V-S-H_2O系E-pH图及V_2O_3溶解动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是一种重要的合金元素,具有许多优良性能,广泛应用于钢铁工业、化工、电池以及医药等领域。随着钒生产及应用领域的逐渐扩大,钒二次资源的开发以及钒污染日渐受到人们的关注。钒是一种多价态元素,能生成+2、+3、+4、+5氧化态化合物,其中+4、+5价钒具有较强的毒性。调查发现,钒的毒性除与总钒含量外,还与钒的化合特性和赋存形态有关。钒在水溶液中的赋存形态主要取决于溶液的pH值、电势E等,这些都可以很方便的在E-pH图上显示出来。此外,钒系E-pH图还可以用于分析湿法提钒工艺条件的选择,预测钒金属的腐蚀性能,指导含钒废水处理中离子交换树脂的选择。
     本论文在全面综述钒研究进展及电位-pH图应用的基础上,绘制了V-S-H20系以及升温条件下V-H2O系E-pH图,分析了其热力学性质。同时本文还探讨了钒二次资源中一种主要附存状态—三氧化二钒的溶解动力学行为。
     V-H2O以及V-S-H2O系的热力学分析采用较为权威的数据(其中涵盖了诸多物种的吉布斯自由能)。室温条件下(25℃)V(Ⅲ),V(Ⅳ)和V(Ⅴ)的活度-pH图及V-H2O和V-S-H2O系电位-pH图表明:在自然界水中,低浓度的钒主要以单核离子形式存在,而在污染较为严重的含钒水中则可能存在多核钒酸盐的稳定优势区;SO42-和HSO4-离子可以显著扩大V3+,VO2+以及VO2+离子的稳定区域,形成VSO4+,VOSO4(aq)和VO2SO4-,并且其优势区随着钒活度的减小而增加;随着硫活度的降低,SO42-和HSO4-离子对钒区域的影响减小甚至消失,可溶钒物种转变为固相。
     升温条件下V-H2O系E-pH图显示:在不同的活度(100,10-2,10-4和10-6)条件下,钒水系电位-pH图显示腐蚀区在整个酸度范围内随着可溶钒物种活度的减小而增加;25℃及150℃条件下,五氧化二钒消失的临界值分别为10-3.17和10-3.51。在不同温度(25,50,75,100,125,150℃;活度=1)条件下,钒水系E-pH图表明随着温度的提高钒氧化物稳定区增加,而钒的稳定区基本不受温度影响。在这种较低的温度条件下,钒表现出较好的抗腐蚀性能。钒的腐蚀-免蚀-钝化图(活度=10-6)则表明在低的电势条件下,钒将不会被腐蚀。钒的腐蚀区及钒的稳定性基本不受温度的影响。在这种条件下,钒的钝化/免蚀性能一般,可能是活度较低时五氧化二钒消失的缘故。
     同时,本文还研究了V2O3溶解动力学,探讨了搅拌转速、温度、氧气分压、硫酸浓度以及矿物粒度对其溶解速率的影响。研究表明:当搅拌转速大于800 r/min时,外扩散已不再成为限制步骤;V203溶解速率随着温度和氧气分压的增大以及粒度的减小显著增加,而酸浓度对其基本没有影响。V203溶解过程受表面化学反应控制,反应的活化能为43.68 kJ/mol。
Vanadium is an important alloying element that is used in the steel industry, chemical industry, battery and drug domain due to its excellent properties. With the ceaseless production and application of vanadium, increasing attention is being paid to the exploitation of vanadium secondary resources and vanadium contamination. Vanadium is a multiple valence element and exists in the+2,+3,+4 and+5 oxidation states in the nature, in which the+4 and +5 oxidation states possess a higher toxicity. It is found that the toxicity of vanadium compounds is not only affected by their total concent, but also affected by their combination properties and combined forms. The combined states in aqueous solution are mainly dependent on pH value and potential, which can represent in the Pourbaix diagrams (potential-pH) expediently. Meanwhile, the Pourbaix diagrams for V-H2O system can be used to analyze the extraction of vanadium by hydrometallurgy, predict the vanadium anticorrosive property, guide the selection of ion exchange resin in the effluent treatment.
