负载型金、钌催化剂催化醇及CO氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环境问题的日益关注,开发环境友好的新型催化材料和工艺路线引起研究者的广泛关注。多相催化技术是发展绿色化学方法的关键之一。本文针对负载型纳米金、钌催化剂的催化氧化性能进行研究,考察其催化醇类化合物选择氧化及CO氧化反应的性能。采用原位表征技术考察工作状态负载型金催化剂的结构,以建立催化剂结构和催化性能之间的关系,进而对反应机理进行深入分析。主要研究内容和结果如下:
     以氧气或空气为氧化剂,Au/TiO2或Ru/CNTs为催化剂,水为单一溶剂或水与另外一种有机溶剂的混合物为混合溶剂,在温和的条件下,成功实现醇类化合物高效催化选择氧化制备高附加值的醛类或酮类化合物。在苯甲醇选择氧化制备苯甲醛反应中,水显著增强Au/TiO2和Ru/CNTs的催化活性。其原因为水的存在有助于形成一种独特的乳液催化反应体系,乳滴界面的存在减弱了反应的扩散限制,加速反应的进行。水的存在利于O2在Au/TiO2催化剂表面的吸附与活化,这也是水促进Au/Ti02催化活性的可能原因。我们的研究结果证实在此独特的乳液多相催化反应体系中,负载型金、钌催化剂催化醇类化合物需氧氧化制备高附加值的醛类、酮类化合物具有应用潜力。
     采用新颖的微波辅助乙二醇液相还原法(MW-EG)制备了金粒径大小约为7 nm的Au/CNTs催化剂和钉粒径大小约为1-2nm的Ru/CNTs催化剂,它们均表现出较高的催化苯甲醇选择氧化活性和苯甲醛选择性。与浸渍法、沉积-沉淀法和乙二醇液相还原法相比,采用MW-EG法制备的Au/CNTs催化剂表现出较高的催化苯甲醇选择氧化活性。采用MW-EG法制备的Ru/CNTs催化剂,其催化活性明显优于采用传统浸渍法制备的催化剂的催化活性。MW-EG法为制备高活性负载型金属催化剂提供了新的研究思路,Au/CNTs和Ru/CNTs是一种新颖且具有应用潜力的醇类化合物选择氧化催化剂。
     采用X射线吸收光谱、原位红外光谱并结合动力学方法考察负载型金催化剂催化CO氧化反应的性能和反应机理。动力学实验结果表明:水促进Au/TiO2催化CO氧化反应的活性。原位X射线吸收光谱和红外光谱研究结果证实,水具有双重促进作用:水增加O2在负载型金催化剂表面的活化能力;水抑制碳酸盐和类碳酸盐物种的生成并促进其分解。在CO氧化反应中,负载型金催化剂的催化活性逐渐降低。红外光谱研究结果表明催化剂表面碳酸盐和类碳酸盐物种的生成是引起催化剂初始活性降低的主要原因。
Due to increasing concern about environmental impact, there has been tremendous interest in developing environmentally friendly catalysts and processes in chemical synthesis and processing. Heterogeneous catalysis is a key to successful development of so-called "green chemistry". In this work, heterogeneous gold and ruthenium catalysis were investigated, which mainly focused on heterogeneous oxidation reactions such as alcohol oxidation and CO oxidation. Working gold catalysts were characterized by in situ spectroscopy, which may provide correlations between the catalyst structure and catalytic activity. Reaction mechanisms were further studied.
     Effective catalytic oxidation of alcohols under mild conditions has been realized in a special heterogeneous reaction system, in which supported gold or ruthenium catalysts function as catalysts, oxygen or air as oxidant, and water or the mixture of water and a kind of organic reagent like p-xylene or toluene as solvent. The unique and significant promotion effect of water has been evidenced by the selective oxidation of benzyl alcohol to benzaldehyde over Au/TiO2 and Ru/CNTs catalysts, respectively. Water helps to form unique emulsion droplets where the solid catalysts assemble at the interface. The interfaces of the emulsion droplets favor the mass transfer, resulting in the increase in the conversion of the substrate. Water facilitates O2 adsorption and activation over Au/TiO2. The present work has highlighted the potential of supported gold and ruthenium catalysts in aerobic oxidation of alcohols in the unique multiphase reaction system with water as promoting solvent.
