-6):541-549.
    [68]Dai H Y,Zhang M,Li C Z.Probabilistic teleportation of an unknown entangled state of two threelevel particles using a partially entangled state of three three-level particles[J].Phys.Lett.A,2004,323(5-6):360-364.
    [69]Song T Q.Teleportation of quantum states with continuous variables[J].Phys.Lett.A,2003,316(6):363-368.
    [70]Hsu L Y.Optimal probabilistic teleportation of an unknown N-level qudit via information extraction [J].Phys.Lett.A,2003,311(6):459-464.
    [71]Ye L,Zhang J,Guo G C.Teleportation of two-photon entangled state via linear optical elements [J].Opt.Commun.,2003,218(4-6):333-336.
    [72]Yeo Y.Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain[J].Phys.Lett.A,2003,309(3-4):215-217.
    [73]Agrawal P,Pati A K.Probabilistic quantum teleportation[J].Phys.Lett.A,2002,305(1-2):12-17.
    [74]Boschi D,Branca S,Martini F D,et al.Experimental realization of teleportating an unknown pure quantum state via dual classical and Einstein-Podolski-l:tosen channels[J].Phys.Rev.Lett.,1998,80(6):1121-1124.
    [75]Furusawa A,Sorensen J L,Braunstein S L,et al.Unconditional quantum teleportation[J].Science,1998,282:706-709.
    [76]Nielsen M A,Knill E,Laflamme R.Complete quantum teleportation using nuclear magnetic resonance [J].Nature,1998,396:52-55.
    [77]Lo H K.Classical-communication cost in distributed quantum-information processing:a generalization of quantum-communication complexity[J].Phys Rev A,2000,62(1):012313(1-4).
    [78]Pati A K.Minimum classical bit for remote preparation and measurement of a qubit[J].Phys Rev A,2001,63(1):014302(1-3).
    [79]Bennett C H,DiVincenzo D P,Shor P W,et al.Remote State Preparation[J].Phys Rev Lett,2001,87(7):077902(1-4).
    [80]Ye M Y,Zhang Y S,Guo G C.Faithful remote state preparation using unite classicai bits and a nonmaximally entangled state[J].Phys Rev A,2004,69(2):022310(1-5).
    [81]Dai H Y,Chen P X,Liang L M,et al.Classical communication cost and remote preparation of the four-particle GHZ class state[J].Phys Lett A,2006,355(4-5):285-288.
    [82]Xia Y,Song J,Song H S.Multiparty remote state preparation[J].J Phys B:At.Mol.Opt.Phys,2007,40(18):3719-3724.
    [83]Yu C S,Song H S,Wang Y H.Remote preparation of a qudit using maximally entangled states of qubits[J].Phys Rev A,2006,73:022340(1-4).
    [84]Zeng B,Zhang P.Remote-state preparation in higher dimension and the parallelizable manifold S~(n-1)[J].Phys Rev A,2001,65(2) 022316(1-4).
    [85]Wang D,Liu Y M,Zhang Z J.Remote preparation of a class of three-qubit states[J].Opt Commun,2007,281(4):871-875.
    [86]Xiang G Y,Li J,Bo Y,et al.Remote preparation of mixed states via noisy entanglement[J].Phys Rev A,2005,72:012315(1-4).
    [87]Liu W T,Wu W,Ou B Q,et al..Yuan J M.Experimental remote preparation of arbitrary photon polarization states[J].Phys Rev A,2007,76:022308(1-4).
    [88]Peng X H,Zhu X,Fang X,et al..Experimental implementation of remote state preparation by nuclear magnetic resonance[J].Phys.Lett.A,2003,306(5-6):271-276.
    [89]Zukowski M,Zeilinger A,Horne A,et al.Event-ready-detectors Bell experiment via entanglement swapping[J].Phys.Rev.Lett.,1993,70(26):4287-4290.
    [90]Lo H K,Chau H F.Unconditional security of quantum key distribution over arbitrarily long distance [J].Science,1999,283:2050-2056.
    [91]Shor P W,Priskill J.Simple proof of security of the BB84 quantum key distribution protocol[J].Phys.Rev.Lett.,2000,85(2):441-444.
    [92]Lo H K.Simple proof of the unconditional security of quantum key distribution[J].J.Phys.A:mathematical and general,2001,34(35):6957-6967.
