典型硫化矿细菌浸出及腐蚀电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物冶金技术具有充分利用资源、成本低、投资少和基本无环境污染等优点。在国内外已经被广泛研究并应用于工业实践。本研究以四种硫化矿单矿物—黄铁矿、黄铜矿、磁黄铁矿、镍黄铁矿为研究对象,对硫化矿进行细菌浸出试验研究,运用碳糊电极对硫化矿细菌浸出过程的电化学机理进行了较为系统的研究。
     试验所用浸矿细菌HQ0211,是以氧化亚铁硫杆菌为主的混合菌。通过电镜观察可知,处于对数期的细菌菌体饱满,个体体积一致,形态比较均匀。处于稳定期的菌体弯曲,长短不一。处于衰亡期的细菌出现了多种形态,甚至畸形,有的菌体开始自溶。
     针对单矿物黄铁矿、黄铜矿、磁黄铁矿、镍黄铁矿,在无菌体系和有菌体系中进行浸出的基础研究。结果表明,在有菌体系中,硫化矿浸出率均比在无菌体系中明显提高。
     循环伏安法研究认为,黄铁矿、黄铜矿、磁黄铁矿、镍黄铁矿的阳极氧化分解过程均由多步反应组成。浸矿细菌的加入使阳极反应峰电流增加,表明有菌时,更易于硫化矿浸出,且对中间生成的元素硫有氧化作用。
     Tafel极化研究显示,在有菌体系中,硫化矿电极的腐蚀电位和腐蚀电流密度与在无菌酸性体系中相比均升高。腐蚀电位升高表明,在细菌作用下硫化矿发生化学反应的吉布斯自由能降低;腐蚀电流密度增大则表明在细菌作用下,硫化矿的腐蚀反应速度提高。
     通过交流阻抗法研究认为,有菌时,黄铁矿、黄铜矿、磁黄铁矿、镍黄铁矿阳极氧化过程为电化学反应与扩散混合控制。有菌体系中矿物表面膜层阻力较无菌体系中降低,说明加入细菌,可促进矿物阳极分解。
Bioleaching has some advantages of using resourcefully, low cost and little environmental pollution, so it has already been-researched widely and been applied to the industry domestic and abroad. Four kinds of sulfides single minerals-pyrite, chalcopyrite, pyrrhotite, pentlandite were studied. The bioleaching of sulfide minerals were studied by bioleaching bacteria, the elcetrochemistry mechanisms of suilfide mineral and anode behavior wes studied using carbon paste electrode in acid solution systematically.
     The experiment adopted HQ0211 bacteria, which was mostly made up of Thiobacillus ferrooxidans. The bacteria cells in the mid-log phase of growth were full, uniform and well-proportioned. At the same time, this period was the optimum time for inoculation. In the steady phase of growth the bacteria cells were curly and asymmetric. Then the bacteria cells were variform and misshapen in the dying phase, the thallis became autolyzing.
     To the pure mineral of pyrite, chalcopyrite, pyrrhotite, pentlandite, the bioleaching research was carried out in the absence of bacteria and in the presence of bacteria. The effect of various factors on leaching were investigated. The result indicated, the leaching rate of sulfide minerals in the presence of bacteria was higher than that in the absence of bacteria.
     The intermediate reactions of the anode process of pyrite, chalcopyrite, pyrrhotite, pentlandite, which are measured by CV test. When the bacteria in presence, company with the peak current and reversibility of reaction increasing, The bacteria has contribution to the oxidation of element sulfur formatted during the interniediate process.
     Tafel curve study showed that the addition of bacteria can make the corrosion potential and corrosion current of sulfide minerals decrease. The corrosion potential elevates indicated, the chemical reaction Gibbs of sulfide minerals in the presence of bacteria was reduced. The corrosion current elevates indicated, sulfide minerals'corrosion reaction rate enhancement was enhanced.
     The alternating impedance method showed that the anode behavior of pyrite,chalcopyrite, pyrrhotite, pentlandite was a mixed control process by electro-chemical reaction and charge diffusion. The polarized resistance of sulfide minerals in the presence of bacteria was reduced, it showed that the addition of bacteria can contribution to decomposition of anode.
引文
1.张冬艳,张通.细菌浸出黄铜矿过程中黄铁矿的影响行为[J],内蒙古工业大学学报,1997,16(1):16-21.
    2.陈世琯.生物浸出及其在有色冶金中的应用[J],上海有色金属,2000,21(3):137-146.
    3.邓敬石.中等嗜热菌强化镍黄铁矿浸出的研究[D],昆明:昆明理工大学,2002.
    4. 张在海,王淀佐,邱冠周,等.细菌浸矿的细菌学原理[J],湿法冶金,2000,19(3):16-21.