     On the basis of describing the development in researching vanadium and application of Pourbaix diagrams, the potential-pH diagrams for the vanadium-water and vanadium-sulphur-water systems were depicted and the thermodynamical properties was analyzed. Meanwhile, this work studied the dissolution kinetic of vanadium trioxide, which is one of the main states in the vanadium-bearing secondary resources.
     The thermodynamics of vanadium are calculated from the most recent critically assessed reviews, which publish standard Gibbs energies of formation for the various species and phases considered. The Pourbaix diagrams for vanadium systems at 25℃show that:1) Vanadium mainly exists as mononuclear ions at low concentrations in nature waters and polyvanadates replace the mononuclear oxyanions as the preponderant species in more concentrated solutions.2) Comparison of the potential-pH diagrams for V-S-H2O with simple V-H2O system displays that SO42- and HSO4- ions obviously enlarge the regions of stability of V3+, VO2+ and VO2+ ions, forming VSO4+, VOSO4(aq) and VO2SO4-. The predominance areas for vanadium sulfates (VSO4+, VOSO4(aq), VO2SO4-) increase with the decrease on the vanadium activities.3) The activity-pH diagrams for each of the stable vanadium oxidation states indicate that an increase on the activity of sulfuric acid from 0.1 to 1.0 results in an increase on the predominance areas for vanadium sulfates and decrease on the stability areas for solid phases, such as V2O3, V2O4 and V2O5, etc.
     The Pourbaix diagrams for the V-H2O system at elevated temperature indicated that:1) The Pourbaix diagrams for vanadium with the activities of 100,10-2, 10-4 and 10-6 show that the corrosion area enlarges over the whole pH range with decreasing the soluble vanadium activity. Vanadium pentoxide (V2O5) disappears lower than the activity of 10-3.17 and 10-3.51 at 25℃and 150℃, respectively.2) The Pourbaix diagrams for the V-H2O system at 25-150℃with the activity of 100 indicate that the stability regions of vanadium oxides extend with the elevation of the temperature and the vanadium stability region is independent of temperatures. Vanadium represents a good corrosion resistance with this activity at low temperature.3) The Corrosion-Immunity-Passivation diagrams (10-6 activity of all dissolved vanadium species) show that the vanadium will not be corroded at lower potential. The corrosion domain minishes slightly and the stability region of vanadium is hardly changed with rising the temperature. At this condition, the immunity/passivation performance of vanadium is infirm due to the dissolution of vanadium pentoxide (V2O5) at low activity.
     Simultaneously, the kinetics of dissolution of vanadium trioxide in sulphuric acid-oxygen media was presented. The various parameters considered in this work were stirring speed, concentration of sulphuric acid, temperature, partial pressures of oxygen and particle size. The results showed that the negative effect of boundary layers was eliminated when stirring speed exceeded 800 r/min. The dissolution rate of vanadium trioxide increased with temperature and partial pressures of oxygen, but decreased with increasing particle size. No effect of concentration of sulphuric acid was observed on the conversion. The dissolution kinetics was controlled by the chemical reaction at the surface with the estimated activation energy of 43.46 kJ/mol.
引文
[1]Jerzy Haber. Fifty years of my romance with vanadium oxide catalysts. Catalysis Today,2009,142:100-113.
    [2]Biswajit Mukherjee, Balaram Patra, Sushmita Mahapatra, et al. Vanadium-an element of atypical biological significance. Toxicology Letters,2004,150:135-143.
    [3]廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985.
    [4]黄道鑫.提钒炼钢.北京:冶金工业出版社,2000.1.