    [93]L(u|¨)tkenhaus N.Security against individual attacks for realistic quantum key distribution[J].Phys.Rev.A,2000,61(5):052304(1-10).
    [94]Bennett C H.Quantum cryptography using any two nonorthogonal states[J].Phys.Rev.Lett.,1992,68(21):3121-3124.
    [95]Ekert A K.Quantum cryptography based on Bell's thereto[J].Phys.Rev.Lett.,1991,67(6):661-663.
    [96]Goldenberg L,Vaidman L.Quantum cryptography based on orthogonal states[J].Phys.Rev.Lett.,1995,75(7):1239-1243.
    [97]Koashi M,Imoto N.Quantum cryptography based on split transmission of one=bit information in two steps[J].Phys.Rev.Lett.,1997,79(12):2383-2386.
    [98]Mor T.No cloning of orthogonal states in composite system[J].Phys.Rev.Lett.,1998,80(14):3137-3140.
    [99]Ralph T C.Continuous Cariable quantum cryptography[J].Phys.Rev.A,2000,61(1):010303(1-4).
    [100]Bruss D.Optimal eavesdropping in quantum cryptography with six states[J].Phys.Rev.Lett.,1998,81(14):3018-3021.
    [101]Bechmann-Pasquinucci H,Peres A.Quantum cryptography with 3-state system[J].Phys.Rev.Lett.,2000,85(15):3313-3316.
    [102]Zhang Y S,Li C F,Guo G C.Quantum key distribution via quantum encryption[J].2001,64(2):024302(1-4).
    [103]Kimure T,Nambu Y,Hatamaka T,et al.Single-phton interference over 150 km transmission using silica-based integrated-optic interfermometers for quantum cryptography[J].Jpn.J.Appl.Phys.,2004,43(9AB):L1217-L1219.
    [104]Kurtsiefer C,Zarda P,Halder M,et al.Quantum cryptography:A step towards global key distribution [J].Nature,2002,419:450-450.
    [105]Beige A,Englert B G,Kurtsiefer C,et al.Secure communication with a publicly known key[J].Acta Phys.Pol.A,2002,101(1):357.
    [106]Beige A,Englert B G,Kurtsiefer C,et al.Secure communication with single-photon two-qubit states[J].J.Phys.A:Math.Gen.,2002,35(28):L407-L413.
    [107]Bostr(o|¨)m K,Felbinger T.Deterministic secure direct communication using entanglement[J].Phys.Rev.Lett.,2002,89(18):187902(1-4).
    [108]Deng F G,Long G L,Liu X S.Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J].Phys.Rev.A,2003,68(4):042317(1-6).
    [109]Hillery M,B(?)zek V,Berthiaume.Quantum secret sharing[J].Phys.Rev.A,1999,59(3):1829-1834.
    [110]Karlsson A,Koashi M,Imoto N.Quantum entanglement for secret sharing and secret splitting [J].Phys.Rev.A,1999,59(1):162-168.
    [111]Cleve R,Gottesman D,Lo H K.How to share a quantum secret[J].Phys.Rev.Lett.,1999,83(3):648-651.
    [112]Gottesman D.Theory of quantum secret sharing[J].Phys.Rev.A,2000,61(4):042311(1-8).
    [113]Bandyopadhyay S.Teleportation and secret sharing with pure entangled states[J].Phys.Rev.A,2000,62(1):012308(1-7).
    [114]Nuscimento A C A,Mueller-quade J,Imai H.Improving quantum secret sharing schemes[J].Phys.Rev.A,2001,64(4):042311(1-5).
    [115]Yang C P,Gea-Banacloche J.Teleportation of rotations and receiver-encoded secret sharing[J].J.Opt.B:Quantum.Semi.Opt.,2001,3(6):407-411.
    [116]Karimipour V,Bahraminasab A,Bagherinezhad S.Entanglement swapping of generalized cat states and secret sharing[J].Phys.Rev.A,2002,65(4):042320(1-5).
    [117]Guo G P,Guo G C.Quantum secret sharing without entanglement[J].Phys.Lett.A,2003,310(4):247-251.
    [118]Tittel W,Zbinden H,Gisin N.Experimental demonstration of quantum secret sharing[J].Phys.Rev.A,2001,63(4):042301(1-6).
