低品位锌矿堆浸—萃取—电积工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌具有广泛用途,锌表现出良好的市场需求和市场价格,我国锌冶金发展迅速。但由于锌冶金资源有限,导致锌冶金原料供应紧张。为保持锌冶金持续健康发展,必须开发利用各种锌原料,特别是丰富的低品位锌矿资源。
     低品位的锌矿资源的冶金方法比较多,但能经济、高效利用低品位锌资源的方法没有。要开发低品位锌矿的冶金新技术,才能实现低品位锌矿充分利用。
     我们对现有的锌冶金工艺进行对比分析后确定低品位锌矿的冶金工艺是堆浸→氧化中和除铁→萃取→反萃→有机相脱除→电积。
     在该工艺的研究中,创新地将堆浸法浸出低品位氧化锌矿、细菌浸出时采用混合细菌浸出、浸出液萃取前采用氧化中和除铁、中和净化液使用单一的P204萃取、萃取过程不进行中和游离酸(或不进行有机相的皂化处理)、反萃采用锌电积废液直接反萃和反萃液中的有机相用活性炭进行脱除等应用到低品位锌矿的提取冶金中。这些方法的应用,使低品位锌矿的冶金过程消耗降低,成本减少,形成了低品位锌矿的新的冶金工艺。
     低品位硫化锌矿使用就地采集培养的细菌,其能有效浸出硫化锌矿中的锌。细菌搅拌浸出、细菌柱浸和不同规模的堆浸结果表明,在细菌接种量10~20%,多次接种,浸出的pH=1.5~2.0,锌的年细菌浸出率大于80%。对细菌浸出过程规律的研究认为硫化锌矿中锌的浸出是细菌直接作用的结果,浸出过程中Fe~(3+)作用不十分明显。
     低品位氧化锌矿中锌浸出性能好,采用堆浸工艺是可行的。堆浸周期在6个月以上,锌的堆浸浸出率大于90%。
     低品位锌矿的浸出液不能直接萃取锌,直接萃取时铁被萃取,使萃取剂再生工艺复杂,并产出大量的用途不大的废酸。合适工艺是氧化中和除铁后再萃取。用理论量的1.2倍工业二氧化锰、室温、2~3h和加石灰石作中和剂中和至终点的pH=5.1~5.3条件下就可使铁脱除率大于99%,溶液中铁的浓度在2mg/l以下。除铁过程中锌的损失率小于2.5%。
     除铁后液采用单一的P204进行萃取,合适的萃取有机相组成40%P204+60%煤油,萃取过程不中和产生的游离酸,也不对有机相进行皂化处理。萃取条件为室温、萃取级数为5~10级,混合时间5min,相比(A/O)为1~1.5:1,萃取终点pH=1.0左右,对于10~15g/l的溶液而言,锌的萃取率可达85~88%。萃取过程中萃取级数增加和有机相的增加(相比O/A增加)并不能明显增大锌的萃取率,提高萃取温度有利锌的萃取。
     萃取过程中,除铁以外的其它杂质基本上不被萃取,仅少量Co、Ni等的萃取也不影响锌的电积过程,并在电积中开路除去。
     锌的负载有机相可直接使用电积废液进行反萃。反萃级数3~5级,相比(A/O)为3~3.5:1,混合时间5min,用电积锌的废电积液(含硫酸135~150g/l)就能将97~99%的锌反萃下来,反萃后有机相含锌0.3g/l左右,杂质除铁外在有机相中没有富集,而进入反萃液中;负载有机相含锌>12g/l时,反萃液中锌离子浓度增加大于40g/l,反萃液中的锌离子浓度为88~95g/l,游离酸70~75g/l。
     有机相与水相容易分离,分离澄清速度快。有机相中P204大于40%时容易产生乳化现象。有机相在溶液中溶解度随温度的升高而升高,随酸度的升高而降低。
     反萃液中溶解的有机相明显影响电积过程,造成阴极烧板,表面变黑,析出锌以粉末状形态存在,阴极表面不致密,阴极电积周期明显降低(低于14h),使锌电积过程最终不能正常进行。反萃液中有机相可采用活性炭吸附就完全消除有机相对电积的影响。+40目的活性炭的用量为40~80g/l时,基本消除有机相对锌电积的影响。
     脱除有机相后的反萃液与废电积液混合后进行电积可以获得1#以上的阴极锌。电积过程同极间距70mm,电积阴极电流密度500A/m~2,牛胶加入量20mg/l左右时,电积周期24h,电积温度40℃时,电积的电流效率在89~92%,锌电积直流电耗3000度/吨锌左右。
     本论文主要创新点为:研究形成低品位锌矿全湿法的提取冶金工艺。低品位锌矿浸出过程采用硫酸堆浸工艺,浸出硫酸盐溶液采用氧化中和除铁,除铁后的硫酸盐溶液采用单一的P204萃取技术,萃取过程没有进行中和游离酸,反萃采用锌电积废液直接反萃,有机相采用活性炭进行脱除。
Zinc and its compounds have wide-ranging usage because of their better physical and chemical properties, which leads to the rapid development of zinc metallurgy and gets favorable market ability and quotation. However, zinc metallurgy. has an inadequate supply for the lack of reserves. It is necessary to exploit all sorts of zinc reserves, especially resourceful low-grade zinc minerals to keep the sustaining and healthy development of zinc metallurgy. There have been many processes for extracting low grade zinc mineral reserves. Due to lack of methods which make these reserves be used economically and effectively at home, it is very important to develop new metallurgy techniques for these reserves and provide technical support of developing zinc metallurgy continually.
     The existing zinc metallurgy processes is comparative analysis, good process elicited to extract zinc from the low-grade zinc reserves is determined, which contains heap leaching→iron removal by oxidization and neutralization→solvent extraction→reverse-solvent-extraction→organic phase removal→electrolytic deposit in sequence.
     In this research, zinc can be leached availably from the low-grade zinc minerals by heap leaching and mixed bacteria leaching. Iron is removed from leaching liquor by oxidation and neutralization before extraction. The liquor after iron removed is extracted by single P204.During the extraction, free acid will not be neutralized and organic phase will not be saponification. Zinc electrodeposition scrap is reverse-extracted directly and organic phase is removed by activated carbon. With application of these new methods, consumption and cost reduce and new metallurgy technology of the low-grade zinc minerals is obtained.
     Zinc can be leached availably from the low-grade zinc by bacteria that have been gathered and cultured in situ. The results of bacteria agitation leaching, column leaching and heap leaching on different scales shows that bacterial leaching rate is more than 80% when the inoculums size of bacteria is 10~20%, inoculation many times and the leaching pH is 1.5~2.0.The investigation of the bacteria leaching process shows that zinc leaching from zinc sulphide ore is direct effect of bacteria and the effect of Fe~(3+) is not obvious.