    [5]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册—稀有高熔点金
    属(下).北京:冶金工业出版社,1999.[6]林杰.钒及其化合物与中毒防治.北京:中国标准出版社,2000.
    [7]Gupta C.K., Krishnamurthy N. Extractive Metallurgy of Vanadium. Elsevier, Amsterdam,1992,689.
    [8]Clark R.J.H., Brown D. The chemistry of vanadium, niobium and tantalum, Pergamon Pr., Oxford,1975.
    [9]文友.钒的资源、应用、开发与展望.稀有金属与硬质合金1996,124:51-55.
    [10]谭若斌.国内外钒资源的开发利用.钒钛,1994,5:4-11.
    [11]齐小鸣.钒消费前景看好—国内外钒的资源、生产和市场预测.世界有色金属2008年第5期,38-41.
    [12]漆明鉴.从石煤中提钒现状及前景.湿法冶金,1999,(72):1-10.
    [13]USGS 2007 Minerals yearbook, Vanadium. U. S. Department of the Interior, U. S. Geological Survey, April 2009.
    [14]Raja B.V.R. Vanadium market in the world-Present status, price trends & future prospects. Steelworld, February,2007, Feature,19-22.
    [15]包申旭,张一敏,刘涛等.全球钒的生产、消费及市场分析.中国矿业,2009,18(7):12-15.
    [16]邵延海,冯其明,欧乐明等.从废催化剂氨浸渣中综合回收钒和钼的研究.稀有金属,2009,33(4):606-610.
    [17]胡建锋,朱云,胡汉.从废催化剂中综合提取钒和钼.稀有金属,2006,30(5):711-714.
    [18]徐碧琼,吴玉通.从废钒催化剂中回收钒资源的研究.华侨大学学报(自然科学版),1995,16(1):90-93.
    [19]陈兴龙,肖连生,徐勃等.从废石油催化剂中回收钒和钼的试验研究.矿治工程,2004,24(3):47-49.
    [20]刘焕群.国外废催化剂回收利用.中国资源综合利用,2000,12:35-37.
    [21]张良俭,严瑞璋.从废钒催化剂中提取V205的研究(Ⅱ).无机盐工业,1997,2:32-34.
    [22]蒋馥华,张萍,申照全.从废钒催化剂中回收V2O5.环境保护,1994,7:41.
    [23]盂宪红,李悦,李英.催化剂中金属的回收.化工环保,1996,4:199-201.
    [24]王新文,雷兆敏,段铭有等.从废钒催化剂中回收精制五氧化二钒的试验研究.硫酸工业,1998,2:47-51.
    [25]徐耀兵,骆仲泱,王勤辉等.石煤灰渣酸浸提钒工艺中钒的浸出动力学.过程工程学报,2010,10(1):60-64.
    [26]席歆,姚谦,胡克俊.国外含钒石油渣提钒生产技术现状.世界有色金属,2001,5:36-40。
    [27]Navarro R., Guzman J., Saucedo I., et al. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Management,2007,27: 425-438.
    [28]Amer A.M. Processing of Egyptian boiler-ash for extraction of vanadium and nickel. Waste Management,2002,22:515-520.
    [29]Mosskalyk R.R, Alfantazi A.M. Processing of vanadium:a review. Minerals Engineering,2003,16:793-805.
    [30]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展.湖南有色金属,2006,22(6):17-20.
    [31]田永淑,朱靖.石煤灰渣中提取五氧化二钒的新工艺.矿产综合利用,2006(6):22-24.
    [32]Thompson K.H., Lichter J., LeBel C., et al. Vanadium treatment of type 2 diabetes:A view to the future. Journal of Inorganic Biochemistry,2009,103:554-558.
    [33]Rehder Dieter. Biological and medicinal aspects of vanadium. Inorganic Chemistry Communications,2003,6:604-617.
    [34]Evangelou Angelos M. Vanadium in cancer treatment. Critical Reviews in Oncology/Hematology,2002,42:249-265.