    [119]Bohm D.A suggested interpretation of the quantum theory in terms of "Hidden" variables[J].Phys.Rev.,1952,85(2):166-179.
    [120]Bohm D,Aharonov Y.Discussion of experimental proof for the paradox of Einstein,Rosen,and Podolsky[J].Phys.Rev.,1957,108(4):1070-1076.
    [121]Lazarou C,Garraway B M.Adiabatic entanglement in two-atom cavity QED [J].Phys.Rev.A,2008,77:023818(1-9).
    [122]Zhang J M,Liu W M,Zhou D L.Cavity QED with cold atoms trapped in a double-well potential[J].Phys.Rev.A,2008,77:033620(1-8).
    [123]Munhoz P P,Semiao F L,Cidiella-Barranco A,et al.Cluster-type entangled coherent states [J].Phys.Lett.A,2008,372(20):3580-3585.
    [124]Morrison S,Parkins A S.Collective spin systems in dispersive optical cavity QED:quantum phase transitions and entanglement [J].Phys.Rev.A,2008,77:043810(1-17).
    [125]Lougovski P,Solano E,Walther H.Generation and purification of maximally entangled atomic states in optical cavities [J].Phys.Rev.A,2005,71:013811(1-4).
    [126]Bina M,Casagrande F,Lulli A.Monitoring atom-atom entanglement and decoherence in a solvable tripartite open system in cavity QED [J].Phys.Rev.A,2008,77:033839(1-12).
    [127]Lougovski P,Casarande,Lulli A,et al.Strongly driven one-atom laser and decoherence monitoring[J].Phys.Rev.A,2007,76:033802(1-9).
    [128]Wang J,Law C K,Chu M C.s-wave quantum entanglement in a harmonic trap [J].Phys Rev.A,2005,72:022346(1-5).
    [129]Li Y M,Zhang K S,Peng K C.Generation of qudits and entangled qudits [J].Phys.Rev.A,2008,77:015802(1-4).
    [130]Walborn S P,Souto Ribeiro P H,Davidovich L,et al.Experimental determination of entanglement with a single measurement [J].Nature,2006,440:1022-1024.
    [131]Zou X B,Pahlke K,Mathis W.Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors [J].J.Opt.B:Quan.Semi.Opt.2005,7(4):119-121.
    [132]Bourennane M,Eibl M,Gaertner S,et al.Decoherence-free quantum information processing with four-photon entangled states [J].Phys.Rev.Lett.,2004,92(10):107901(1-4).
    [133]Zou X B,Shu J,Guo G C.Simple scheme for generating four-photon polarization-entangled decoherence-free sttates using spontaneous parametric down-conversions [J].Phys.Rev.A,2006,73(5):054301(1-4).
    [134]Gong Y X,Zou X B,Niu X L,et al.Generation of arbitrary four-photon polarization-entangled decoherence-free states [J].Phys.Rev.A,2008,77(4):042317(1-5).
    [135]Eibl M,Kiesel N,Bourennane M.Experimental realization of a three-qubit entangled W state [J].Phys.Rev.Lett.,2004,92(7):077901(1-4).
    [136]Kim J,Benson O,Kan H,Yamamoto Y.A single-photon turnstile device [J].Nature,1999,397:500-503.
    [137]Volz J,Weber M,Schlenk D,et al.Observation of entanglement of a single photon with a trapped atom [J].Phys.Rev.Lett.,2006,96:030404(1-4).
    [138]Chen S,Chen Y A,Zhao B,et al.Demonstration of a stable atom-photon entanglement source for quantum repeaters [J].Phys.Rev.Lett.,2007,99:180505(1-4).
    [139]Guo R,Guo H.Momentum entanglement and disentanglement between an atom and a photon [J].Phys.Rev.A,2007,76:012112(1-7).
    [140]Lee S K Y,Law C K.Analysis of photon-atom entanglement generated by faraday rotation in a cavity[J].Phys.Rev.A,2006,73:053808(1-5).
    [141]Lee J,Park J Y,Lee S M,et hi.Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields[J].Phys.Rev.A,2008,77:032327(1-7).
    [142]Zheng S B,Guo G C.Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J].Phys.Rev.Lett.,2000,85(11):2392(1-4).