     The low-grade zinc oxidized ore can be leached effectively by method of heap leaching. When the period of heap leaching is more than six months, the zinc leaching rate can be over 90%.
     Zinc cannot extract directly from the leaching liquor of low-grade zinc minerals. Iron will be extracted with direct extraction, resulting in the complicated regeneration technology of extractant and mass-produced waste acid. The appropriate process is that zinc is extracted when the leaching liquor oxidized and iron removed. In this process, the removal rate of iron is above 99% and the iron concentration in the liquor under 2mg/L under the condition: 1.2 times of the stoichiometric amounts of MnO_2 added, room temperature, 2~3 hours reaction time, limestone used for neutralize reagent added and the terminus pH of neutralization 5.1~5.3.The loss rate of zinc in this process is under2.5%.
     The liquor after iron removed is extracted by single P204.The appropriate extracting organic phase composition is 40% P204 and 60% kerosene. During the extraction, the free acid will not be neutralized and organic phase will not be saponification. The extraction rate of zinc is up to 85~88% for 10~15g/L zinc in liquor under the extracting condition: room temperature, 5~10 extraction stages, 5 minutes mixture time, 1~1.5:1 phase ratio A/O, and terminus pH about 1.0.The extracting rate of zinc is not increased obviously with the increasement of extracting stage and organic phase (with phase ratio O/A increasement), and it is enhanced the zinc extraction as the extraction temperature increases.
     In the extracting process, all impurity except iron cannot be extracted. A few extractions of Co and Ni have no effect on electrolytic deposit process of zinc and can be removed in the electrolytic refining.
     Zinc with laden organic phase can be reverse-extracted using electrolyte scrap directly. The results indicated 97~99% zinc can be reverse-extracted by electrodeposition waste solution which contains sulfuric acid 135~150g/l under the condition: 3~5 reverse-extraction stages, 3~3.5:1 phase ratio (A/O) and 5minutes mixture time. The organic phase after reverse-extracted contains about 0.3g/l zinc ion, the impurities except iron do not rich in organic phase and come into reverse-extracting liquor. The concentration of zinc ion in the liquor will increase by over 40g/l, up to 88~95g/l and the concentration of free acid will be up to 70~75g/l when zinc concentration in the laden organic phase is over 12g/l.
     Organic phase can be separated easily from aqueous phase, which separate and defecate rapidly. Emulsification occurs easily when P204 concentration in the organic phase is over 40%. Solubility of organic phase in the liquor increases with the increasement of temperature, and reduces with the increasement of acidity.
     Organic phase dissolved in the reverse-extracting liquor has an obvious effect on electrodeposition process, which results in cathode burned and surface blacked, zinc precipitated in the form of a powdery state, the leaky cathode surface, the electrodeposition cycle of cathode reduced obviously less than 14 hours, and zinc electrodeposition process not operated normally in the ultimate. The effect of organic phase in reverse-extracting liquor on electrodeposition can be avoided completely with the adsorbing of activated carbon. There is basically no effect of organic phase on zinc electrodeposition process with activated carbon of 40~80 g/l dosage and a size distribution of +40 meshes.
     Reverse-extracting liquor removed organic phase mixing with electrodeposition scrap can product 1# cathode zinc. The following electrolytic condition is elicited from the experiments: 70mm homopolar distance, 500A/m~2 cathode current density, about 20mg/l isinglass dosage, 24 hours electrodeposition cycle, temperature 40℃, the electrical current efficiency is 89~92%, and consumption of direct current is about 3000 degrees per ton zinc.
     The main innovation point of this paper is that the wholly hydrometallurgy process of low-grade zinc minerals is investigated. The sulfuric acid heap leaching technique is used in low-grade zinc minerals leaching process. Iron is removed from leaching sulphate liquor by oxidation and neutralization. The sulphate liquor removed iron is extracted by single P204.Free acid is not neutralized in the extraction process. Zinc electrodeposition scrap is reverse-extracted directly. Organic phase is removed by activated carbon.
引文
[1] 《化工百科全书》编辑委员会化学工业出版社《化工百科全书》编辑部编.化工百科全书,第18卷.北京,化学工业出版社.1998年9月:1~27
    [2] 《无机化学丛书》编委会.无机化学丛书,第六卷.北京,科学出版社.1995年12月:671~755
    [3] 徐采栋 林蓉 汪大成.锌冶金物理化学.上海,上海科学技术出版社.1973年:203~354
    [4] 黄佩丽 田荷珍 编著.基础元素化学.北京,北京师范大学出版社.1994年9月:335~344
    [5] 蔡少华 黄坤耀 张玉蓉 编著.元素元机化学.广州,中山大学出版让.1998年4月:193~215
    [6] 李振寰 编.元素性质数据手册.广州,河北人民出版让.1985年7月:30
    [7] 山口正治 马越佑吉 著.丁树深 译.金属间化合物.北京,科学出版社出版.1991年12月:46~67
    [8] R. C. Weast(ed.). CRC Handbook Of Chemistry and Phyaies, 66th Ed. CRC Press. 1985
    [9] J. C. Bailer Jr. (ed.). Comprehensive Inorganic Chemistry, vol Ⅲ. Pergamon. 1973: 191~253
    [10] H. Watarai H. Preiser. J. Am. Chem. Soc. 1953(105(2)): 189~192
    [11] M. W. Witman J. H. Weber. Inorg. Chem. 1976(15(12)): 2375~2375
    [12] Shoji Harada Yozo Uchida Michinori Hirashi. Inorg. Chem. 1978(17(12)): 3371~3374
    [13] 徐采栋 林蓉 汪大成,编著.锌冶金物理化学.上海,上海科学技术出版.1979年7月:9~66
    [14] P. Basolo R. C. Johnson. Coordination Chemistry. W. A. Benjamin Inc., Menlo Park, California. 1976: 158~264
    [15] 梁述尧 编著.化学知识丛书,第十五卷,元素机化台物.北京,科学出版社出版.1989年10月:315~320
    [16] [苏]耶马科夫库兹涅佐H.B.扎察罗夫著.高 滋 郑绳安 李承瑞 刘旦初 译.高滋校.负载络合物的催化作用.昌平,烃加工出版社出版.1989年9月:71~73
    [17] 水口山矿务局编.冶金生产技术丛书,竖罐炼锌.北京,冶金工业出版社.1977年1月:1~3
    [18] 东北工学院有色重金属冶炼教研室等 编著.锌冶金.北京,冶金工业出版社.1978年11月:1~14
    [19] S. W. K. Morgan. Zinc and Its Alloys. MacDonald&Evans Ltd. Eatover, Plymouth. 1977: 4~183
    [20] F. Lander. Zinc-Silver Oxide Batteries. John Wiley&Sons Inc. N. Y.. 1971: 7~28
    [21] D. W. Christianson W. N. Lipscomb. Acc. Chefs. Res.. 1989(22): 62
    [22] Marshall. Semiconductor Crystal Manufacture. Noyes Development Corp. New Jersey. 1969: 220-257
    [23] Z. M. Jarzebski. Oxide Semiconductors. Pergamon Press. Oxford. 1973: 228~242
    [24] 《化工出版社》编写.中国化工产品大全,上卷.北京,化工出版社.1994年7月:65~66,75,174,273~274,249~250,319~320,331~332,543,548,688~689
    [25] 《化工出版社》编写.中国化工产品大全,下卷.北京,化工出版社.1994年7月:260,270~272,386~387
    [26] 化学工业出版社总之编写.化工生产流程图解,第三版,上册.北京,化学工业出版社.1997年12月:224
    [27] 钟昀 章伟光 张启交 等.锌二硫代氨基甲酸配合物的合成、晶体结构及其热稳定性研究.化学学报.2003(11):1828~1833
    [28] 俞志明 主编.中国化工商品大全.北京,中国物资出版社.1996年3月:3513~3514.