     By making use of a novel microwave-assisted ethylene glycol approach (MW-EG), high performance Au/CNTs and Ru/CNTs catalysts that are novel and active for the selective oxidation of benzyl alcohol to benzaldehyde have been made. The as-prepared Au/CNTs catalysts have small gold particle size of 7 nm. The as-prepared Ru/CNTs catalysts have small ruthenium particle size of 1-2 nm. The catalytic activity of Au/CNTs by MW-EG method is much higher than that by impregnation method, deposition-precipitation method, and ethylene glycol approach. The catalytic activity of Ru/CNTs by MW-EG method is also much higher than that by traditional impregnation method. The microwave-assisted ethylene glycol approach to Au/CNTs and Ru/CNTs catalysts is novel and efficient, and will give a new impetus to the study of supported metal catalysts in the viewpoint of basic and applied science.
     Catalytic activities of Au/TiO2 for CO oxidation were studied. Reaction mechanisms of CO oxidation over supported gold catalysts were studied by in situ X-ray adsorption spectroscopy and infrared spectroscopy. Water helps to significantly improve the catalytic activity of Au/TiO2. Water has dual promotional functions in the reaction system:to increase the activation ability of the oxygen, and to inhibit the formation of these surface carbonate-like species and also help to their decomposition. The pronounced decrease of the initial activity of the supported gold catalysts was observed, which is caused by the accumulation of surface carbonate-like species on the surfaces of the supported gold catalysts.
引文
[1]纪红兵,余远斌.绿色氧化与还原,北京:中国石化出版社,2005.
    [2]Min B K, Friend C M. Heterogeneous gold-based catalysis for green chemistry:Low-temperature CO oxidation and propene oxidation. Chemical Reviews,2007,107:2709-2724.
    [3]Sheldon R A, Downing R S. Heterogeneous catalytic transformations for environmentally friendly production. Applied Catalysis A-General,1999,189 (2):163-183.
    [4]Clark J H, Butterworth A J, Tavener S J, et al. Environmentally friendly chemistry using supported reagent catalysts:Chemically-modified mesoporous solid catalysts. Journal of Chemical Technology and Biotechnology,1997,68 (4):367-376.
    [5]Barrault J, Pouilloux Y, Clacens J M, et al. Catalysis and fine chemistry. Catalysis Today,2002,75 (1-4):177-181.
    [6]Sloboda-Rozner D, Alsters P L, Neumann R. A water-soluble and "Self-Assembled" polyoxometalate as a recyclable catalyst for oxidation of alcohols in water with hydrogen peroxide. Journal of the American Chemical Society,2003,125 (18):5280-5281.
    [7]Muzart J. Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron,2003,59 (31): 5789-5816.
    [8]Sigman M S, Jensen D R. Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. Accounts of Chemical Research,2006,39 (3):221-229.
    [9]Schultz M J, Sigman M S. Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron,2006,62 (35):8227-8241.
    [10]Zhan B Z, Thompson A. Recent developments in the aerobic oxidation of alcohols. Tetrahedron,2004, 60 (13):2917-2935.
    [11]Tomioka H, Takai K, Oshima K, et al. Selective oxidation of a primary hydroxyl in the presence of secondary one. Tetrahedron Letters,1981,22 (17):1605-1608.
    [12]Takezawa E, Sakaguchi S, Ishii Y. Oxidative cleavage of vic-diols to aldehydes with dioxygen catalyzed by Ru(PPh3)3Cl2 on active carbon. Organic Letters,1999,1 (5):713-715.
    [13]Kanemoto S, Matsubara S, Takai K, et al. Chromium (VI) or Ruthenium (II) complex catalysis in oxidation of alcohols to aldehydes and ketones by means of bis (trimethylsilyl) peroxide. Bulletin of the Chemical Society of Japan,1988,61 (10):3607-3612.
    [14]Hanyu A, Takezawa E, Sakaguchi S, et al. Selective aerobic oxidation of primary alcohols catalyzed by a Ru(PPh3)3Cl2/hydroquinone system. Tetrahedron Letters,1998,39 (31):5557-5560.
    [15]Yamaguchi K, Mori K, Mizugaki T, et al. Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation. Journal of the American Chemical Society,2000,122 (29):7144-7145.
    [16]Dijksman A, Arends I, Sheldon R A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones. Chemical Communications,1999 (16):1591-1592.
    [17]Tsuji J, Palladium reagents and catalysis, New York:Wiley,1995.
    [18]Stahl S S, Thorman J L, Nelson R C, et al. Oxygenation of nitrogen-coordinated palladium(0): Synthetic, structural, and mechanistic studies and implications for aerobic oxidation catalysis. Journal of the American Chemical Society,2001,123 (29):7188-7189.