    [143]Osnaghi S,Bertet P,Auffeves A,et al.Coherent control of an atomic collision in a cavity[J].Phys.Rev.Lett.,2001,87(3):037902(1-4).
    [144]Su X L,Tan A H,Jia X J,et al.Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeillinger entangled states for continuous variables[J].Phys.Rev.Lett.,2007,98:070502(1-4).
    [145]Zeilinger A.General properties of lossless beam splitters in interferometry[J].Am.J.Phys.,1981,49:882.
    [146]Zou X B,Zhang S L,Guo G C.Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors[J].Phys.Rev.A,2007,75:034302(1-4).
    [147]Pittman T B,Jacobs B C,Franson J S.Probabilistic quantum logic operations using polarizing beam splitters[J].Phys.Rev.A,2001,64:062311(1-9).
    [148]Liu W T,Wu W,Ou B Q,et al.Experimental remote preparation of arbitrary photon polarization states[J].Phys.Rev.A,2007,76:022308(1-4),
    [149]Benson O,Santori C,Pelton M,et al.Regulated and entangled Pphotons from a single quantum dot[J].Phys.Rev.Lett.,2000,84(11):2513-2516.
    [150]Akopian N,Lindner N H,Poem E,et al.Entangled Photon Pairs from Semiconductor Quantum Dots[J].Phys.Rev.Lett.,2006,96:130501(1-4).
    [151]Kim J,Takeuchi S,Yamamoto Y,et al.Multiphoton detection using visible light photon counter [J].Appl.Phys.Lett.,1999,74:902-904.
    [152]Imamoglu A.High Efficiency Photon Counting Using Stored Light[J].Phys.Rev.Lett.,2002,89(12):163602(1-4).
    [153]James D F V,Kwiat P G.Atomic-Vapor-Based high efficiency optical detectors with photon number resolution[J].Phys.Rev.Lett.,2002,89(18):183601(1-4).
    [154]Pan J W,Bouwmeester D,Daniell M,et hi.Experimental test of quantum nonlocality in threephoton Greenberger-Horne-Zeilinger entanglement[J].Nature,2000,403:515-519.
    [155]Gordon G,Rigolin G.Generalized teleportation protocol[J].Phys.Rev.A,2006,73:042309(1-4).
    [156]Agrawal P,Pati A K.Probabilistic quantum teleportation[J].Phys.Lett.A,2002,305(1-2):12-17.
    [157]Gordon G,Rigolin G.Generalized quntum-state sharing[J].Phys.Rev.A,2006,73:062316(1-4).
    [158]Long G L,Sun Y.Efficient scheme for initializing a quantum register with an arbitrary superposed state[J].Phys.Rev.A,2001,64(1):014303(1-4).
    [159]Yeo Y,Chua W K.Teleportation and Dense Coding with Genuine Multipartite Entanglement[J].Phys.Rev.Lett.,2006,96:060502(1-4).
    [160]Osterloh A,Siewert J.Constructing N-qubit entanglement monotones from antilinear operators [J].Phys.aev.A,2005,72:012337(1-4).
    [161]Ye L,Yu L B,Guo G C.Generation of entangled states in cavity QED[J].Phys.Rev.A,2005,72:034304(1-4).
    [162]Zheng S B.Generation of cluster states in ion-trap systems[J].Phys.Rev.A,2006,73:065802(1-4).
    [163]Lo H K.Classical-communication cost in distributed quantum-information processing:A generalization of quantum-communication complexity[J].Phys.Rev.A,2000,62(1):012313(1-7).
    [164]Pati A K.Minimum cbits for remote preperation and measurement of a qubit[J].Phys.Rev.A,2001,63(1):014302(1-3).
    [165]Bennett C H,DiVincenzo D P,Shor P W,et al.Remote state preparation[J].Phys.Rev.Lett.,2001,87(7):077902(1-4).
    [166]Devetak I,Berger T.Low-Entanglement remote state preparation[J].Phys.Rev.Lett.,2001,87(19):197901(1-4).
    [167]Zeng B,Zhang P.Remote-state preparation in higherdimension and the parallelizable manifold S~(n-1)[J].Phys.Rev.A,2002,65(2):022316(1-4).
    [168]Berry D W,Sanders B C.Optimal remote state preparation[J].Phys.Rev.Lett.,2003,90(5):057901(1-4).