    [29] Yuval Samuni Deborah Coffin Anne Marie DeLuca William G. DeGraff ect.. The Use of Zn-Desferrioxamine for Radioprotection in Mice, Tissue Culture, and Isolated DNA. Cancer Research(J). 1999(59)(January 15): 405-409
    [30] Matsubara J. Shida T. Ishioka K. ect. Protective effect of zinc against lethality in irradiated mice. Environ. Res.(J). 1986(41): 558-567
    [31] 黄佩丽 田荷珍 编著.基础元素化学.北京,北京师范大学出版社.1994年9月:346~347
    [32] 戴自希 张家睿.世界铅锌资源和开发利用现状.世界有色金属(J).2004(3):22~29
    [33] 戴自希.世界铅锌资源的分布、类型和勘查准则.世界有色金属(J).2005(3):15~23,6
    [34] 葛振华.我国铅锌资源现状及未来的供应形势.世界有色金属(J).2003(9):4~7
    [35] 潭铁军 肖功明.中国铅锌原料供应战略探讨.世界有色金属(J).2000(7):14~16
    [36] 陈志宇 唐志亚 刘梦岐.我国铅锌工业竞争能力分析.世界有色金属(J).2002(12):10~12
    [37] 陈志宇.我国铅锌资源状况及市场形势分析.世界有色金属(J).2002(10):7~10,37
    [38] 马永刚.铅锌精矿短缺制约我国铅锌工业长足发展.世界有色金属(J).2002(2):14~15,9
    [39] 王恭敏.解决我国有色金属资源严重短缺的对策.世界有色金属(J).2004(5):4~8
    [40] 佟丽中.2001年铅锌市场走势分析及2002年形势的展望.世界有色金属(J).2002(6):18~21
    [41] 冯君从.需求无转机,价格难走出低谷—2002年锌市场半年评.世界有色金属(J).2002(10):11~17,21
    [42] 冯君从.寒意未除,回暖有限—2003年锌市场展望.世界有色金属(J).2003(3):30~35
    [43] 史丽丽 编译.2003 年锌形势回顾.世界有色金属(J).2004(5):32~33
    [44] 冯君从.锌市场最低迷的时期已经过去[J].中国金属通报.2004(46):13~15
    [45] 黄仲权.我国铅锌工业发展的现状与对策建议.世界有色金属(J).2004(8):4~6,63
    [46] 傅朝仁.汉魏南北朝时期的冶铜及铜合垒技术,科技史文集(第九 辑).上海,上海科技出版社.1982年:48~61
    [47] 凌永乐.化学元素的发现.上海,上海科学技术出版社.1981年:38~43
    [48] 中国科学院贵阳地球化学研究所.简明地球化学手册.北京.科学出版社.1977年:1~35
    [49] [苏]特立丰诺夫特立丰诺夫,著.崔浣华凌永乐译.化学元素发现简史.北京,科学文献工出版社出版.1986年1月:38~39
    [50] 徐采栋 林蓉 汪大成 编著.锌冶金物理化学.上海,上海科学技术出版.1979年7月:397~474
    [51] 《重有色金属冶炼设计手册》编委会.重有色金属冶炼设计手册.铅锌铋卷.北京,冶金工业出版社.1996年5月:223~642
    [52] 余继燮 主编.重金属冶金学.北京,冶金工业出版社.1981年9月:211~314
    [53] 罗斯库托夫 著.曾广冼 刘宗志 译.刘宗志校.铅锌冶金学.北京,冶金工业出版社.1960年4月:209~314
    [54] 赵天从 主编.重金属冶金学,下册.北京,冶金工业出版社.1981年12月:116~239
    [55] H.Y.索恩、D.B.乔治、A.D.曾凯尔 等编.包晓波 邓文基 等译.黄其兴校.硫化矿冶金的进展.北京,冶金工业出版社.1991年9月:1~32
    [56] 水口山矿务局 编.冶金生产技术丛书,竖罐炼锌.北京,冶金工业出版社.1977年1月:7~9
    [57] 刘特明.电炉炼锌工艺实践与探讨有色冶炼.有色金属(冶炼部分)(J).1998(5):11~15
    [58] Veltman. Sherritt Gordon's Pressure Leaching Technology-It's Industrial Application. Hydrometallurgy(J). 1981: 1~20
    [59] B H Johnston. The Application of Sherritt Zinc Pressure Leach Technology At the Kidd Greek Zinc Plant[C]. The 13th Hydrometallurgy Annual Meeting. Canada, Mar.. 1983: 321~327
    [60] MJ Collins. Starting up the Sherritt Zinc Pressure Leach Process at Hudson Bay. JOM(J). 1994(4): 51~57
    [61] Nathalie Leclerc Eric Meux. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy(J). 2003(70(1-3)): 175~183
    [62] Chen H-K. Yang C-Y.. A study on the preparation of zinc ferrite. Scandinavan journal of metallurgy(J). 2001(30(4)): 235~241
    [63] Baldwin Susan A. Demopoulos George P. Papangelakis Vladimiros G. Mathematical modeling of the zinc pressure leach process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science(J). 1995(26(5)): 1035~1047
    [64] Owusu George Dreisinger David B. Peters Ernest. Interfacial effects of surface-active agents under zinc pressure leach conditions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science(J). 1995(26(1)): 5~12
    [65] 夏光祥 方兆珩.高铁硫化锌精矿直接浸出新工艺研究.有色金属:冶炼部分(J).2001(3):8~10
    [66] 王吉坤 周廷熙 吴锦梅.高铁闪锌矿精矿加压浸出半工业试验研究.中国工程科学(J).2005(1):60~64
    [67] 董英.高铁硫化锌精矿冶炼工艺探讨.云南冶金(J).2000(8):26~30
    [68] 石绍渊 张广积.硫化锌矿的生物浸出.国外金属矿选矿(J).2002(2):12-19
    [69] 贺治国 胡岳华 胡维新 徐竞.细菌浸出硫化矿物技术的现状和进展.矿产保护与利用(J).2002(5):41~45
    [70] 裘荣庆.微生物冶金的应用和研究现状.有色金属(冶炼部分)(J).1994(1):23~26
    [71] ArpadE.Torma刘继先.矿物的生物法处理.新疆有色金属(J).1994(2):31~35
    [72] 何良惠.深度粉碎的闪锌矿和闪锌矿—黄铁矿混合物的矿物特性及细菌浸出.四川有色金属(J).1995(1):12~14
    [73] 李值.细菌浸出及其应用.环境保护(J).1996(1):19~24
    [74] A.D.贝雷G.S.汉斯福德 魏以和.高浓度下硫化矿生物氧化的影响因素综述.国外金属矿选矿.1996(1):9~13
    [75] 李定芝.生物技术在矿物选冶中的应用.采矿技术(J).1996(20):
    [76] 杨大锦 廖元双 徐亚飞 等.锌冶金工艺概述.云南冶金(J).2002(6):22~26
    [77] 邱定蕃 著.矿浆电解.北京,冶金工业出版社.1999年1月:148~162
    [78] 杨显万 张英杰 著.矿浆电解原理.北京,冶金工业出版社.2000年5月:1~10
    [79] 王玉芳 蒋开喜 王海北.高铁闪锌矿低温低压浸出新工艺研究.有色金属:冶炼部分(J).2004(4):4~6