    [19]Steinhoff B A, Stahl S S. Ligand-modulated palladium oxidation catalysis:Mechanistic insights into aerobic alcohol oxidation with the Pd(OAc)2/pyridine catalyst system. Organic Letters,2002,4 (23): 4179-4181.
    [20]Steinhoff B A, Fix S R, Stahl S S. Mechanistic study of alcohol oxidation by the Pd(OAc)2/O2/DMSO catalyst system and implications for the development of improved aerobic oxidation catalysts. Journal of the American Chemical Society,2002,124 (5):766-767.
    [21]ten Brink G J, Arends I, Hoogenraad M, et al. Catalytic conversions in water. Part 22:Electronic effects in the (diimine) palladium(II)-catalysed aerobic oxidation of alcohols. Advanced Synthesis& Catalysis,2003,345 (4):497-505.
    [22]ten Brink G J, Arends I, Sheldon R A. Catalytic conversions in water. Part 21:Mechanistic investigations on the palladium-catalysed aerobic oxidation of alcohols in water. Advanced Synthesis & Catalysis,2002,344 (3-4):355-369.
    [23]ten Brink G J, Arends I, Sheldon R A. Green, catalytic oxidation of alcohols in water. Science,2000, 287(5458):1636-1639.
    [24]Sheldon R A, Arends I, Dijksman A. New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catalysis Today,2000,57 (1-2):157-166.
    [25]Sheldon R A. Homogeneous and heterogeneous catalytic oxidations with peroxide reagents. Topics in Current Chemistry,1993,164:21-43.
    [26]Sheldon R A. Fine chemicals by catalytic oxidation. Chemtech,1991,21 (9):566-576.
    [27]Sheldon R A, Kochi J K. Metal Catalyzed Oxidations of Organic Compound. New York:Academic Press,1981.
    [28]Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catalysis Today,1994,19 (2):247-283.
    [29]Murahashi S.-I. Komiya N, Ruthenium in Organic Synthesis, Weinheim:Wiley-VCH,2004.
    [30]Hashmi A S K. Gold-catalyzed organic reactions. Chemical Reviews,2007,107 (7):3180-3211.
    [31]Hashmi A S K, Hutchings G J. Gold catalysis. Angewandte Chemie-International Edition,2006,45 (47):7896-7936.
    [32]Hutchings M G, Gasteiger J. Correlation analyses of the aqueous phase acidities of alcohols and gem-diols, and of carbonyl hydration equilibria using electronic and structural papameters. Journal of the Chemical Society-Perkin Transactions 2,1986 (3):455-462.
    [33]Lowry T H, Richardson K S. Mechanism and Theory in Organic Chemistry. New York:Harper& Row,1987.
    [34]Mallat T, Baiker A. Catalyst potential:A key for controlling alcohol oxidation in multiphase reactors. Catalysis Today,1995,24 (1-2):143-150.
    [35]Blackburn T F, Schwartz J. Homogeneous catalytic oxidation of secondary alcohols to keyones by moleculay oxygen under mild conditions. Chemical Communications,1977 (5):157-158.
    [36]Kaneda K, Fujie Y, Ebitani K. Catalysis of giant palladium cluster complexes. Highly selective oxidations of primary allylic alcohols to alpha, beta-unsaturated aldehydes in the presence of molecular oxygen. Tetrahedron Letters,1997,38 (52):9023-9026.
    [37]Ebitani K, Fujie Y, Kaneda K. Immobilization of a ligand-preserved giant palladium cluster on a metal oxide surface and its nobel heterogeneous catalysis for oxidation of allylic alcohols in the presence of molecular oxygen. Langmuir,1999,15 (10):3557-3562.
    [38]Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported palladium nanoclusters:A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. Journal of the American Chemical Society,2004,126 (34):10657-10666.
    [39]Zhan B Z, White M A, Sham T K, et al. Zeolite-confined nano-RuO2:A green, selective, and efficient catalyst for aerobic alcohol oxidation. Journal of the American Chemical Society,2003,125 (8): 2195-2199.
    [40]Musawir M, Davey P N, Kelly G, et al. Highly efficient liquid-phase oxidation of primary alcohols to aldehydes with oxygen catalysed by Ru-Co oxide. Chemical Communications,2003 (12):1414-1415.
    [41]Ji H B, Ebitani K, Mizugaki T, et al. Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature. Catalysis Communications,2002,3 (11):511-517.
    [42]Ji H B, Ebitani K, Mizugaki T, et al. Oxidation of benzyl alcohol aiming at a greener reaction. Reaction Kinetics and Catalysis Letters,2003,78 (1):73-80.
