电化学方法去除LiCl-KCl体系微量杂质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前金属锂唯一的工业生产方法是氯化锂-氯化钾熔盐电解法。电解得到的产品纯度约为95-99wt%,含有K, Na, Al, Ca, Si, Fe, Mg, Ni等杂质。目前生产纯度在99.9wt%以上的金属锂是将电解得到的初级金属锂经两次真空蒸馏。真空蒸馏是在600-800℃下不锈钢蒸馏炉内将锂蒸发,其电能消耗大,蒸馏效率低,对设备产生严重腐蚀,增大了高纯金属锂的生产成本。
     本文针对现有技术的缺陷,拟采用电化学方法去除LiCl-KCl体系的微量杂质K,Al, Mg, Ca, Na等。主要研究内容包括:
     (1)采用电化学方法研究了LiCl-KCl(1:lmol)体系Li+与K+的还原电位差为0.3V,当电解质摩尔配比增加至3:7时,还原电位差减小至0.16V,当温度由450℃升高到600℃,Li+的还原电位正移0.15-0.2V。在电解过程中,通过控制电解质KCl与LiCl的比例、电解温度、电流密度可以降低金属Li中的杂质K含量。
     (2)通过电化学方法研究450℃时LiCl-KCl-AlCl3体系中,微量A13+的还原电位为-1.55Vvs.C12/C1-,与Li+的还原电位差为1.8V,满足电化学分离两种离子的条件。本文采用固态金属Fe和液态金属Zn作为阴极,在-1.6V恒电位电解10h后,Al3+的实际去除率分别为96.11%和99.9%,结果显示液态金属Zn更有利于去除微量杂质Al。通过Miedema模型计算,Al在Al-Fe合金中的活度系数小于1,在Al-Zn合金中的活度系数稍大于1,参照合金活度系数判断固态金属Fe更有利于去除杂质Al。但实验过程中,杂质Al的去除受合金动力学及热力学共同影响。由于Al3+的还原过程为受扩散控制的可逆过程,因此,在电解过程中添加氩气搅拌,在Fe阴极上恒电位电解4h后去除了99%以上的Al3+,这表明搅拌可以促进Al3+的扩散,加速杂质的去除。
     (3)通过电化学方法研究了LiCl-KCl-MgCl2体系中,Mg2+开始还原的电位为-2.7V,Li+欠电位还原从-2.95V开始,大量金属Li析出的电位为-3.5V,Mg2+与Li+(欠电位还原)的还原电位差为0.25V,与大量金属Li析出的电位相差0.8V,满足电化学分离的条件。结合二元合金相图及镁合金中组元镁的活度系数计算结果,提出采用液态金属Pb作为阴极去除微量杂质Mg。通过恒电位电解,LiCl-KCl体系中MgCl2含量越低,在相同时间内Mg2+的理论去除率越高;当体系中MgCl2含量相同,随着电解时间的增加,杂质Mg2+的理论去除率也相应增大。但阴极产物中有少量的元素Li。这说明在去除微量杂质Mg2+的过程中会有少量金属Li的析出。
     (4)通过能斯特方程计算了450℃时Ca2+与Li+的还原电位差仅为0.078V,不满足电化学分离Ca2+与Li+的条件;通过循环伏安测试了-LiCl(18mol%)-KCl(64mol%)体系中含有CaCl2(18mol%)时,Ca2+和Li+在W电极上的还原电位差为0.3V,与理论计算结果存在的差异。通过循环伏安法和方法伏安法研究得到,450℃时LiCl-KCl-CaCl2(0.5wt%)体系中W电极上Ca2+与Li+的还原电位差为0.11V。温度升高至680℃,还原电位差增加至0.20V;CaCl2含量增加至2.0wt%,该值没有明显改变。通过计时电位法研究,450和680℃时Li+和Ca2+在W电极上的还原电位差大于0.2V,满足W电极上电化学分离Ca2+和Li+的条件。采用Miedema模型计算得到Ca-Sn合金中Ca的活度系数较小。通过循环伏安法得到Ca2+与Li+在Sn电极上的还原电位差为0.6V,满足电化学分离条件。分别采用惰性电极W和活性电极Sn在-3.4V和-3.0V恒电位电解3h后,Ca2+的实际去除率分别为13.58%和55.48%,因此,Sn电极可以加速杂质Ca2+的去除。在搅拌条件下,Sn电极上在-3.0V电解3h和6h后,杂质Ca2+的实际去除率分别为83.65%和94.66%,搅拌可以明显提高Ca2+的电化学反应速率。-3.0V电解6h后,消耗的LiCl含量为杂质CaCl2的32.58%,在电解过程中消耗少量的LiCl是可以接受的。
     (5)通过能斯特方程计算,Na+还原电位较Li+负0.050V,理论上无法在金属Li电解之前去除杂质Na+。当LiCl-KCl体系中杂质NaCl的含量达到18mol%时,循环伏安法测得Na+和Li+的还原电位差大于0.2V,为电化学分离Na+和Li+提供了可能。通过电化学方法研究,当LiCl-KCl体系含有0.5-2.0wt%NaCl时,W电极上Li+和Na+的还原电位差为0.16-0.2V左右,不满足电化学分离的条件。采用Miedema模型计算得到,采用液态金属Pb作为阴极,Na在合金中的活度系数小于1,且形成合金的温度较低,有利于杂质Na的去除。通过循环伏安法研究,Pb电极上Na+和Li+的还原电位差达到0.2V,小于Ca2+和Li+在电极Sn上的还原电位差0.6V。在去除杂质Na+时,当电解电位由-2.6V负移至-3.0V,Na+的实际去除率由47.67%增大至75.71%。在-3.0V电解时,除了Na+的还原,Li+也会还原为相应的金属Li,通过消耗LiCl的方式可以提高杂质Na+的去除率。
     (6) LiCl-KCl-NaCl(2.0wt%)-CaCl2(2.0wt%)-MgCl2(2.0wt%)-AlCl3(2.0wt%)体系中比较了三叶桨、四叶桨、未添加搅拌桨的条件下,Pb电极上电解10h后,A13+、Mg2+、Ca2+、Na+各种杂质离子的去除率,实验结果表明,四叶桨更有利于杂质离子的均匀混合,提高杂质离子的去除率。同时也验证了FLUENT的数值计算结果。
     (7)通过Fluent数值计算,杂质离子在三叶桨和四叶桨搅拌槽内自由扩散的混合时间分别为13.764s和14.394s。与自由扩散相比,采用桨叶搅拌后,杂质离子混合均匀所需要的时间缩短了3个数量级。采用四叶桨搅拌所需要的混合时间在不同转速下均比三叶桨小,且混合时间的差别在转速为40rpm时最为明显,随着转速的增大,混合时间的差异减小。因此,采用四叶桨转速为40rpm,在极短的时间内就实现了杂质离子浓度的均匀化,这与实验得到的结论一致。这也说明了采用FLUENT中的组分运输模型可以对扩散现象进行较好的模拟。
Currently, the only way in industry to produce metal Li is by electrowinning from the molten LiCl-KCl melt at about450℃. The obtained metal Li has the purity of98-99wt%with1-2wt%impurities including Na, K, Al, Ca, Mg, Si, etc, which are derived from the corresponding metal chloride compounds or metal oxide compounds existing in the LiCl and/or KC1raw materials. These impurities have to be removed by vacuum distillation in a stainless steel reactor under600-800℃, and sometimes followed by zone smelting. It consumes52kWh/kg-Li to refine the primary lithium from a purity of98.5to99.9wt%, accompanying with a serious corrosion to the reactor. It is necessary to explore a low-cost method to remove these impurities from the primary lithium.