    [80] 林春绵 计伟荣.硫化锌矿常压氧化浸出过程的研究.浙江工业大学学报(J).1995(2):100~105
    [81] 王兴尧 康晓红 谢慧琴 卢立柱.FeCl_3—HCl—C_2Cl_4体系浸出硫化锌矿的动力学研究.化学反应工程与工艺(J).2003(2):113~119
    [82] 彭金辉 刘纯鹏.微波场中FeCl_3溶液浸出闪锌矿动力学.中国有色金属学报(J).1992(1):46~49
    [83] 尹朝晖 阳海燕.软锰矿与硫铁矿直接浸出法在湿法炼锌中的应用研究.中国锰业(J).2000(1):33~35
    [84] 樊远鉴 李承华.硫化锌精矿和软锰矿同时浸出及Zn-MnO_2同槽电解的工业化问题.有色金属(冶炼部分)(J).1990(4):40~42,23
    [85] 王德全 姜澜.盐酸浸出硫化锌精矿工艺的研究.有色矿冶(J).1999(4):19~22
    [86] 周大利 金作美.二氯化铜浸出攀西闪锌矿研究.湿法冶金(J).1989(4):29-36
    [87] D. Tromans. Oxygen Solubility Modelling in Ammoniacal Leaching Solutions: Leaching of Sulphide Concentrates. Minerals Engineering(J). 2000(13(5)): 497~515
    [88] Rao K. S. Ray, H. S. New. look at characterisation and oxidative ammonia leaching behaviour of multimetal sulphides. Minerals Engineering(J). 1998(11): 1011~1024
    [89] Zhao Youcai R. Stanforth. Extraction of Zinc from Zinc Ferrites by Fusion with Caustic Soda. Minerals Engineering(J). 2000(13): 1417~1421
    [90] Xia D. K. Pickles C. A.. Kinetics of zinc ferrite leaching in caustic media in the deceleratory period. Minerals Engineering(J). 1999(12(6)): 693~700
    [91] M. N. Babu K. K. Sahu. Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates. Hydrometallurgy(J). 2002(64(2)): 119~129
    [92] Boon M. Theoretical and experimental methods in the modelling of bio-oxidation kinetics of sulphide minerals. Ph. D. thesis(1996). Technical University of Delft, Delft, The Netherlands.
    [93] J. A. Brierley and C. L. Brierley. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy(J). 2001(59(2-3)): 233-239
    [94] Lundgren D. G. and M. Silver. Ore leaching by bacteria. Annu. Rev... Microbiol(J). 1980(34): 263~283
    [95] 陶德宁.利用嗜温和嗜热菌株生物浸出复杂硫化铅.锌矿.铀矿冶(J).2004(4):204-204
    [96] 石绍渊 方兆珩. Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. 中国有色金属学会会刊(J). 2004(3): 569-575
    [97] Konishi Y. H. Kubo and S. Asai. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans. Biotechnol. Bioeng.(J). 1992(39): 66~74
    [98] Bartlet Robert W.. Metal extraction from ores by heap leaching. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science(J). 1997(28(4)): 529-545
    [99] B. Ulrich H. Andrade T. Gardner. Lessons learnt from heap leaching operations in South America-An update. Journal of the South African Institute of Mining & Metallurgy(J). 2003(103(1)): 23-28
    [100] S. Orr. Enhanced heap leaching-Part 1: insights. Mining Engineering(J). 2002(54(9)): 49~56
    [101] S. Orr V. Vesselinov. Enhanced heap leaching-Part 2: applications. Mining Engineering(J). 2002(54(10)): 33~38
    [102] Wan R. Y. Brierley J. A.. Thiosulfate leaching following biooxidation pretreatment for gold recovery from refractory carbonaceous-sulfidic ore. Mining Engineering(Littleton, Colorado)(J). 1997(49(8)): 76~80
    [103] 王凤琴.国内外氧化锌矿处理方法.有色矿冶(J).1994(1):31~35
    [104] M. K. Jha V. Kumar and R. J. Singh. Review of hydrometallurgical recovery of zinc from industrial wastes Resources. Conservation and Recycling(J). 2001(33(1)): 1~22
    [105] Habashi F. Future of extractive metallurgy. CIM Bulletin(J). 1999(92(1028)): 161~165
    [106] Seham Nagib and K. Inoue. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy(J). 2000(56(3)): 269~292
    [107] Asadi Zeydabadi B. Mowla, D. Shariat, M. H. ect.. Zinc recovery from blast furnace flue dust. Hydrometallurgy(J). 1997(47(1)): 113~125
    [108] 郭兴忠 阳海彬.氧化锌矿火法处理新工艺.铁浴熔融还原法.有色冶炼(J).2002(2):18~22
    [109] 郭兴忠 张丙怀 阳海彬 等.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程(J).2003(1):57~60
    [110] 韩昭炎.氧化锌矿生产氧化锌的实践.有色金属(冶炼部分)(J).1988(4):7~10
    [111] 陈世明 瞿开流.兰坪氧化锌矿石处理方法探讨.云南冶金(J).1998(5):31~35
    [112] 李时晨 朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金(县乡矿业版)(J).1992(4):13~15,21
    [113] Peek Edgar Van Weert Gustav. Volatilization of zinc from franklinite ore in a HCI/H_2O pyrohydrolytie atmosphere. Mineral Processing and Extractive Metallurgy Review(J). 1995(15(1-4)): 203-203