    5.徐茗臻.影响细菌浸出率的因素研究[J],湿法冶金,2000,19(3):32-34.
    6.李小燕,张卫民,谷士飞.微生物浸出技术在处理低品位原生硫化铜矿中的应用及研究进展[J],2005,25(2):61-64.
    7. Brierley J.A. Expanding role of microbiology inmetallurgical processes[J], Mining Engineering,2000,52(11):49.
    8.裴世红,张翔,王红心,等.湿法炼铜(生物菌浸出法)的近况及展望[J],当代化工,2003,32(3):166-168.
    9.何淑琴.堆浸提铜技术的发展与趋势[J],国外金属选矿,1998,(2):21-26.
    10.杨显万,郭玉霞.生物湿法冶金的回顾与展望[J],生物冶金,2002,(31):85-88.
    11.杨松荣,邱冠周,谢纪元,等.国外生物氧化提取技术的进展[J],有色金属,2001,53(3):84-87.
    12.刘汉钊,张永奎.微生物在矿物工程上应用的新进展[J],国外金属矿选矿,1999,(12):9-12.
    13.马德彪,张伟.国外湿法提铜状况[J],湿法冶金,1996,(3):59-61.
    14. Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy[J], Hydrometallurgy,2001,(59):233-239.
    15.陈顺方,钟文远.应用细菌浸出技术回收利用低品位铜矿资源[J],湿法冶金,1999,18(2):5-8.
    16.李宏煦,邱冠周,胡岳华,等.大宝山废铜矿细菌浸出铜的研究[J],矿产综合利用,2000,(5):31-33.
    17.郝丽芳,安莲英,殷辉安,等.用生物浸矿技术从杂卤石矿中提取钾的可行性分析 [J],湿法冶金,2003,22(1):19-20.
    18.陶德宁,译.生物浸出和生物氧化技术在中国的研究与应用[J],湿法冶金,2003,22(1):56.
    19.杨红晓,周爱东,徐家振.生物浸出技术在铜工业中的应用[J],有色矿冶,2003,19(5):15-18.
    20.王玉棉,李军强.微生物浸矿的技术现状及展望[J],甘肃冶金,2004,26(1):36-39.
    21.方兆珩,柯家俊,李洪枚,等.生物浸出低品位镍铜硫化矿[J],有色金属(冶炼部分),2002,(4):2-6.
    22.温建康,阮仁满,孙雪南.金川低品位镍矿资源微生物浸出研究[J],矿冶,2002,11(1):55-58.
    23.杨显万,沈庆峰,郭玉霞编著.微生物湿法冶金[M],北京:冶金工业出版社,2003.
    24.奥尔松G.J.金属硫化矿物的生物氧化基本原理[J],国外金属矿选矿,2004:34-38.
    25.邹平,杨家明,周兴龙,等.嗜热嗜酸菌生物浸出低品位原生硫化铜矿[J],有色金属,2003,55(2):21-24.
    26.汪青梅,邱木清.微生物浸矿技术在处理低品位铜矿中的应用现状[J],湿法冶金,2005,24(1):5-8.
    27. Escoba B J, Jedlicki E,Vargas T. A method for evaluating the proportion of free and attached bacteria in the bioleaching of chalcopyrite with thiobacillus ferrooxidans[J], Hydrometallurgy,1996, (40):1-10.
    28. Poglazova M N, Mitskevich I N, Kuzhinovsky VA. A spectroflurimetric method for determination of total bacteria counts in environmental samples[J], Journal of microbiological methods,1996, (24):211-218.
    29. Femandez M G, Mustih C. Occurences at mineral-bacteria interface during oxidation of arseno pyrite by thiobacillus ferrooxidans[J], Biotechnology and Bioengineering,1995, (48):13-21.
    30. Jerez C A, Arrendondo RA. Sensitive immunological method to enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus ferrooxidans[J], Microbiology Letters,1991, (78):99-102.
    31.李宏煦,王淀佐,陈景河,等.细菌浸矿作用分析[J],有色金属,2003,55(3):68-71.
    32. Murr, L.E.&Berry, V.K. Direct observations of selective attachment of bacteria on lowGrade sulfide ores and other mineral surfaces[J], Hydrmetallurgy,1976, (2):11-24.
    33. McDonald, G.W. et al. Equilibria associated with cupric chloride leaching of chalcopyrite concentrate[J], Hydrometallurgy,1984, (13):25-35.
    34.金哲男,徐家振,符岩.细菌浸出技术处理低品位铜矿的应用现状和前景[J],有色矿冶.2000,16(1):24-26.
    35.尹升华,吴爱祥,苏永定.低品位矿石微生物浸出作用机理研究,矿冶,2006,15(2):23-27.
    36.张广积,方兆珩.生物氧化浸矿的发展和现状[J],黄金科学技术,2000,8(6):28-35.