     In this dissertation, the electrochemical methods have been employed to investigate the reduction mechanism and removal rate of race impurity ions in LiCl-KCl. Several obtained results including:
     (1) During the investigation of trace impurity K, the0.3V of reduction potential difference between Li+and K+in LiCl-KCl (1:1mol) have been obtained by electrochemical methods, which decreased to0.16V with the LiCl-KCl mol ratio increased to3:7. And the reduction potential of Li+was positively shifted0.15-0.2V with the temperature increasing from450to600℃. The content of impurity K can be reduced after electrolysis from lower mol ratio LiCl-KCl, lower temperature and current density.
     (2) In order to remove trace impurity AlCl3from LiCl-KCl melts before Li electrolysis, the Al+reduction potential on a tungsten electrode was determined by cyclic voltammetry (CV) and square wave voltammetry (SWV). The reduction potential difference between Al3+and Li+was1.8V, which satisfied the electrochemical removal of trace Al3+from LiCl-KCl melts. The constant potential electrolysis at-1.6V on both solid Fe and liquid Zn cathodes was performed to remove Al3+impurity from the LiCl-KCl-AlCl3melts. The results showed that96.11%of Al3+were removed on a Fe cathode and99.90%on a Zn cathode through10h electrolysis, respectively. The activity coefficient of Al in Al-Fe alloy was lower than1, while it was slightly higher than1in Al-Zn alloy, which means the Fe cathode may remove more impurity Al. The difference between theoretical calculation and the experiment was attributed to the thermodynamics and kinetics of alloy formation. While stirring the melts by argon gas,99.21%of Al3+was separated from the melts by4h electrolysis at450℃, which effectively expedited the Al3+electrochemical reduction rate and shortened the electrolysis time.
     (3) In order to remove trace impurity MgCl2from LiCl-KCl melts before Li electrolysis, MgCl2reduction processes in LiCl-KCl-MgCl2melt were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CP) and chronopotentiometry (CA). The results showed that Mg2+was reduced in one step with two-electron transfer and its reduction potential was well defined. The reduction potential difference of Mg2+with Li+underpotential deposition was0.25V; therefore, in order to prevent Li+from codeposition with Mg, accurately controlling Mg2+reduction potential during the potentiostatic electrolysis was necessary. The liquid lead was recommended as cathode to remove trace impurity Mg2+according to the binary alloy phase diagram and magnesium activity coefficient calculation. Then potentiostatic electrolysis was carried out and Mg+was reduced onto a liquid lead cathode from the LiCl-KCl-MgCl2melt at the Mg deposition potential, which showed the Mg2+theoretical removal rates increased with the decreasing of MgCl2concentration and the extending of electrolysis time. About93-99%of removal rate of MgCl2was achieved after8-12h electrolysis when liquid lead was used as cathode. But a small amount of Li was found in cathode, which means the Li+codeposition with Mg during electrolysis.