    [169]Yu C S,Song H S,Wang Y H.Remote preparation of a qudit using maximally entangled states of qubits[J].Phys.Rev.A,2006,73:022340(1-4).
    [170]Huang Y X,Zhan M S.Remote preparation of multipartite pure state[J].Phys.Lett.A,2004,327(5-6):404-408.
    [171]Bu(?)ek V,Hillery M,Werner R F.Optimal manipulations with qubits:Universal NOT gate[J].Phys.Rev.A,1999,60(4):R2626-R2629.
    [172]Martini F D,Buek V,Sciarrino F,et al.Experimental realization of the quantum universal NOT gate[J].Nature,2002,419:815-818.
    [173]Solano E,Agarwal G S,Walther H.Strong-driving-assisted multipartite entanglement in cavity QED[J].Phys.Rev.Lett.,2003,90(2):027903(1-4).
    [174]Zheng S B.Quantum-information processing and multiatom-entanglement engineering with a thermal cavity[J].Phys.Rev.A,2002,66(6):060303(1-4).
    [175]Molmer K,Sorensen A.Multiparticle entanglement of hot trapped ions[J].Phys.Rev.Lett.,1999,82(9):1835-1838.
    [176]Zheng S B.Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion[J].Phys.Rev.A,2003,68(3):035801(1-4).
    [177]Chen P,Deng F G,Long G L.High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs[J].Chin.Phys.,2006,15(10):2228-2235.
    [178]Bostrom K,Felbinger T.Deterministic secure direct communication using entanglement[J].Phys.Rev.Lett.,2002,89(14):187902(1-4).
    [179]Bennett C H,Brassard G,Popescu S,et al.Purification of noisy entanglement and faithful teleportation via noisy channels[J].Phys.Rev.Lett.,1996,76(5):722-725.
    [180]An N B,Mahler G.Teleportation of a unknown coherent-state superposition within a network without photon counting[J].Phys.Lett.A,2007,365(1-2):70-73.
    [181]Liao J Q,Kuang L M.A new optical scheme for quantum teleportation of superposed coherent states[J].Phys.Lett.A,2006,358(2):115-120.
    [182]Yan F L,Wang M Y.A scheme for dense coding in the non-symmetric quantum channel[J].Chin.Phys.Lett.,2004,21(7):1195-1198.
    [183]Bechmann-Pasquinucci H,Peres A.Quantum cryptography with 3-state systems[J].Phys.Rev.Lett.,2000,85(15):3313-3316.
    [184]Wang C,Deng F G,Li Y S,et al.Quantum secure direct communication with high-dimension quantum superdense coding[J].Phys.Rev.A,2005,71:044305(1-4).
    [185]Deng F G,Long G L.Secure direct communication protocol with a quantum one-time pad[J].Phys.Rev.A,2004,69(5):052319(1-4).
    [186]Cai Q Y,Li B W.Deterministic secure communication without using entanglement[J].Chin.Phys.Lett.,2004,21(4):601-603.
    [187]Jin X R,Zhang Y Q,Zhang S,et al.Three-party quantum secure direct communication based on GHZ states[J].Phys.Lett.A,2006,354(1-2):67-70.
    [188]Zhang Z J.Multiparty quantum secret sharing of secure direct communication[J].Phys.Lett.A,2005,342(1-2):60-66.
    [189]Xia Y,Song H S.Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding[J].Phys.Lett.A,2007,364(2):117-122.
    [190]Deng F G,Li X H,Li C Y,et al.Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs[J].Phys.Lett.A,2006,359(5):359-365.
    [191]Nguyen B A.Quantum dialogue[J].Phys.Lett.A,2004,328(1):6-10.
    [192]Li X H,Deng F G,Zhou H Y.Improving the security of secure direct communication based on the secret transmitting order of particles[J].Phys.Rev.A,2006,74(5):054302(1-4).
    [193]Deng F G,Li X H,Li C Y,et al.Eavesdropping on the 'ping-pong' quantum communication protocol freely in a noise channel[J].Chin.Phys.2007,16(2):277-281.
    [194]Deng F G,Li X H,Li C Y,et al.Quantum secure direct communication network with superdense coding and decoy photons[J].Phys.Scrip.2007,76(1):25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700