    [114] Szczygiel, Z. Escobedo S. Gonzalez G. ect.. A. Extracting zinc from oxidized minerals via an induction furnace. JOM(J). 1996(48(1)): 22~24
    [115] 刘三军 欧乐明 冯其明.氧化锌矿的碱法浸出研究.矿产保护与利用(J).2004(4):39~43
    [116] 姚耀春 王平.难选氧化锌矿氨浸的动力学研究.云南冶金(J).2001(30(3)):22~24
    [117] 陆凤英 魏庭贤.从低品位含锌瓦斯泥制备活必氧化锌的研究.浙江化工(J).1999(30(2)):47~48
    [118] 司马冰 何良惠.氨法分解低品位菱锌矿的研究.四川有色金属(J).1991(1):1~5
    [119] 刘晓丹 张元福 李谦.铵盐浸出氧化锌矿动力学的研究.贵州工业大学学报:自然科学版(J).2004(2):82~84,89
    [120] 李志华 薛怀生 姚耀春.兰坪难选氧化锌矿氨浸动力学.云南冶金(J).2003(32(4)):22~24
    [121] 张元福 梁杰.铵盐法处理氧化锌矿的研究.贵州工业大学学报:自然科学版(J).2002(31(1)):37~41
    [122] 王延忠 朱云 胡汉.从氨浸出液中萃取锌的试验研究.有色金属(J).2004(1):37~39
    [123] 张保平 唐谟堂.NH_4Cl—NH_3—H_2O体系浸出氧化锌矿.中南工业大学学报(J).2001(5):483~486
    [124] 姚耀春 朱云 王平.难选氧化锌矿氨浸的动力学研究.有色金属(J).2001(1):44~46
    [125] 朱云 胡汉 苏云生 等.难选氧化锌矿氨浸动力学.过程工程学报(J).2002(1):81~85
    [126] 张保平 唐谟堂 杨声海.氨法处理氧化锌矿制取电锌.中南工业大学学报(自然科学版)(J).2003(6):619~623
    [127] Kazinczy B. Kotai L. Gaes I. ect.. Study on ammoniacal leaching of zinc from sludges containing iron and zinc hydroxides. Hungarian Journal of Industrial Chemistry(J). 2000(28(3)): 207~210
    [125] Zhao Youcai and Robert Stanforth. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. Journal of Hazardous Materials(J). 2000(1-3): 223~240
    [129] Meseguer V. Lozano L. J. de Juan D. Tratamiento. Metallurgical treatment of Waelz oxides by alkaline leaching using ammonium carbonate. Revista de Metalurgia(Madrid)(J). 1997(33(2)): 101~112
    [130] 林祚彦 华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究.有色金属冶炼部分(J).2003(5):9~11,23
    [131] R. Raghavan and R. N. Upadhyay. Innovative hydrometallurgical processing technique for industrial zinc and manganese process residues. Hydrometallurgy(J). 1999(51(2)): 207~226
    [132] 范斌.矿石中锌的浓酸熟化浸出.湿法冶金(J).1999(3):60~62
    [133] 王含渊 张寅生.低度氧化锌制取一级品氧化锌工艺研究.有色金属(冶炼部分)(J).1995(2):3~6
    [134] 谢美求 陈志飞 冯剑 等.氧化锌矿湿法浸出提锌工艺研究.矿冶工程(J).2004(24(1)):67~69
    [135] 蓝卓越 胡岳华 黎维中.低品位氧化锌矿硫酸浸出工艺研究.矿冶工程(J).2002((3)):63~65
    [136] 周德林 窦明民 陈世明.高硅氧化锌矿全湿法冶炼工艺的研究、应用与发展.有色金属(冶炼部分).1995(3):1~6
    [137] 常发科.高硅型锌矿直接酸浸的试验研究.云南冶金(J).1995(1):36~38,35
    [138] 李军旗.湿法处理高硅氧化锌矿的工艺研究.湿法冶金(J).1996(4):17~19
    [139] 张显生 石明忠 许永红 等.高硅天然氧化锌矿浸出新工艺的研究.有色金属(冶炼部分)(J).2003(2):14~15
    [140] 黄可龙 唐爱东.氧化锌矿制备活性氧化锌的新工艺.矿产综合利用(J).1998(3):9-11
    [141] 张俊辉.浅谈氧化铅锌矿的浮选现状.四川有色金属 (J).2004(4):13~17,22
    [142] 刘进 张宗华 张红英 等.大厂矿山尾矿选锌试验研究.有色金属(选矿部分)(J).2004(3):40~43
    [143] 张麟.青海宏源氧化铅锌矿可选性试验研究.湖南有色金属(J).2004(20(1)):1~4
    [144] 喻连香.低品位铅锌矿选矿工艺的研究.广东有色金属学报(J).2003(13(1)):13~17
    [145] 张心平 邵广全.氧化铅锌矿石低温浮选工艺研究.矿冶(J).2003(12(1)):21~25,47
    [146] 刘志斌 朱从杰.某氧化锌矿石选矿工艺研究.有色金属(选矿部分)(J).2002(3):9~11
    [147] 鲁格诺夫 V.刘汉钊.氧化铅锌矿石选矿新工艺研究.国外金属矿选矿(J).2001(38(2)):25~28
    [148] 段秀梅 罗琳.氧化锌矿浮选研究现状评述.矿冶(J).2000(9(4)):47~51
    [149] Plescia Paolo Maccari Dante. Recovering metals from red mud by thermal treatment and magnetic separation. JOM(J). 1996(48(1)): 25~28
    [150] 黄云峰 周强.氧化锌矿石的重介质选矿实践.云南冶金(J).1997(4):14~16
    [151] 钟晨.从低品位铅锌矿制备氧化锌和红丹.无机盐工业(J).1997(5):6~8
    [152] 黄婕 唐基友.利用低品位含锌原料湿法制取氯化锌的研究.湖南化工(J).1995(25(1)):39~42
    [153] 钟晨.从低品位铅锌矿制备氧化锌和红丹.有色金属(冶炼部分)(J).1998(6):23-25,40
    [154] D. S. Baik D. J. Fray. Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte. Mineral Processing and Extractive Metallurgy(J). 2000(109(3)): 121~128
    [155] Masud A. Abdel-latif. Fundamentals of zinc recovery from metallurgical wastes in the Enviroplas process. Minerals Engineering(J). 2002(15(11-Supl)): 945~952
    [156] 李小康 许秀莲.低品位铜锌混合矿加压浸出研究.南方冶金学院学报(J).2004(25(4)):5~9
    [157] 范兴祥 彭金辉.超声波强化草酸浸出氧化锌精矿.有色金属(J).2003(55(1)):51~53
    [158] D. K. Xia and C. A.. Pickles Caustic roasting and leaching of electric arc furnace dust. Canadian Metallurgieal(J)(Quarterly). 1999(38(3)): 175~186
    [159] Y. Hua Z. Linand Z. Yan. Application of microwave irradiation to quick leach of zinc silicate ore. Minerals Engineering(J). 2002 (15(6)): 451~456
    [160] 兰兴华.锌溶剂萃取进展.世界有色金属(J).2004(8):28~31
    [161] 陈远望.氧化锌矿溶剂萃取—电积工艺实现工业化.世界有色金属(J).2003(9):66~69