     (4) In order to investigate the possibility of electroseparation of CaCl2from CaCl2-LiCl-KCl melts prior to Li+reduction, the theoretical reduction potential difference of0.078V between Ca2+and Li+ions was calculated by Nernst equation. But this potential difference was0.3V by cyclic voltammetry (CV) study in CaCl2(18mol%)-LiCl(18mol%)-KCl(64mol%) system. The potential difference between Ca2+and Li+in CaCl2(0.5wt%)-LiCl-KCl melts was0.2V at680℃analyzed by CV. More than0.2V reduction potential difference between Ca2+and Li+ions was observed on chronopotentiograms (CP) recorded on a tungsten electrode in CaCl2(2.0wt%)-LiCl-KCl melts either at450-680℃, which met the requirements of total electroseparation. Tin electrode can shift the reduction potentials of Ca2+and Li+to more positive ones and can improve their reduction potential difference to0.6V. After3h electrolysis on solid tungsten at-3.4V and liquid tin cathode at-3.0V, the Ca/Li (weight ratio) in the melts changed from3/25before electrolysis to2.6/25and0.76/25respectively, which tin cathode improved. Ca2+removal rate. Under stirring, even higher removal rates of83.65%and94.66%, corresponding to0.54/25and0.16/25of Ca/Li have been obtained for3h and6h electrolysis at-3.0V on a tin electrode. Clearly, stirring availably increases the Ca2+ions diffusion rate and its electrochemical reaction rate.
     (5) In order to investigate the possibility of electroseparation of NaCl from NaCl-LiCl-KCl melts prior to Li+reduction,-0.05V of theoretical reduction potential difference between Na+and Li+ions was calculated by Nemst equation. But this potential difference was higher than0.2V in LiCl(18mol%)-KCl(64mol%) with NaCl(18mol%) system studied by cyclic voltammetry (CV), which provided the possibility for electrochemical removal. The potential difference between Na+and Li+was0.16-0.2V on a tungsten electrode in LiCl-KCl with0.5-2.0wt%NaCl at450℃analyzed by cyclic voltammetry (CV), square wave voltammetry (SWV) and chronopotentiograms (CP). The liquid lead was recommended as cathode to remove trace impurity Na+. About0.2V reduction potential difference between Na+and Li+was observed on CV recorded on a lead electrode at450℃in LiCl-KCl-NaCl(2.0wt%), which was smaller than Ca2+and Li+potential difference on tin electrode. During the process of Na+impurity removal, the practical removal rates of Na+were increased from47.67%to75.71%with the electrolysis potential shifted from-2.6V to-3.0V. Except for Na+reduction, some Li+were reduced to Li at-3.0V for consumption of LiCl. With the electrolysis time increased to6h, the Na+impurity removal rate was reached to90.12%, meanwhile, the Na/Li (mass ratio) increased to4.25/1, which further proved the metal Li promoting Na+removal rate.
     (6) Comparing with the condition of three leaf blade impeller and without impeller electrolysis, more impurity removal rates have been achieved by electrolysis in LiCl-KCl-NaCl(2.0wt%)-CaCl2(2.0wt%)-MgCl2(2.0wt%)-AlCl3(2.0wt%) system on a lead cathode for10h with the four leaf blade impeller. The uniform mixing time of impurity ions free diffusion were13.764s and14.394s respectively in three and four leaf blade electrolytic cell by Fluent numerical simulation. Comparing with impurity ions free diffusion, the impellers could improve the ions diffusion and shorten mixing time to3orders of magnitude. And the mixing time for four leaf blade impeller was smaller than the three leaf blade impeller; but this superiority gradually decreased with the rotating speed increasing. Therefore, the four leaf blade with40rpm can shorten the mixing time for impurity ions from bulk solution to the electrode surface solution, which was in accordance with experimental results. The Fluent numerical simulation also showed the components transportation model can be employed to simulate the ions diffusion during electrochemical reaction.
引文
[1]稀有金属手册编辑委员会编著.稀有金属手册(下册).北京:冶金业出版社,1995:118
    [2]王秀莲,李金丽,张明杰.21世纪的能源金属—金属锂在核聚变反应中的应用.黄金学报2001,3(4):249-252
    [3]李钟模.锂—21世纪的元素新星.中国化工.1997,(11):33-57
    [4]刘世友.锂在电池工业中的应川与发展.上海有色金属1998,19(2):87-90
    [5]郭炳坤,李新海,杨松青.化学电源.长沙:中南工业大学出版社,2000:20
    [6]游清治.锂在高新技术领域中的应用及进展.新疆有色金属2003,26(S2):70-75
    [7]李承元,李勤,朱景和.世界锂资源的开发应用现状及展望.上海有色金属2001,38(8):22-26
    [8]T. Aida, H. Hatta, C. S. Ranesh, S. Kavado, Y. Kojima. Workability and mechanical properties of lighter than water Mg-Li alloy. International Magnesium Conference,3rd UMIST, Manchester, United Kingdom.1996:143-152
    [9]张洪杰,孟健,唐定骧.高性能镁—稀土结构材料的研制、开发和应用.中国稀土学报.2004,22(1):40-47
    [10]张明杰,郭清富.21世纪的能源金属—锂的冶金现状及发展.盐湖研究2001,9(3):52-60
    [11]孙汉虹.核电发展的新机遇与新挑战.核工程技术.1998,3:1-7
    [12]游清治.锂在热核反应中的应用.新疆有色金属1996,1:112-114.