    [35]Minelli L., Veschetti E., Giammanco S., et al. Vanadium in Italian waters:monitoring and speciation of V(Ⅳ) and V(Ⅴ). Microchemical Journal,2000,67:83-90.
    [36]Edniok Justyna Pol, Buhl Franciszek. Speciation of vanadium in soil. Talanta,2003, 59:1-8.
    [37]Bylinska E. Bioindication of titanium, vanadium and lanthanum coming from long distance emission in Sudety mountain monitoring, In Proceeding of simulation and control international conference on air pollution-Computational Mechanics Inc, Billerica, MA, USA,1996,753-759.
    [38]Soldi T., Riolo C., Alberti G., et al. Environmental vanadium distribution from an industrial Settlement. The Science of the Total Environment,1996,181:45-50.
    [39]McCrindle C.M.E., Mokantla E., Duncan N. Peracute vanadium toxicity in cattle grazing near a vanadium mine. J. Environ. Monit,2001,3(6):580-582.
    [40]Raimon Guitart, Magda Sachana, Francesca Caloni, et al. Animal poisoning in Europe. Part 3:Wildlife. The Veterinary Journal,2010,183:260-265.
    [41]Panichev N., Mandiwana K., Moema D., et al. Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine. Journal of Hazardous Materials, 2006, A137:649-653.
    [42]Yee B.H., Rosenquist W.A. Petroleum coke as an alternative fuel for new generation and repowering. In Proceedings of the American Power Conference v 2. Illinois Inst. of Technology, Chicago, IL, USA,1996, pp.838-841.
    [43]林杰,孙素梅.钒化合物的职业性危害.工业卫生与职业病,1998,24(4):253-256.
    [44]陈迪,张强.浅议钒矿开采过程中的环境问题及解决措施.污染防治技术,2009,22(4):81-84.
    [45]舒型武.石煤提钒工艺及废物治理综述.钢铁技术,2007,1:47-50.
    [46]杨虎,廖庆平,王静等.攀枝花市饮用水中钒和钛的污染.环境与健康杂志,2006,23(2):154-155.
    [47]Vinogradov A.P. The Geochemistry of Rare and Dispersed Elements in Soil, second ed. Consultants Bureau, New York,1959.
    [48]Gummow B., Kirsten W.F.A., Gummow R.J.,et al. A stochastic exposure assessment model to estimate vanadium intake by beef cattle used as sentinels for the South African vanadium mining industry. Preventive Veterinary Medicine,2006,76:167-184.
    [49]刘莎,吴烈善,黄世友等.五氧化二钒生产中的污染问题及治理研究.环境科学与管理,2008,33(9):42-44.
    [50]文香兰,沈桂月,文永植.钒毒性的研究进展.广东微量元素科学,1997,4(10):9-11.
    [51]曾英,倪师军,张成江.钒的生物效应及其环境地球化学行为.地球科学进展,2004,19(增刊):472-476.
    [52]曾昭华,曾雪萍.地下水中钒的形成及其与人群健康的关系.云南环境科学,1996,15(3):55-57.
    [53]刘英俊,曹励明,李兆麟等.元素地球化学.北京:科学山版社,1984.
    [54]王平利,张成江.土壤中钒的环境地球化学研究现状.物探化探计算技术,2004,26(3):247-251.
    [55]汪金舫,刘铮.钒在土壤中的含量分布和影响因素.土壤学报,1994,31(1):61-67.
    [56]汪金舫,刘铮.酸性土壤中的钒和镍.土壤通报,1995,26(4):157-158.
    [57]Teyakov V.A. The geochemistry of vanadium in bauxtis.Geokhimiya,1965,6: 733-738.
    [58]Tavor R.M., Giles J.B. The association of vanadium and molybdenum with iron oxide in soils. Journal of soil sciences,1970,21(2):203-215.
    [59]Pourbaix M. Corrosion, Passivite et Passivation du Fer, Le Role du pH et Potentiel. Thesis, CEBELCOR Publication F 21, Bruxelles,1945.