    [162] P. M. Cole K. C. Sole. Solvent extraction in the primary and second processing of zinc. Journal of the South African Institute of Mining & Metallurgy(J). 2002(102(8)): 451-456
    [163] Peter M. Cole kathryn C.. Sole zinc solvent extraction in the process industries. Mineral processing and extractive metallurgy review(J). 2003(24(2)): 91-137
    [164] D. Martin G. Diaz M. A. Gareia. Extending zinc production possibilities through solvent extraction. Journal of the South African Institute of Mining & Metallurgy. 2002(102(8)): 463-467
    [165] George Owusu. Selective extraction of copper from acidic zinc sulfate leach solution using LIX 622. Hydrometallurgy(J). 1999(51(1))1~8
    [166] 李淑文.即将实施的锌矿山项目—成功的关键在于锌的溶剂萃取.有色冶炼(J).2003(4):4~7,30
    [167] 张祥富.高炉瓦斯灰(泥)中锌的萃取利用.环境工程(J).1999(5):48~49
    [168] C. K. Pani S. Swain. Bio-dissolution of zinc sulfide concentrate in 160 1 4-stage continuous bioreactor. Minerals Engineering(J). 2003(16(10)): 1019-1021
    [169] BioLEACHING: The Next Era in Refractory Mineral Processing. E & MJ(Engineering and Mining Journal)(J). 1999(MS:)ET-E7
    [170] K. Blight and D. E. Ralph. Microbes and hydrometallurgy. Chemistry in Australia(J). 1999(66(1-2)): 11~12
    [171] 徐家振 金哲男.重贵金属冶金中的微生物技术.有色矿冶(J).2002(1):
    [172] 张在海 王淀佐 邱冠周 等.细菌浸矿的细菌学原理.湿法冶金(J).2000(3):
    [173] 邱冠周 刘晓荣 胡岳华.萃取有机相对浸矿细菌的影响.中南工业大学学报(自然科学版)(J).2001(1):
    [174] 方兆珩.硫化矿细菌氧化浸出机理.黄金科学技术(J).2002(5):
    [175] 雷云 贾云芝.细菌浸出硫化锌矿氧化动力学研究进展.有色金属(J).1999,51(4):80-82,48
    [176] 柳建设 邱冠周 王淀佐.硫化矿物细菌浸出机理探讨.湿法冶金(J).1997(3):
    [177] 张英杰 杨显万.硫化矿细菌浸出机理.有色金属(J).1997(4):
    [178] 张英杰 杨显万.硫化矿生物浸出过程的热力学.贵金属(J).1998(3):
    [179] 罗廉明 王军 徐竞 等.提高细菌浸矿速度的方法研究.矿产保护与利用(J).1999(4):
    [180] 张在海 胡岳华 邱冠周 等.从细菌学角度探讨硫化矿物的细菌浸出.矿冶工程(J).2000(2):
    [181] 张在海 王淀佐 邱冠周 等.细菌浸矿的细菌学原理.湿法冶金(J).2000(3):16~21
    [182] 徐茗臻.影响细菌浸出率的因素研究.湿法冶金(J).2000(3):
    [183] 路殿坤 刘大星 蒋开喜 等.硫化矿物细菌氧化机理研究进展.有色金属(冶炼部分)(J).2001(1):
    [184] 李宏煦 王淀佐.生物冶金中的微生物及其作用.有色金属(J).2003(2):
    [185] 李宏煦 王淀佐 陈景河 等.细菌浸矿作用分析.有色金属(J).2003(3):
    [186] 李宏煦 王淀佐 陈景河.细菌浸矿的间接作用分析.有色金属(J).2003(4):
    [187] Crundwell, F. K.. Kinetics and mechanism of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solution. Hydrometallurgy(J). 1987(19): 227~242.
    [188] Boon, M., M. Snijder G. S. Hansford and J. J. Heijnen. The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans. Hydrometallurgy(J). 1998(48): 171~186.
    [189] Torres F. Blazquez M. L. Gonzalez F. Ballester A. Mier J. L.. Bioleaching of different sulfide concentrates using thermophilic bacteria. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science(J). 1995(26(3)): 455~465
    [190] S. N. GROUDEVM. SPASOVAa, V. I. GROUDEVAb and I. M. IVANOV. Heap Biooxidation-Bioleaching of a Refractory Gold-Bearing Ore. Mineral processing and extractive metallurgy review. 1999(19(1-4)): 227~234
    [191] Pistorio M. G. Curutehet E. Donati and P. Tedeseo. Direct zinc sulphide bioleaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Biotechnol. Lett.(J). 1994(16): 419~424
    [192] A. E. Torma C. C. Walden and R. M. R. Branion. Microbiological leaching of a zinc sulfide concentrate. Biotechnol. Bioeng.(J). 1970(12): 501~517
    [193] W. K. Choi A. E. Torma and R. W. Ohline ect. Electrochemical aspects of zinc sulphide leaching by Thiobacillus ferrooxidans. Hydrometallurgy(J). 1993(33): 137~152
    [194] 张在海 王淀佐 胡岳华 等.硫化矿细菌浸出的菌种选育研究进展.有色金属(选矿部分)(J).2001(5):
    [195] T. A. Fowler and F. K. Crundwell. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous, Ions. Applied & Environmental Microbiology(J). 1999(65(12)): 5285-5292
    [196] Crundwell F.K. . Effect of iron impurity in zinc sulphide concentrates on the rate of dissolution. Am. Inst. Chem. Eng. J.(J). 1988(34):1128-1134
    [197] Crundwell F. K... The kinetics of the chemiosmotic proton circuit of the iron-oxidising bacterium Thiobacillus ferrooxidans. Bioelectrochem. Bioenerg(J). 1997(43): 115-122.