    [13]游清治.锂及其化合物在医药中的应用.世界有色金属.1997,12:41-43
    [14]杨重愚编著.轻金属冶金学.北京:冶金工业出版社,2002
    [15]程志翔等译.锂和氢化锂译文集.北京:原子能出版社,1980
    [16]张崇栋,芮元营,洪家和,徐德清,赵体福,赵福祥,张孟魁,蒋俊,徐再生.一种金属锂电解槽.CN1117164C.2003
    [17]E. R. Van Artsdalen, I. S. Yaffe. Electrical conductance and density of molten salt systems:KCl-LiCl, KCl-NaCl and KC1-KI. J. Phys. Chem.1955,59(2):118-127
    [18]S. Zuca, R. Borcan. Viscosity of binary molten alkali chloride systems. Rev. Roum. Chim.1974,19:553-559
    [19]D. A. Nissen, R. W. Carlster. The surface tension of the molten binary system LiCl-KCl. J. Electrochem. Soc.1974,121(4):500-506
    [20]G. Liu, T. Utigard, J. M. Toguri. Surface tension and density of the molten potassium chloride-lithium chloride and lead dichloride-potassium chloride-lithium chloride systems. J. Chem. Eng. Data.1986, 31(3):342-346
    [21]狄晓亮,旁全世,李权.金属锂提取工艺比较分析.盐湖研究.2005,13(2):45-52
    [22]储慰农.国外锂铷铯冶金.江西:冶金工业部稀有金属科技情报网.1980,38
    [23]张崇栋,芮元营,洪家和.一种金属锂电解槽.CN1204700A.1999
    [24]狄晓亮.2000安培电解槽制取金属锂优化工艺研究.硕士学位论文.青海:中国科学院青海盐湖研究所,2005
    [25]H. A. Laitinen, C. H. Liu. An electromotive force series in molten lithium chloride-potassium chloride eutectic. J. Am. Chem. Soc.1958,80(5):1015-1020
    [26]A. I. Demidov, I. A. Simikov, A. V. Klevtsov. Electrochemical behavior of ferrous sulfide in molten LiCl-KCl and LiF-LiCl electrolytes. J. Appl. Chem.1986,59(2):294-299
    [27]K. S. Damoa, S. S. N. Reddy. Eletrolytic production of lithium metal. US4455202.1984
    [28]H. A. Laitinen, W. S. Ferguson, R. A. Osteryoung. Preparation of pure fused lithium chloride-potassium chloride eutectic solvent. J. Electrochem. Soc.1957,104(8):516-520
    [29]戴永年,杨斌.有色金属材料的真空冶金.北京:冶金工业出版社,2000
    [30]W. J. Kroll, A. WSehleehten. Laboratory preparation of lithium metal by vacum metallugry. Metallurgical Society ofAIME.1949,182:266-274
    [31]A. J. Smeets, D. J. Fray. Extraction of lithium by vacuum thermal reduction with aluminium and silicon. Tran. Ins tit. Mining Metall. Section C.1991,100:42-54
    [32]R. A. Stauffer. Vacuum for preparation of lithium metal from spodumene. American Institute of Mining, Metallurgical and Petroleum Engineers.1949,182:275-285
    [33]林智群,黄占超,杨斌.氧化锂真空碳化钙热还原提取锂的研究.云南冶金.2001,30(6):31-34
    [34]林智群.真空热还原提取金属锂的新工艺.硕十学位论文.昆明:昆明理工大学,2002
    [35]杨斌,戴永年.金属锂的制备及应用.昆明理工大学学报.1996,21(6):42-45
    [36]杨斌,戴永年.真空冶炼法提取金属锂的研究.云南:云南科技出版社,1999
    [37]戴永年,杨斌,张国靖.锂的真空冶炼法.CN1065283C.2001
    [38]贾永忠,周园,景燕,杨金贤.真空热还原—蒸馏法制备高纯金属锂.无机化学学报.2001,17(5):735-739
    [39]贾永忠,杨金贤,周园,景燕,王政存,申承明,李武.金属锂的热还原制备及提纯工艺和设备.CN1299884A.2001
    [40]陈为亮.真空精炼锂的研究与氧化锂真空碳热还原初探.博士学位论文.昆明:昆明理工大学,2000
    [41]金哲男,李席孟,蓝为君,刘秀儒.乙醇萃取法制备低Na,K高纯氯化锂.东北大学学报(自然科学版).2006,27(11):1251-1254
    [42]J. Gulens, B. W. Hildebrandt, J. D. Canaday, A. K. Kuriakose, T. A. Weat, A. Ahmad. Influence of water on the electrochemical response of a bonded nasicon protonic conductor. Solid State lonics.1989,35(1-2):45-49
    [43]娄太平,李大纲,潘蓉,张慧萍.Li2Mg2Si4O10F2、H2Mn8O16·1.4H2O和 Li1.3Ti1.7Al0.3(PO4)3在高浓度LiCl水溶液中的离子交换行为.物理化学学报2003,19(9):839-843
    [44]娄太平,李大纲,戴厚晨,唐书环,徐铁伟,高鸣.Li1.3Ti1.7Al0.3(PO4)3与Na+的离子交换.物埋化学报.2005,21(7):782-785
    [45]娄太平,李大纲,王家良,吕国志.Li1.3Zr1.7Al0.3(PO4)3的离子交换特性.无机化学学报.2005,21(5):693-696
    [46]C. Celik, D. Douter. Theoretical and experimental investigation of furnace chlorine fluxing. Light Metals.1989:793-800
    [47]P. Waite, D. Bernard. Recent experience with the use of Sulphur Hexafluoride for aluminum fluxing. Light Metals.1990:775-784
    [48]J. W. Lim. Metal losses, Emissions of hazardous gases, and impurities removal from aluminum by chlorine fluxing. Master's Thesis. Canada:University of Toronto,1998
    [49]P. Waite. A technical perspective on molten aluminum processing. Light Metals.2002: 841-848