    [60]李自强,何良惠.水溶液化学位图及其应用.成都:成都科技大学出版社,1991.1.
    [61]马运柱,熊祥,黄伯云.硫化矿物-H2O体系中Eh-pH图形数据库系统的开发及应用.矿冶工程,2001,21(4):33-36.
    [62]陈小文,白新德,薛祥义等.电位-pH平衡图及其在核材料腐蚀研究中的应用.清华大学学报(自然科学版),2002,42(5):692-695.
    [64]Linkson P.B., Phillips B.D., Rowles C.D. Computer methods for the generation of Eh-pH diagrams. Minerals Science and Engineering,1979,11(2):65-79.
    [64]骆如铁.三维Kellogg图的计算机算法及其在硫化镍矿焙烧热力学上的应用.中国矿冶学院学报,1982,2:1-7.
    [65]许志宏,王乐珊.无机热化学数据库.北京:科学出版社,1987.
    [66]王乐珊,许志宏,李大年.优势区相图的计算机研究.金属学报,1984,20(2):116-125.
    [67]李阳.用计算机绘制电位-pH图的一种新方法.有色金属,1990,42(2):48-54.
    [68]EI-Raghy S.M., EI-Demerdash M.F. Computation of Eh-pH diagrams for M-S-H2O systems. A new approach, Electrochemical Society,1989,136(12):3647-3654.
    [69]Bale Christopher W. Theory and computation of two-metal and higher order predominance area diagrams. Canadian Metallurgical Quarterly,1990,29 (4):263.
    [70]尹爱君,张帆,李晶.Windows下通用电位-pH图绘制系统.计算机与应用化学,1996,13(3):213-218.
    [71]张传福,钟大龙.优势区相图的计算软件开发及应用.中南工业大学学报,1996,27(3):286-290.
    [72]冯其明,马运柱,王毓华等.Eh-pH图形数据库开发与应用的现状及趋势.矿产利用与保护,1999,5:30-32.
    [73]杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及其应用.北京:化学工业出版社,1991.
    [74]梁春馀,王魁.高温电位-pH图及其应用实例,化学通报,1977,5:44-48.
    [75]尹卓湘,周红娟,马婕.电位-pH图在湿法冶金中的应用.贵州工业大学学报(自然科学版),2008,37(5):24-27,40.
    [76]金哲男,蒋开喜,魏绪钧等.高温As-S-H20系电位-pH图.矿冶,1999,8(4):45-50,40.
    [77]Nila C., Gonzalez I. Thermodynamics of Cu-H2SO4-Cl—H2O and Cu-NH4CI-H2O based on predominance-existence diagrams and Pourbaix-type diagrams. Hydrometallurgy, 1996,42:63-82.
    [78]张有新,曹才放,刘旭恒等.Li-Fe-Si-H2O体系的热力学分析,中南大学学报(自然科学版),2010,41(2):428-433.
    [79]赵中伟,刘旭恒.Li-Fe-P-H2O系热力学分析.中国有色金属学报,2004,16(7): 1257-1263.
    [80]郑国渠,唐谟堂,赵天从.氯盐体系中铋湿法冶金的基础研究.中南工业大学学报,1997,28(1):34-36.
    [81]陈小文,白新德,邓平哗等.升温条件下Zr-H2O系电位-pH平衡图.稀有金属材料与工程,2004,33(7):710-713.
    [82]王彤,苏向东,程占保等.Ni(Ti)-H20系电位-pH平衡图的绘制及其应用.贵州科学,2009,27(2):38-40.
    [83]张启辉,侯家龙,吴文胜.地表水中钒分析方法研究.能源及环境,2008,17(9):24-25.
    [84]邹宝方,何增耀.钒的环境化学.环境污染与防治,1993,15(1):26-31.
    [85]Evans H.T., Garrels R.M. Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochim. Cosmochim. Acta,1958,15:131-149.