    [198] G.Curutchet C. Pogliani E. Donati and P. Tedesco. . Effect of iron(III) and its hydrolysis products (jarosites) on Thiobacillus ferrooxidans growth and on bacterial leaching . Biotechnol. Lett(J). 1992(14):329-334.
    [199] K.Nyavor N. O. Egiebor and P. M. Fedorak. . The effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol(J). 1 996(45):688-691.
    [200] T.Sugio T. Katagiri M. Moriyama Y. L. Zhen K. Inagaki and T. Tano. . Existence of a new type of sulfite oxidase which utilizes ferric ion as an electron acceptor in Thiobacillus ferrooxidans. Appl. Environ. Microbiol(J). 1988(54): 153-157
    [201] Gomez C. Blazquez M. Ballester L.. A Influence of various factors in the bioleaching of a bulk concentrate with mesophilic microorganisms in the presen ce of Ag(I). Hydrometallurgy(J). 1997(45(3)):271-287
    [202] Lesia Harahuc Hector M. Lizama Isamu Suzuki. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores. Biotechnology and Bioengineering. 2000(69(2)): 196-203
    [203] K.A, Third R. CordRuwisch and H.R. Watling. The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy(J). 2000(57(3)):225--233
    [204] Lipika Patnaik R. N. Kar L. B. Sukla. Infuluence of pH on bioleaching of copper and zinc from complex sulphideconcentrate using thiobacillus ferrooxidans . Transactions of the Indian Institute of Metals(J). 2001(54(4)): 139~144
    [205] E. A. Abdel Aal. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy(J). 2000(55(3)): 247~254
    [206] 刘石秀.低品位矿石堆浸机理及絮状物成因的探讨.金属矿山(J).1999(4):52-55
    [207] 陈新民 主编.火法冶金过程物理化学.北京,冶金工业出版社.1983年3月:63~128
    [208] 陈家镛 于淑秋 伍志春 编著.湿法冶金中铁的分离与利用.北京,冶金工业出版社.1999年12月:
    [209] M. R. C. Ismael and J. M. R. Carvalho. Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Minerals Engineering(J). 2003(16(1)): 31~39
    [210] J. O. Claassen E. H. O. Meyer J. Rennie. Iron precipitation from zinc-rich solutions: Optimizing the Zincor Process. Journal of the South African Institute of Mining & Metallurgy(J). 2003(103(4)): 253~263
    [211] warnkar S. R. Gupta B. L. SekharanR. S Dhana. Iron control in zinc plant residue leach solution. Hydrometallurgy(J). 1996(42(1)): 21~26
    [212] G.M.里特瑟 A.W.阿什鲁布克著(加拿大).孙方玖 邓佐卿 张帆 王翊亭 译.张方玖校.溶剂萃取原理在冶金工艺中的应用,第二册.北京,原子能出版社出版.1985年4月:
    [213] Wensheng Zhang Pritam Singh and David Muir. Iron(Ⅱ) oxidation by SO_2/O_2 in acidic media: -Part Ⅰ. Kinetics and mechanism. Hydrometallurgy(J). 2000(55(3)): 229~245
    [214] P. A. Dutrizac J. E. Benguerel Houlachi E. G.. Recovery of iron from zinc sulphate-sulphuric acid processing solutions by solvent extraction or ion exchange Riveros, Mineral Processing and Extractive Metallurgy Review(J). 1998(18(2)): 105~145
    [215] Chu Yong Cheng. Purification of synthetic laterite leach solution by solvent extraction using D2EHPA. Hydrometallurgy(J). 2000(56(3)): 369~386
    [216] Berend Wassink David Dreisinger and Jane Howard. Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride andthiocyanate forms. Hydrometallurgy(J). 2000(57(3)): 235~252
    [217] Riveros P. A. Dutrizac J. E.. Regeneration of spent phosphoric acid leaching solutions by solvent extraction. Mineral Processing and Extractive Metallurgy Review(J). 1997(17(4)): 1~22
    [218] 邹兴 朱荣 许丹娘 等.低品位硫化锌矿生物浸出液中锌的富集和铁的去除.北京科技大学学报(J).2003(1):30~32
    [219] 王健安 主编.金属学与热处理,上册(C).北京,机械工业出版社.1979年6月:37~58
    [220] M. Regel A. M. Sastre J. Szymanowski. Recovery of zinc(Ⅱ) from HCI spent pickling solutions by solvent extraction. Environmental Science & Technology(J). 2001(35(3)): 630~635
    [221] Owusu George. Selective extractions of Zn and Cd from Zn-Cd-Co-Ni sulphate solution using di-2-ethylhexyl phosphoric acid extractant. Hydrometallurgy(J). 1998(47(2-3)): 205~215
    [222] Amer S. Figueiredo J. Luis M.. A Recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraction with di(-2-ethylhexyl)phos phoric acid. Hydrometallurgy(J). 1995 (37(3)): 323~337
    [223] Chaudhury G. Roy Sarma P. Bhaskar V. R. Sahoo P. K. Processing of zinc leach liquor in mixer-settler units using D2EHPA-a case study. Minerals & Metallurgical Processing(J). 1994(11(4)): 188~191
    [224] Devi N. B. Nathsarma K. C. Chakravortty V.. Extraction and separation of Mn(Ⅱ) and Zn(Ⅱ) from sulphate solutions by sodium salt of Cyanex 272. Hydrometallurgy(J). 1997(45(1-2)): 169~179
    [225] Francisco Jose Alguacil Susana Mart Inez. Solvent extraction of Zn(Ⅱ) by Cyanex 923 and its application to a solid-supported liquid membrane system. Journal of Chemical Technology and Biotechnology(J). 2001(76(3)): 298~302
    [226] 陈浩 朱云 胡汉.Zn-NH_3-H_2O体系中LIX54萃取锌.有色金属(J).2003(3):50~51
    [227] 张大力 卢立柱.硫代磷酸/伯胺N1923协同萃取锌和镉的机理.过程工程学报(J).2003(04):313~316
    [228] M. K. Jha Vinay Kumar; R. J. Singh. Solvent extraction of zinc from chloride solutions. Solvent Extraction and Ion Exchange(J). 2002(20(3)): 389~405
    [229] Kumar V. Bagchi D. Pandey B. D.. Separation of copper and zinc from complex sulphate solutions by using LIX84. Scandinavian Journal of Metallurgy(J). 1997(26(2)): 74~78
    [230] Francisco Jose Alguacil Susana Martinez Solvent Extraction Equilibrium of Zinc(Ⅱ) from Ammonium Chloride Medium byCYANEX 923 in Solvesso 100. Journal of Chemical Engineering of Japan(J). 2001(34(11)): 1439~1442
    [231] San Martin, Marta Bart Hans-Jorg. Recovery of zinc from pickling baths with amberlite LA-2. Influence of modifier on the extraction equilibrium. Chemical Engineering & Technology(J). 1994(17(6)): 397~400