    [50]T. Pedersen. Refining efficiency on hydrogen alkaline metals and inclusions in the hydro metal refining system. Light Metals.1991:1063-1067
    [51]A. Aarflot, B. Rasch, S. T. Johansen, K. Venas. The development process of a new in-line 3 rotor metal refining unit. Light Metals.1995:1207-1214
    [52]K. Nes, T. Johnsen. Industrial experience with hycast metal refining systems in the production of sheet ingot, extrusion ingot and primary foundry alloys. Light Metals.1995: 1273-1276
    [53]B. Hop, F. Frisvold, B. Rasch, S. T. Johansen. The fluid mechanics in the H110 Hycast reactor. Light Metals.1997:837-841
    [54]B. Rasch, E. Myrbostad, K. Hatsas. Refining of potroom metal using the hydrogen RAM crucible fluxing process. Light Metals.1998:851-854
    [55]P. G. Strand. Hycast RAM refining of potroom metal. Aluminium Today.2000,12(4): 30-32
    [56]G. Maeland, E. Myrbostad, K. Venus. Hycast-60 SIR-a new generation in-line melt refining system. Light Metals.2002:855-859
    [57]J. Hanawalt, C. Nelson, G. Holdeman. Removal of iron from magnesium-base Alloys. US2267862.1941
    [58]B. A. Mikucki, J. E. Hillis. Process for purifing magnesium. US5147450.1992
    [59]B. A. Mikucki, J. D. Shearouse. Interdependence of hydrogen and microporosity in magnesium alloy AZ91 [C]//SAE. International Congress and Exposition.1993,3:107-115
    [60]R. S. Busk, E. G. Boblek. Hydrogen in magnesium alloys. Metallurgical Society of AIME.1947,171:261-276
    [61]刘彬,张英.电解镁中铁杂质的去除方法.铝镁通讯.2000,12(2):45-49
    [62]兰海苍,赵炜.金属锂的精制.新疆有色金属.1996,(1):55-57
    [63]P. S. Cooper, M. A. Kearns. Removal of transition metal impurity in aluminium melts by boron additives. Mater. Sci. Forum.1996,217-222:141-146
    [64]T. Uda, K. T. Jacob, M. Hirasawa. Technique for enhanced rare earth separation. Science.2000,289(5488):2326-2329
    [65]M. J. McMonigle. Magnetically removal of impurities from molten salt baths. US4443627.1984
    [66]J. R. Fields, E. H. Rogers, L. K. King. Separation of volatile impurities from aluminum chloride. US4576690.1986
    [67]J. M. Karben, R. B. B. Vilbel, B.S. Asslar, E. D. Goslar. Process and apparatus for production high-purity lithium metal by fused-salt electrolysis. US4740279.1988
    [68]K. Furukawa, Y. Kato, H. Ohno, H. Katsuta. Method of purifying sodium metal. US3854933.1974
    [69]E. F. Emley. Principles of magnesium technology. New York:Pergamon Press.1966, 120
    [70]A. G. Metcalfe. The solubility of hydrogen in magnesium. Trans. Amer. Inst. Min. Metall.1959,51:1072-1082
    [71]G. Z. Chen, D. J. Fray. Cathodic refining in molten salts:removal of oxygen, sulfur and selenium from static and flowing molten copper. J. Appl. Electrochem.2001,31(2):155-164
    [72]D. J. Fray, T. W. Farthing, G. Z. Chen. Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt. US0159559.2004
    [73]W. L. Chen, L. Y Chai, X. B. Min, B.Yang, Y.N.Dai, X. Yu, C. F. Zhang. Vacuum distillation refining of crude lithium (I)-Thermodynamics on separating impurities from lithium. Trans. Nonferrous Met. Soc. China.2001,11(6):937-941
    [74]W. L. Chen, L. Y. Chai, X. B. Min, B.Yang, Y.N.Dai, X.Yu, C. F. Zhang. Vacuum distillation refining of crude lithium II. Kinetics on vacuum distillation of crude lithium. Trans. Nonferrous Met. Soc. China.2002,12(1):152-155
    [75]T. Takenaka, T. Fujita, S. Isazawa, M. Kawakami. Dissolution and deposition of impurities in Mg electrolysis. Mater. Trans.2001,42(7):1249-1253
    [76]R. Neelameggham. Lithium metal/alloy recovery from multi-component molten salt. US4533442.1985
    [77]R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson. Instrumental methods in electrochemistry. Intl Specialized Book Service Inc.1985,178-22
    [78]李红,江琳才,计亮年.核黄素在玻碳电极上的电化学行为.电化学.1999,5(2):171-177