    [43]Vocanson F, Guo Y P, Namy J L, et al. Dioxygen oxidation of alcohols and aldehydes over a cerium dioxide-ruthenium system. Synthetic Communications,1998,28 (14):2577-2582.
    [44]Matsushita T, Ebitani K, Kaneda K. Highly efficient oxidation of alcohols and aromatic compounds catalysed by the Ru-Co-Al hydrotalcite in the presence of molecular oxygen. Chemical Communications,1999 (3):265-266.
    [45]Yamaguchi K, Mizuno N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angewandte Chemie-International Edition,2002,41 (23):4538-4542.
    [46]Haruta M. Size- and support-dependency in the catalysis of gold. Catalysis Today,1997,36 (1): 153-166.
    [47]Bond G C, Thompson D T. Catalysis by gold. Catalysis Reviews-Science and Engineering,1999,41 (3-4):319-388.
    [48]Grunwaldt J D, Baiker A. Gold/titania interfaces and their role in carbon monoxide oxidation. Journal of Physical Chemistry B,1999,103 (6):1002-1012.
    [49]Haruta M. Gold as a low-temperature oxidation catalyst:factors controlling activity and selectivity. 3rd World Congress on Oxidation Catalysis,1997,110:123-134.
    [50]Prati L, Rossi M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. Journal of Catalysis,1998,176 (2):552-560.
    [51]Porta F, Prati L, Rossi M, et al. Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation. Catalysis Today,2000,61 (1-4):165-172.
    [52]Bianchi C, Porta F, Prati L, et al. Selective liquid phase oxidation using gold catalysts. Topics in Catalysis,2000,13 (3):231-236.
    [53]Prati L, Porta F. Oxidation of alcohols and sugars using Au/C catalysts-Part 1. Alcohols. Applied Catalysis A-General,2005,291 (1-2):199-203.
    [54]Carrettin S, McMorn P, Johnston P, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chemical Communications,2002 (7):696-697.
    [55]Abad A, Almela C, Corma A, et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron,2006,62 (28): 6666-6672.
    [56]Abad A, Concepcion P, Corma A, et al. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angewandte Chemie-International Edition,2005,44 (26):4066-4069.
    [57]Abad A, Almela C, Corma A, et al. Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chemical Communications,2006 (30):3178-3180.
    [58]Enache D I, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catalysis Letters,2005,103 (1-2):43-52.
    [59]Dimitratos N, Lopez-Sanchez J A, Morgan D, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today, 2007,122 (3-4):317-324.
    [60]Zheng N F, Stucky G D. Promoting gold nanocatalysts in solvent-free selective aerobic oxidation of alcohols. Chemical Communications,2007:3862-3864.
    [61]Miyamura H, Matsubara R, Miyazaki Y, et al. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angewandte Chemie-International Edition,2007,46 (22):4151-4154.
    [62]Dimitratos N, Porta F, Prati L, et al. Synergetic effect of platinum or palladium on gold catalyst in the selective oxidation of D-sorbitol. Catalysis Letters,2005,99 (3-4):181-185.
    [63]Bianchi C L, Canton P, Dimitratos N, et al. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catalysis Today,2005,102:203-212.
    [64]Wang D, Villa A, Porta F, et al. Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. Chemical Communications,2006 (18):1956-1958.
    [65]Villa A, Campione C, Prati L. Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol. Catalysis Letters,2007,115 (3-4):133-136.
    [66]Prati L, Villa A, Porta F, et al. Single-phase gold/palladium catalyst:The nature of synergistic effect. Catalysis Today,2007,122 (3-4):386-390.
    [67]Dimitratos N, Villa A, Wang D, et al. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. Journal of Catalysis,2006,244 (1):113-121.
    [68]Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science,2006,311 (5759):362-365.
    [69]Haider P, Baiker A. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. Journal of Catalysis,2007, 248(2):175-187.
    [70]Carrettin S, McMorn P, Johnston P, et al. Oxidation of glycerol using supported Pt, Pd and Au catalysts. Physical Chemistry Chemical Physics,2003,5 (6):1329-1336.
    [71]Merrill D R, Scalione C C. The catalytic oxidation of carbon monoxide at ordinary temperatures. Journal of the American Chemical Society,1921,43:1982-2002.
    [72]Yoon C H, Cocke D L. The design and preparation of planar models of oxidation catalysts.1. Hopcalite. Journal of Catalysis,1988,113 (2):267-280.
    [73]Luo M F, Ma J M, Lu J Q, et al. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis,2007,247 (1): 127-127.