    [232] 《化学工程手册》编辑委员会.化学工程手册,第14篇,萃取及浸出.北京,化学工业出版社.1985年8月:
    [233] J. Sun and T. J. O'Keefe. An evaluation of steel scrap as a reducing agent in the galvanic stripping of iron from D2EHPA. Minerals Engineering(J). 2002(15(3)): 177~185
    [234] 李春 李自强.刘小平等.溶剂萃取法从锌电积废液中分离钙镁的研究.有色金属(冶炼部分)(J).2000(6):20~22,30
    [235] F. Principe and G. P. Demopoulos. The solubility and stability of organophosphorie acid extraetants in H_2SO_4 and HCI media. Hydrometallurgy(J). 2003(68(1-3)): 115~124
    [236] Lin J. C. Tsai S. L.. Effect of chromate ion on zinc electrowinning from acid sulphate electrolyte. Journal of Applied Electrochemistry(J). 1994(24(10)): 1044~1051
    [237] Gonzalez-Dominguez J. A. Lew R. W. Evaluating additives and impurities in zinc electrowinning. JOM(J). 1995(47(1)):34-37
    [238] Duchenko O.V. Vereshchaka V.M.. Phase formation and reactionkinetics in Co-Zn diffusion couples . Journal of Alloys and Compound(J). 1 999(28 81): 64-1 69
    
    [239] 丁培墉等 编,物理化学,北京冶金工业出版社: 1979年7月:94~96
    
    [240] Ivo V. Mishonov Krzyszt Alejski. A Contributive Study on the Stripping of Zinc(II) from Loaded TBP Using an Ammonia/Ammonium Chloride Solution. Solvent Extraction and Ion Exchange(J). 2004(22(2)):219-241
    [241] Tripathy B.C. Das S.C. Hefter G.T. Singh P.. Zinc electrowinning from acidic sulfate solutions. Part I: Effects of sodium lauryl sulfate. Journal of Applied Electrochemistry(J). 1997(27(6)):673-678
    [242] Das S.C. Singh P. Hefter G.T.. Effects of 4-ethylpyridine and 2-cyanopyridine on zinc electrowinning from acidic sulfate solutions. Journal of Applied Electrochemistry(J). 1997(27(6)): 738-744
    [243] A. M. Alfantazi and D. B. Dreisinger. An investigation on the effects of orthophenylene diamine and sodium lignin sulfonate on zinc electrowinning from industrial electrolyte. Hydrometallurgy(J). 2003(69(1-3)):99-107
    [244] Yavor Stefanov and Ivan Ivanov. The influence of nickel ions and triethylbenzylammonium chloride on the electrowinning of zinc from sulphate electrolytes containing manganese ions. Hydrometallurgy(J). 2002(64(3)): 193-203
    [245] A.Y.Hosny. The Performance of Zinc Electrowinning Process in Presence of Surface Active Agent. Metall(J). 1996(50( 1)):50-53
    
    [246] B. C. Tripathy S. C. Das P. Singh G. T. Hefter V. N. Misra. Zinc electrowinning from acidic sulphate solutions Part IV: effects of perfluorocarboxylic acids . Journal of Electroanalytical Chemistry(J). 2004(565(1 )):49-56
    [247] M.BESTETTI U.DUCATI G.H.KELSALL. Use of catalytic anodes for zinc electrowinning at high current densitiesfrom purified electrolytes. Canadian Metallurgical(J)(Quarterly). 2001(40(4)): 451-458
    
    [248] Bouzek K. Borve K. Lorentsen O.A. Osmundsen K. Rousar I. Thonstad J. . Current distribution at the electrodes in zinc electrowinning cells. Journal of the Electrochemical Society(J). 1995(142(1)):64-69
    
    [249] A.M. Alfantazi D.B. Dreisinger. The role of zinc and sulfuric acid concentrations on zinc electrowinning from industrial sulfate based electrolyte. Journal of applied electrochemistry(J). 2001(31(6)):641-646
    
    [250] A.E. Saba and A.E. Elsherief. Continuous electrowinning of zinc. Hydrometallurgy(J). 2000(54(2-3)):91- 106
    
    
    [251] Raghavan R. Mohanan P.K. Verma S.K.. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process. Hydrometallurgy(J). 1999(51(2)): 187-206
    
    [252] M. Bestettiu. Ducati G. kelsall. Zinc electrowinning with gas diffusion anodes: state of the art and future developments. Canadian Metallurgical (Quarterly)(J). 2001(40 (4)):459-469
    
    [253] Ohgai Takeshi Fukushima Hisaaki Akiyama Tetsuya HiraiYutaka . Dissolution of electrodeposited zinc in electrowinning . Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan)(J). 1997(14(2)):24-39
    
    [254] Polymnia Galiatsatou Michail Metaxas. Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. Journal of Hazardous Materials(J). 2002(91(1-3)): 187-203
    
    [255] El-Nabarawy Th. Mostafa M.R. Youssef A.M.. Activated carbons tailored to remove different pollutants from gas streams and from solution. Adsorption Science and Technology(J). 1997(15(1)): 59~68
    [256] Salas-Morales Juan Carlos Evans J. W. Newman O. M. G. Adcock P. A.. Spouted bed electrowinning of zinc: Part Ⅰ. Laboratory-scale electrowinning experiments. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science(J). 1997(28(1)): 59~68
    [257] A. E. Elsherief A. E. Saba. Effects of some organic additives and certain impurities on zincelectrowinning. Transactions of the Indian Institute of Metals(J). 1996(49(6)): 769~779
    [258] S. C. Das. Evaluation of some organic additives for zinc electrowinning from sulphatesolution. Transactions of the Indian Institute of Metals(J). 1996(49(6)): 781~788
    [259] Muresan Liana Maurin G. Oniciu L. Avram Silvia. Effects of additives on zinc electrowinning from industrial waste products. Hydrometallurgy(J). 1996(40(3)): 335~342
    [260] 天津大学物理化学教研室编.物理化学,下册.北京,人民教育出版社.1979年5月:220~269
    [261] 胡英 陈学让 吴树森 编.物理化学,中册.北京,人民教育出版社.1979年4月:256~278
    [262] [美国]A.J巴德L.R.福纳 编著.谷林锳 吕鸣祥 宋诗哲等 译.谷林锳校.电化学方法原理及应用.北京,化学工业出版社.1986年10月:99~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700