    [79]V. Mirceski, S. Komorsky-Lovri'c, M. Lovri'c. Square-Wave Voltammetry. New York: Berlin Heidelberg,2007
    [80]J. G. Osteryoung, R. A. Osteryoung. Square wave voltammetry. Anal. Chem.1985, 57(1):101-110
    [81]J. G. Osteryoung. Square-wave voltammetry. In:Bard AJ (ed). J. Electroanal. Chem.1986,14:209
    [82]G. N. Eccles. Recent advances in pulse cyclic and square-wave cyclic voltammetric analysis. Crit. Rev. Anal.Chem.1991,22(5):345-380
    [83]G. C. Barker, I. L. Jenkins. Square wave polarography. Analyst.1952,920(77):685-696
    [84]G. C. Barker. Square wave polarography and some related techniques. Anal. Chim.Acta.1958, (18):118-131
    [85]L. Ramaley, D. P. Surette. Autoranging in high speed data acquisition systems. Chem. Instrum.1977,8:181-189
    [86]C. Yarnitzky, R. A. Osteryoung, J. G. Osteryoung. Instrument design for a one-drop square wave analyzer. Anal. Chem.1980,52:1174-1182
    [87]J. A. Anderson, A. M. Bond. Microprocess-controlled instrument for the simultaneous generation of square wave, alternating-current, alternating current, direct current and pulse polarograms. Anal. Chem.1983,55:1934-1942
    [88]A. Lavyfeder, C. Yarnitzky. Background compensation in fast scan square wave voltammtry and other pulse techniques at the dropping mercury electrode. Anal. Chem.1984,56:678-683
    [89]P. Jayaweera, L. Ramaley. Low noise, Fast response potentiostat for pulse electrochemical studies. Anal. Instrum.1986,15:259-265
    [90]K. H. Wong, R. A. Osteryoung. Real time simplex optimization of square wave voltammetry. Electrochim. Acta.1987,32:629-634
    [91]A. J. Bard, L. R. Faulkner. Electrochemical method:Fundamentals and applications, 2nd edition. New York:John Wiley& Sons, Inc.2000
    [92]A. R. Miedema. The electronegativity parameter for transition metals:heat of formation and charge transfer in alloys. Less-Common Met.1973,32:117-124
    [93]A. R. Miedema, R. Boom, F. R. deBoer. On the heat of mixing of liquid alloys. Less-Common Met.1976,45:237-245
    [94]A. R. Miedema, P. F. deChatel. Cohesion in alloys-fundamentals of a semi-empirical model. Physica.1980,100B:1-9
    [95]A. R. Miedema, J. W. Dorieign. Quantitative predictions of the heat of adsorption of metals on metallic substrates. Surf.Sci.1980,95:447-452
    [96]A. R. Miedema, V. D. Wonde. A cellular atomic model for the Mossbauer isomer shift of 197Au in alloys. Physica.1980,100B:145-155
    [97]N. A.Gokcen. Statistical thermodynamics of alloys. New York:Plenum Press,1986, 255
    [98]欧阳义芳,张邦维.碱金属一铝合金形成焓的热力学计算.上海有色金属.1995,16(1):1-4
    [99]欧阳义芳,张邦维.镁基碱金属二元合金热力学性质的理论计算.湖南大学学报.1995,22(3):36-40
    [100]路贵民,刘学山,蒋冬梅,邱竹贤.Al-Mg合金热力学性质的计算.中国有色金属学报.1999,6(2):381-384
    [101]路贵民,乐启炽,崔建忠Zn-Mn和Zn-Ti二元合金热力学性质.中国有色金属学报.2011,11(1):95-98
    [102]X. Ma, F. Yoshida. Interaction relation in 60Sn-Pb-0.05La ternary solder alloy. Mater. Lett.2002,56:441-445
    [103]有色金属工业分析编辑委员会编.轻金属冶金分析.北京:冶金工业出版社,1992
    [104]S. Senderoff, G. W. Mellors, W. J. Reinhart. The electrodeposition of coherent deposits of refractory metals.J. Electrochem. Soc.1965,111(8):840-84
    [105]H. A. Laitinen, R. A. Osteryoung. Impedance measurements at solid electrodes in molten lithium chloride-potassium chloride. J. Electrochem. Soc.1955,102(10):598-604
    [106]K. H. Stern. Electrode potentials in fused systems II:a study of the AgCl-KCl system. J. Phys. Chem.1956,60(5):679-681
    [107]G. C. Harish, H. L. Jindal. Use of platinum foil as reference electrode in molten salts. Current Science.1968,37(2):49-50
    [108]H. Qiao, T. Nohira, Y. Ito. Electrochemical formation of Au2Na alloy and the characteristics of (Au2Na/Au) reference electrode in a LiF-NaF-KF eutectic melt. Electrochim. Acta.2002,47(28):4543-4549