    [74]Lin R, Luo M F, Zhong Y J, et al. Comparative study of CuO/Ce0.7Sn0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation. Applied Catalysis A-General,2003,255 (2):331-336.
    [75]Shiau C Y, Ma M W, Chuang C S. CO oxidation over Ce02-promoted Cu/gamma-Al2O3 catalyst: Effect of preparation method. Applied Catalysis A-General,2006,301 (1):89-95.
    [76]Cheng T, Fang Z Y, Hu Q X, et al. Low-temperature CO oxidation over CuO/Fe2O3 catalysts. Catalysis Communications,2007,8 (7):1167-1171.
    [77]Huang J, Wang S R, Zhao Y Q, et al. Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation. Catalysis Communications,2006,7 (12):1029-1034.
    [78]Wang J B, Tsai D H, Huang T J. Synergistic catalysis of carbon monoxide oxidation over copper oxide supported on samaria-doped ceria. Journal of Catalysis,2002,208 (2):370-380.
    [79]Grillo F, Natile M M, Glisenti A. Low temperature oxidation of carbon monoxide:the influence of water and oxygen on the reactivity of a CO3O4 powder surface. Applied Catalysis B-Environmental, 2004,48 (4):267-274.
    [80]Schryer D R, Upchurch B T, Vannorman J D, et al. Effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers. Journal of Catalysis,1990,122 (1):193-197.
    [81]Sheintuch M, Schmidt J, Lechthman Y, et al. Modeling catalyst support interactions in carbon monoxide catalyzed and Pd/SnO2. Applied Catalysis,1989,49 (1):55-65.
    [82]Margitfalvi J L, Borbath I, Hegedus M, et al. Low temperature oxidation of CO over tin-modified Pt/SiO2 catalysts. Catalysis Today,2002,73 (3-4):343-353.
    [83]Kim D H, Woo S I, Lee J M, et al. The role of lanthanum oxide on Pd-only three-way catalysts prepared by co-impregnation and sequential impregnation methods. Catalysis Letters,2000,70 (1-2): 35-41.
    [84]Thormahlen P, Skoglundh M, Fridell E, et al. Low-temperature CO oxidation over platinum and cobalt oxide catalysts. Journal of Catalysis,1999,188 (2):300-310.
    [85]Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, et al. Influence of ceria on Pd activity for the CO+O2 reaction. Journal of Catalysis,1999,187 (2):474-485.
    [86]Spivey J J. Complete catalytic oxidation of volatile organics. Industrial& Engineering Chemistry Research,1987,26 (11):2165-2180.
    [87]Ruth K, Hayes M, Burch R, et al. The effects of SO2 on the oxidation of CO and propane on supported Pt and Au catalysts. Applied Catalysis B-Environmental,2000,24 (3-4):L133-L138.
    [88]Hutchings G J. Vapor phase hydrochlorination of acetylene-correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis,1985,96 (1):292-295.
    [89]Nkosi B, Coville N J, Hutchings G J, et al. Hydrochlorination of acetylene using gold catalysts:A study of catalyst deactivation. Journal of Catalysis,1991,128 (2):366-377.
    [90]Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chemistry Letters,1987 (2):405-408.
    [91]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis,1989,115 (2): 301-309.
    [92]Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281 (5383):1647-1650.
    [93]Zanella R, Giorgio S, Henry C R, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2. Journal of Physical Chemistry B,2002,106 (31):7634-7642.
    [94]Zanella R, Louis C. Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catalysis Today,2005,107-08:768-777.
    [95]Okumura M, Tanaka K, Ueda A, et al. The reactivities of dimethylgold(III)beta-diketone on the surface of TiO2-A novel preparation method for Au catalysts. Solid State Ionics,1997,95 (1-2): 143-149.
    [96]Yuan Y Z, Asakura K, Wan H L, et al. Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation. Catalysis Letters,1996,42 (1-2):15-20.
    [97]Liu L M, McAllister B, Ye H Q, et al. Identifying an O2 supply pathway in CO oxidation on Au/TiO2 (110):A density functional theory study on the intrinsic role of water. Journal of the American Chemical Society,2006,128 (12):4017-4022.
    [98]Date M, Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst. Journal of Catalysis,2001, 201 (2):221-224.
    [99]Kung H H, Kung M C, Costello C K. Supported Au catalysts for low temperature CO oxidation. Journal of Catalysis,2003,216 (1-2):425-432.
    [100]Sanchez-Castillo M A, Couto C, Kim W B, et al. Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. Angewandte Chemie-International Edition,2004,43 (9):1140-1142.