    37.李宏煦,王淀佐,阮仁满.硫化矿细菌浸出过程的电化学及其研究进展[J],有色金属,2003,55(1):81-85.
    38. Pesic B, Oilver D J. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of thiobacillus ferrooxidans[J], Biotechnology and Bioengineering,1989, (33):428-437.
    39. Yunker S B, Rodovich J M. Enhancement of growth and ferrous iron oxidation rate of T. ferrooxidans by electrochemical reduction of ferric iron[J], Biotechnology and Bioengineering,1986, (28):1867-1888.
    40. Blake R C, Howard G T, McGinness S. Enhanced yields of iron-oxidizing bacteria by in situelectrochemical reduction of soluble iron in the growth medium[J], Appl Environ Microbiol,1994,(60):2704-2716.
    41.李宏煦,刘晓荣.黄铁矿和镍黄铁矿混合细菌浸出过程的原电池效应[J],有色金属,2002,54(4):47-54.
    42. Palencia, R.Y&Miller, J.D. The electrochemical bechavior of a semiconducting natural pyrite in the presence of bacteria[J], Metallurgical Transactions B,1991, (22B):774-782.
    43. Choi, W.K, Torma, A.E.etal. Electrochemical aspects of zinc sulphide leaching by Thiobacillus ferrooxidans [J], Hydrometallurgy,1993, (33):137-152.
    44. QIU Guan-zhou, LIU Jian-she&HU Yue-hua. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans. Trans. Nonferrous[J], Metal. Soc. China. International workshop on electrochemistry of flotation of sulfide mineral. (Honoring professor WANG Dian-zuofor his 50 years working at mineral processing),2000,10 (Special-Issue):23-25.
    45.王军.硫化矿细菌浸出的理论及工艺研究[D],长沙:中南工业大学,1999.
    46. Vigdergauz.V.E, ChanturiyaV.A. Methodes of electrochemical study of metal sulfides[J], Trans.Nonfenous Met.Soc, China.2000,10(Special Issue):30-39.
    47.杨洪英,杨立.细菌冶金学[M],化学工业出版社,2005.
    48.沈萍.微生物学[M],北京:高等教育出版社,2000.
    49.刘鲜林,张博义.透射电镜超薄切片法与负染法探讨[J],贵阳医学院学报,1999,24(2):205-206.
    50.许志华.铜工艺矿物学[J],广州有色金属学报,1999,9(1):1-8.
    51.李宏煦,王淀佐.硫化矿细菌浸出的半导体能带理论分析[J],有色金属,2004,56(3):36-48.
    52.潘兆橹.结晶学及矿物学[M],地质出版社,1994.
    53.李宏煦,苍大强,邱冠周,等.溶液电位及堆结构影响次生硫化铜矿生物堆浸的动力学[J],2006,37(6):1087-1093.
    54.张在海,王淀佐,邱冠周,等.细菌浸矿的细菌学原理[J],湿法冶金,2000,19(3):16-21.
    55.项拥军.氧化亚铁硫杆菌对黄铜矿的氧化作用[J],金属矿山,2000,292:24-26.
    56.舒荣波,阮仁满,温建康.黄铜矿生物浸出中钝化现象研究进展[J],稀有金属,2006,30(3):395-400.
    57.宋立军,孙昱,朱杰勇.云南某镍矿石工艺矿物特性及镍黄铁矿单矿物分选试验研究[J], 云南冶金,2003,32(1):15-19.
    58.蔡美芳,党志.实验室条件下磁黄铁矿的氧化机理[J],华南理工大学学报(自然科学版),2005,33(11):10-14.
    59.张英杰,杨显万.硫化矿生物浸出过程的热力学[J],贵金属.1998,19(3):26-29.
    60.王少芬.硫化矿发电浸出过程工艺及其基础理论研究[D],长沙:中南大学,2003.
    61.周兆群,马金清.碳糊电极的研制及其在食品铅测定中的应用[J],Journal of Qiqihar Medical College,2003,24 (1):92-93.
    62.藤嶋昭,相泽益男,井上徹著.电化学测试方法[M],北京:北京大学出版社,1995.
    63.查全性.电极过程动力学导论[M],北京:科学出版社,2002.
    64.朱松然.循环伏安法在铅酸蓄电池中的应用[J],蓄电池,2003(3):99-103.
    65.李荻.电化学原理[M],北京:北京航空航天大学出版社,1999.
    66.曹楚南,张鉴清.电化学阻抗导论[M],北京:科学出版社,2002.
    67.李宏煦.硫化矿细菌浸出过程的电化学机理及工艺研究[D],长沙:中南大学,2001.
    68.柳建设.硫化矿物生物提取及腐蚀电化学研究[D], 长沙:中南大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700