    [109]S. N. Flengas, T. R. Ingraham. Voltaic cells in fused salts. Part 3:The system silver silver shloride, sadmium-sadmium shloride. Can. J. Chem.1958,36:895-898
    [110]S. N. Flengas, T. R. Ingraham. Electromotive force series of metals in fused salts and activities of metal chlorides in 1:1 Molar KCl-NaCl Solutions. J. Electrochem. Soc.1959, 106(8):714-721
    [111]J. O'M. Bockris, G. J. Hills, D. Inman, L. Young. All-glass reference electrode for molten salt systems. J. Sci. Instrum.1956,33(11):438-439
    [112]R. J. Labrie, V. A. Lamb. A porcelain reference electrode conductive to sodium ions for use in molten salt systems. J. Electrochem. Soc.1959,106(10):895-899
    [113]R. D. Carton, C. R. Wolfe. Reference electrode for electrochemical studies in fused alkali metaphosphates. Anal. Chem.1971,43(6):660-662
    [114]谢中,刘业翔.高温氯化物熔体参比电极.中国有色金属学报.1998,8(4):668-672
    [115]高佩,金先波,汪的华,胡晓宏,陈政.新型高温、长寿命氯化物熔盐参比电极的制备与研究.电化学.2005,11(1):8-11
    [116]P. Gao, X. B. Jin, D. H. Wang, X. H. Hu, G. Z. Chen. A quartz sealed Ag/Agcl rReference electrode for CaCl2 based molten salts. J. Electroanal. Chem.2005,579(2): 321-328
    [117]K. Yasuda. Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode. Electrochim. Acta.2005,51(3):561-565
    [118]O. Shirai, T. Nagai, A. Uehara, H. Yamana. Electrochemical properties of Ag+/Ag and other reference electrodes in the LiCl-KCl eutectic melts. J. Alloys Compd.2008,456(1-2): 498-502
    [119]祁雪.NaCl-2CsCl体系中CeCl3的电化学特性研究.硕士学位论文.北京:北京科技大学,2004
    [120]V. L. Cherginets. Studies of some acid-base equilibrium in the molten eutectic mixture KCl-LiCl at 700℃. Electrochim. Acta.1999,45:469-476
    [121]Y. Castrillejo. Solubilization of rare earth oxides in the eutectic LiCl-KCl mixture at 450℃ and in the equimolar CaCl2-NaCl melt at 550℃. Electroanal. Chem.2003,545: 141-157
    [122]C. Caravaca. Determination of the E-pO2-stability diagram of plutonium in the molten LiCl-KCl eutectic at 450℃. J. Nucl. Mater.2008,377:340-347
    [123]H. El Ghallali. Electrochemical synthesis of Ni-Sn alloys in molten LiCl-KCl. Electrochim. Acta.2009,54:3152-3160
    [124]R. Littlewood. A reference electrode for electrochemical studies in fused alkali chlorides at high temperatures. Electrochim. Acta.1961,3(4):270-278
    [125]H. Nakajima, T. Nohira, Y. Ito. The single electrode peltier heats of Li+/Li, H2/H" and Li+/Pd-Li couples in molten LiCl-KCl systems. Electrochim. Acta.2004,49(27):4987-4991
    [126]L. Yang, G. H. Robert. The Ag/AgCl in LiCl-KCl eutectic reference electrode. Electrochem. Soc.1959,106(11):986-990
    [127]Y. J. Park, Y. J. Jung, S. K. Min, Y. H. Cho, H. J. Im, J. W. Yeon, K. Song. A quartz tube based Ag/Ag+reference electrode with a tungsten tip junction for an electrochemical study in molten salts. Bull. Korean Chem. Soc.2009,30(1):133-136
    [128]A. B. Gil, K. E. Ho, Y. J. Hyung. Reference electrode for molten salt, including alumina tube filled with silver wire, silver chloride and molten salt and porous ceramic layer at one side of the tube, and preparation method thereof. KR2006070897.2006
    [129]V. Winfried, O. Wolfram, S. J. Ray, H. Jost. Reference electrode chem.-resistant in molten salts.DE10305005.2004
    [130]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    [131]Z.Chen, M.L.Zhang, W.Han, Z. Y. Hou, Yong De Yan. Electrodeposition of Li and electrochemical formation of Mg-Li alloys from the eutectic LiCl-KCl. J. Alloys Compds.2008,464(1-2):174-178
    [132]J. Bouteillon, A. Marguier. A study of the electrochemical reduction of AICl3 in an NaCl-KCl equimolar mixture. Surf. Coat. Technol.1984,22(3):205-217