    [101]Date M, Okumura M, Tsubota S, et al. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angewandte Chemie-International Edition,2004,43 (16):2129-2132.
    [102]Bongiorno A, Landman U. Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Physical Review Letters,2005,95 (10):106102.
    [103]Ertl G, Rau P. Chemisorption and catalytic reactions of oxygen and carbon monoxide on a Palladium (110) surface. Surface Science,1969,15 (3):443-465.
    [104]Close J S, White J M. Oxidation of carbon monoxide catalyzed Palladium. Journal of Catalysis,1975, 36(2):185-198.
    [105]Stampfl C, Scheffler M. Density-functional theory study of the catalytic oxidation of CO over transition metal surfaces. Surface Science,1999,433:119-126.
    [106]Laberty C, Marquez-Alvarez C, Drouet C, et al. CO oxidation over nonstoichiometric nickel manganite spinels. Journal of Catalysis,2001,198 (2):266-276.
    [107]Jernigan G G, Somorjai G A. Carbon monoxide oxidation over 3 different oxidation states of copper-metallic copper, copper (Ⅰ) oxide, and copper (Ⅱ) oxide-A surface science and kinetic study. Journal of Catalysis,1994,147 (2):567-577.
    [108]Jansson J. Low-temperature CO oxidation over Co3O4/Al2O3. Journal of Catalysis,2000,194 (1): 55-60.
    [109]lizuka Y, Tode T, Takao T, et al. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. Journal of Catalysis,1999,187 (1): 50-58.
    [110]Haruta M, Tsubota S, Kobayashi T, et al. Low temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4. Journal of Catalysis,1993,144 (1):175-192.
    [111]Luo J Y, Meng M, Li X, et al. Mesoporous Co3O4-CeO2 and Pd/Co304-CeO2 catalysts:Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. Journal of Catalysis,2008,254 (2):310-324.
    [112]Doering D L, Dickinson J T, Poppa H. UHV studies of the interaction of CO with small supported metal particles, Ni mica. Journal of Catalysis,1982,73 (1):91-103.
    [113]Jia J F, Haraki K, Kondo J N, et al. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. Journal of Physical Chemistry B,2000,104(47):11153-11156.
    [114]Chen Y Y, Qiu J S, Wang X K, et al. Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds. Journal of Catalysis,2006,242 (1):227-230.
    [115]Guzman J, Carrettin S, Fierro-Gonzalez J C, et al. CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angewandte Chemie-International Edition,2005,44 (30):4778-4781.
    [116]Solsona B, Conte M, Cong Y, et al. Unexpected promotion of Au/TiO2 by nitrate for CO oxidation. Chemical Communications,2005 (18):2351-2353.
    [117]Chowdhitry B, Bravo-Suarez J J, Date M, et al. Trimethylamine as a gas-phase promoter:Highly efficient epoxidation of propylene over supported gold catalysts. Angewandte Chemie-International Edition,2006,45 (3):412-415.
    [118]Tsunoyama H, Sakurai H, Negishi Y, et al. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. Journal of the American Chemical Society, 2005,127 (26):9374-9375.
    [119]Biella S, Prati L, Rossi M. Selectivity control in the oxidation of phenylethane-1,2-diol with gold catalyst. Inorganica Chimica Acta,2003,349:253-257.
    [120]Nagahara H, Ono M, Konishi M, et al. Partial hydrogenation of benzene to cyclohexene. Applied Surface Science,1997,121:448-451.
    [121]Yates D J. Infrared studies of surface hydroxyl groups on titanium dioxide, and of chemisorption of carbon monoxide and carbon dioxide. Journal of Physical Chemistry,1961,65 (5):746-753.
    [122]Henderson M A. The interaction of water with solid surfaces:fundamental aspects revisited. Surface Science Reports,2002,46 (1-8):5-308.
    [123]Pozdnyakova-Tellinger O, Teschner D, Kroehnert J, et al. Surface water-assisted preferential CO oxidation on Pt/CeO2 catalyst. Journal of Physical Chemistry C,2007,111 (14):5426-5431.
    [124]Teschner D, Wootsch A, Pozdnyakova-Tellinger O, et al. Partial pressure dependent in situ spectroscopic study on the preferential CO oxidation in hydrogen (PROX) over Pt/ceria catalysts. Journal of Catalysis,2007,249 (2):318-327.
    [125]Boccuzzi F, Chiorino A, Manzoli M, et al. Au/TiO2 nanosized samples:A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. Journal of Catalysis,2001,202 (2):256-267.
    [126]Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chemical Reviews,2004,104 (6):3037-3058.
    [127]Weldon M K, Friend C M. Probing surface reaction mechanisms using chemical and vibrational methods:Alkyl oxidation and reactivity of alcohols on transitions metal surfaces. Chemical Reviews,1996,96(4):1391-1411.
    [128]Yamaguchi K, Mizuno N. Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina. Chemistry-a European Journal,2003,9 (18):4353-4361.
    [129]Mijs W J, de Jonge C R H, Organic Syntheses by Oxidation with Metal Compounds, New York: Plenum,1986.
    [130]M. Hudlicky. Oxidations in Organic Chemistry. Washington:American Chemical Society,1990.
    [131]Mori K, Yamaguchi K, Hara T, et al. Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts. Journal of the American Chemical Society, 2002,124(39):11572-11573.
    [132]Yang X M, Wang X N, Liang C H, et al. Aerobic oxidation of alcohols over Au/TiO2:An insight on the promotion effect of water on the catalytic activity of Au/TiO2. Catalysis Communications,2008, 9 (13):2278-2281.
    [133]Crossley S, Faria J, Shen M, et al. Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science,327 (5961):68-72.
    [134]Dekker C. Carbon nanotubes as molecular quantum wires. Physics Today,1999,52 (5):22-28.
    [135]Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000,287 (5453):622-625.
    [136]Planeix J M, Coustel N, Coq B, et al. Application of carbon nanotubes as supports in teterogeneous catalysis. Journal of the American Chemical Society,1994,116 (17):7935-7936.
    [137]Chambers A, Nemes T, Rodriguez N M, et al. Catalytic behavior of graphite nanofiber supported nickel particles.1. Comparison with other support media. Journal of Physical Chemistry B,1998, 102 (12):2251-2258.
    [138]Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon,2002,40 (5):791-794.
    [139]Liang C H, Li Z L, Qiu J S, et al. Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis. Journal of Catalysis,2002,211 (1):278-282.
    [140]Qiu J S, Zhang H Z, Liang C H, et al. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs:Preparation and catalytic properties. Chemistry-a European Journal,2006, 12 (8):2147-2151.
    [141]Wang C, Qiu J S, Liang C H, et al. Carbon nanofiber supported Ni catalysts for the hydrogenation of chloronitrobenzenes. Catalysis Communications,2008,9 (8):1749-1753.
    [142]Zhang J, Liu X, Blume R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science,2008,322 (5898):73-77.
    [143]Taylor K C. Determination of ruthenium surface areas by hydrogen and oxygen chemisorption. Journal of Catalysis,1975,38 (1-3):299-306.
    [144]Dalla Betta R A Measurement of ruthenium metal surface area by chemisorption. Journal of Catalysis, 1974,34(1):57-60.
    [145]Betancourt P, Rives A, Hubaut R, et al. A study of the ruthenium-alumina system. Applied Catalysis A-General,1998,170 (2):307-314.
    [146]Koopman P G J, Kieboom A P G, Vanbekkum H. Characterization of ruthenium catalysts as studied by temperature programmed reduction. Journal of Catalysis,1981,69 (1):172-179.
    [147]Liu S W, Tang X H, Yin L X, et al. Synthesis of carbon nanoflasks. Journal of Materials Chemistry, 2000,10(6):1271-1272.
    [148]Wang X B, Liu Y Q, Zhu D B. Controlled growth of well-aligned carbon nanotubes with large diameters. Chemical Physics Letters,2001,340 (5-6):419-424.
    [149]Duclaux L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon,2002, 40(10):1751-1764.
    [150]Dijksman A, Marino-Gonzalez A, Payeras A M I, et al. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. Journal of the American Chemical Society,2001,123 (28):6826-6833.
    [151]Mallat T, Baiker A. Preface-Catalytic oxidation for the synthesis of specialty and fine chemicals. Catalysis Today,2000,57 (1-2):1-2.
    [152]Sheldon R A, Kochi K, Metal Catalyzed Oxidations of Organic Compound. New York:Academic Press,1981.
    [153]Liu Z L, Lee J Y, Chen W X, et al. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir,2004,20 (1):181-187.
    [154]Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry-a European Journal,2005,11 (2):440-452.
    [155]Tsuji M, Hashimoto M, Nishizawa Y, et al. Synthesis of gold nanorods and nanowires by a microwave-polyol method. Materials Letters,2004,58 (17-18):2326-2330.
    [156]Fievet F, Lagier J P, Blin B, et al. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles Solid State Ionics,1989,32-3: 198-205.