    [133]M. Gabco, P. Fellner, Z. Lubyova. Chronopotentiometric study of aluminium deposition from MCl-AICl3 melts (M=Na, K and Cs). Electrochim. Acta.1984,29(3): 397-401
    [134]Y. J. Zhang, A. Bj(?)rgum, U. Erikson, R. Tunold, R.(?)degard. On the kinetics of the cathodic deposition of aluminium on glassy carbon and tungsten electrodes from AlCl3+NaCl+KCl melts. J. Electroanal. Chem. Interf. Electrochem.1986,210(1):127-136
    [135]杨绮琴,方北龙,童叶翔.应用电化学(第二版).广州:中山大学出版社.2005,49-55
    [136]T. Berzins, P. Delahay. Theory of electrolysis at constant current in unstirred solution, Ⅱ:consecutive electrochemical reactions. J. Am. Chem. Soc.1953,75(17):4205-4213
    [137]R. Hultgren, P. D. Desai, D. T. Hawkins. Selected values of the thermodynamics properties of binary alloys. Ohio:American Society for Metals,1973
    [138]T.B. Massalski. Binary Alloys Phase Diagrams,2nd edn. Ohio:Materials Park,1990
    [139]A. M. Martinez, B. Borresen, G. M. Haarberg, Y. Castrillejo, R. Tunold. Electrodeposition of magnesium from the eutectic LiCl-KCl melt. J. Appl. Electrochem.2004,34(12):1271-1278
    [140]Y. Castrillejo, A.M.Martinez, R. Pardo, G. M. Haarberg. Electrochemical behaviour of magnesium ions in the equimolar CaCl2-NaCl mixture at 550℃. Electrochim. Acta.1997, 42(12):1869-1876
    [141]A. Kisza, J. Kazmierczak, B. Borresen, G. M. Haarberg, R. Tunold. Kinetics and mechanism of the magnesium electrode reaction in molten magnesium chloride. J. Appl. Electrochem.1995,25(10):940-946
    [142]M. Shen, B. Li, S. Li, J. Yu. Electrochemical removal of impurity AlCl3 existing in LiCl-KCl melts. Metall. Mater. Trans. A.2012,43(5):1662-1669
    [143]B. Li, M. Shen, J. Lou, J. Yu. Electrochemical removal of impurity Mg from LiCl-KCl. TMS (The Minerals, Metals& Materials Society 2011). EDP congress, USA.2011,621-628
    [144]Y. D. Yan, M.L.Zhang, Y. Xue, W.Han, D.X.Cao, X. Y. Jing, L.Y.He, Y. Yuan. Electrochemical formation of Mg-Li-Ca alloys by codeposition of Mg, Li and Ca from LiCl-KCl-MgCl2-CaCl2 melts. Phys. Chem. Chem. Phys.2009,11(29):6148-6155
    [145]M. Kostoglou, N. Andritsos, A. J. Karabelas. Flow of supersaturated solutions in pipes, modeling bulk precipitation and scale formation. Chem. Eng. Commun.1995,133(1): 107-131
    [146]M. Lunden, O. Stenberg, B. Andersson. Evaluation of a method for measuring mixing time using numerical simulation and experimental data. Chem. Eng. Commun.1995,139(1): 115-136
    [147]S. Schmalzriedt, M. Reuss. Application of computational fluid dynamics to simulations of mixing and biotechnical conversion processes in stirred tank bioreactors. Proceedings of 9th Europe Conference on Mixing. Paris:GFGP Nancy,1997,171-178
    [148]Z. Jaworski, J. Dudczak. CFD modeling of turbulent macro mixing in stirred tanks 2 Effect of the probe size and number on mixing indices. Computers Chem. Eng.998,22: 293-298
    [149]毛德明.多层桨搅拌釜内流动与混合基础研究.博士学位论文.浙江大学,1998
    [150]周国忠,王英琛.用CFD研究搅拌槽内的混合过程.化工学报.2003,54(7):886-890
    [151]L. Dong, S. T. Johansen, T. A. Engh. Flow induced by an impeller in an unbaffled tank-Ⅱ. Numerical modeling. Chem. Eng. Sci.1994,49(20):3511-3518
    [152]A. Chernobrovkin, B. Lakshminarayana. Experimental and numerical study of unsteady viscous, flow due to rotor-stator interaction in turbines.Part 1:simulation, integrated flow field and interpretation.34th American Institute of Aeronautics and Astronautics Fluid Dynamics Conference and Exhibit,1998,3596-3613
    [153]L. Oshinowo, Z. Jaworski, K. N. Dyster, E. Marshall, A. Nienow. Predicting the tangential velocity field in stirred tanks using the multiple reference frame (MRF) model with validation by LDA measurements. Proceedings of 10th Europe Conference on Mixing. Paris: GFGP Nancy,2000,212-218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700