    [157]van Bokhoven J A, Louis C, Miller J T, et al. Activation of oxygen on gold/alumina catalysts:In situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angewandte Chemie-International Edition,2006,45 (28):4651-4654.
    [158]Miller J T, Kropf A J, Zha Y, et al. The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. Journal of Catalysis,2006,240 (2):222-234.
    [159]Weiher N, Beesley A M, Tsapatsaris N, et al. Activation of oxygen by metallic gold in Au/TiO2 catalysts. Journal of the American Chemical Society,2007,129 (8):2240-2241.
    [160]Fierro-Gonzalez J C, Gates B C. Mononuclear AuⅢ and AuⅠ complexes bonded to zeolite NaY: Catalysts for CO oxidation at 298 K. Journal of Physical Chemistry B,2004,108 (44):16999-17002.
    [161]Steyn J, Pattrick G, Scurrell M S, et al. On-line deactivation of Au/TiO2 for CO oxidation in H2 rich gas streams. Catalysis Today,2007,122 (3-4):254-259.
    [162]Moreau F, Bond G C. Preservation of the activity of supported gold catalysts for CO oxidation. Topics in Catalysis,2007,44 (1-2):95-101.
    [163]Moreau F, Bond G C. CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catalysis Today,2006,114 (4):362-368.
    [164]Ho K Y, Yeung K L. Properties of TiO2 support and the performance of Au/TiO2 catalyst for CO oxidation reaction. Gold Bulletin,2007,40 (1):15-30.
    [165]Azar M, Caps V, Morfin F, et al. Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation. Journal of Catalysis,2006,239 (2): 307-312.
    [166]Schubert M M, Venugopal A, Kahlich M J, et al. Influence of H2O and CO2 on the selective CO oxidation in H2 rich gases over Au/alpha-Fe2O3. Journal of Catalysis,2004,222 (1):32-40.
    [167]Date M, Imai H, Tsubota S, et al. In situ measurements under flow condition of the CO oxidation over supported gold nanoparticles. Catalysis Today,2007,122 (3-4):222-225.
    [168]van Bokhoven J A, Ressler T, de Groot F M F, Knopp-Gericke G. In-situ spectroscopy of catalysts, California:American Scientific Publishers,2004.
    [169]Koningsberger D C, Mojet B L, van Dorssen G E, et al. XAFS spectroscopy; fundamental principles and data analysis. Topics in Catalysis,2000,10 (3-4):143-155.
    [170]Vaarkamp M, Linders J C, Koningsberger D C. A new method for parameterization of phase shift and backscattering amplitude. Physica B-Condensed Matter,1995,208 (1-4):159-160.
    [171]Cunningham D A H, Kobayashi T, Kamijo N, et al. Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and AU/Co3O4 catalysts. Catalysis Letters,1994,25 (3-4):257-264.
    [172]Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature,2009,458 (7239):746-749.
    [173]Ruggiero C, Hollins P. Interaction of CO molecules with the Au (332) surface. Surface Science,1997, 377 (1-3):583-586.
    [174]Boccuzzi F, Chiorino A, Tsubota S, et al. FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. Journal of Physical Chemistry,1996,100 (9):3625-3631.
    [175]Tsyganenko A A, Denisenko L A, Zverev S M, et al. Infrared study of lateral interactions between carbon monoxide molecules adsorption on oxide catalysts. Journal of Catalysis,1985,94 (1):10-15.
    [176]Boccuzzi F, Chiorino A, Manzoli M, et al. FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. Journal of Catalysis,1999,188 (1):176-185.
    [177]Su W G, Zhang J, Feng Z C, et al. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. Journal of Physical Chemistry C,2008,112 (20):7710-7716.
    [178]Grunwaldt J D, Maciejewski M, Becker O S, et al. Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. Journal of Catalysis,1999,186 (2):458-469.
    [179]Liao L F, Lien C F, Shieh D L, et al. FTIR study of adsorption and photoassisted oxygen isotopic exchange of carbon monoxide, carbon dioxide, carbonate, and formate on TiO2. Journal of Physical Chemistry B,2002,106 (43):11240-11245.
    [180]Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:relationships between surface morphology and chemical behaviour. Applied Catalysis A-General,2000,200 (1-2): 275-285.
    [181]Costello C K, Kung M C, Oh H S, et al. Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Applied Catalysis A-General,2002,232 (1-2):159-168.
    [182]Costello C K, Yang J H, Law H Y, et al. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Applied Catalysis A-General,2003,243 (1):15-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700