    [86]Post K., Robins R.G. Thermodynamic diagrams for the vanadium-water system at 298.15K. Electrochim. Acta,1976,21(6):401-405.
    [87]Wu J.M., Zeng Y. Predominance diagrams of dissolved species and potential-pH diagrams of V-H2O system. Acta Phys.-Chem. Sin,2007,23(9):1411-1414.
    [88]杨显万,何霭平,袁宝州.高温水溶液热力学数据手册,北京:冶金工业出版社出版,1983.
    [89]Lide D. R. Handbook of chemistry and physics, eighty-second ed., CRC Press, Boca Raton, FL,2001.
    [90]Dean J.A. Lange's Chemistry Handbook, fifteenth ed., McGraw-Hill, Search New York,1999.
    [91]Bard A.J., Parsons R., Jordan J. Standard Potentials in Aqueous Solution, Marcel Dekker, New York, NY,1985.
    [92]Barin. Thermochemical Date of Pure Substances, third edition, WILEY-VCH Verlag GmbH,1995.
    [93]Hogfeldt. E. (Ed.), Stability Constants of Metal-ion Complexes, Pergamon Press, New York,1983, P.170.
    [94]Deltombe E., DE Zoubov N. And Pourbaix M. Comportement electrochimique du vanadium. Diagramme d'equilibre tension-pH du systeme V-H2O a 25℃. Rapporttechnique No.29 Centre Belge d'Etude de la corrosion, Bruxelles,1956.
    [95]Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions, oxford, Pergamon,1966.
    [96]Jander G., Jahr K.F. Aufbau and Abb au Hohermolekularer anorganischer Verbindungen in Losung an Beispiel der Vanadinsaure, Polyvanadate und Vanadansalze. Z. Anorg. Allg. Chem,1933,212:1-20.
    [97]张青莲,申泮文.无机化学丛书,第八卷:钛分族,钒分族,铬分族.北京:科学出版社,1991,238.
    [98]Garrels R.M. Some thermodynamic relations among the uranium oxides and their relation to the ocidation states of the uranium ores of the Volorado Plateaus. Amer. Mir. 1955,40:1004-1021.
    [99]Amit Bhatnagar, Ashwani Kumar Minocha, Deepak Pudasainee, et al. Vanadium removal from water by waste metal sludge and cement immobilization. Chemical Engineering Journal,2008,144:197-204.
    [100]Baes C.F., Mesmer R.E. The Hydrolysis of Cations, John Wiley, New York,1976, pp.197-210.
    [101]Naeem A., Westerhoff P., Mustafa S. Vanadium removal by metal (hydr)oxide adsorbents. Water Res.,2007,41:1596-1602.
    [102]#12
    [103]C. Zipperian Donald, Raghavan Srini. The recovery of vanadium from dilute acid sulphate solutions by resin ion exchange. Hydrometallurgy,1985,13:265-281.
    [104]Personal communications with Dr. R. Norris and Dr. R. Brown, FMC Corporation, 1983.
    [105]Brandon N.P., Francis P.A., Jeffrey J., et al. Thermodynamics and electrochemical behaviour of Hg-S-Cl-H2O systems. J. Electroanal. Chem.,2001,497:18-32.
    [106]Munoz-Portero M.J., Garcia-Anton J., Guinon J.L., et al. Pourbaix diagrams for chromium in concentrated aqueous lithium bromide solutions at 25℃. Corros. Sci.,2009, 54(4):807-819.
    [107]Welham N.J., Kelsall G.H., M.A. Diaz. Thermodynamics of Ag-Cl-H2O, Ag-Br-H2O and Ag-I-H2O systems at 298 K. J. Electroanal. Chem.,1993,361:39-41.
    [108]Peacock C.L., Sherman D.M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12:A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta,2004,68(8):1723-1733.
    [109]Carmen Nila, Ignacio Gonzilez. Thermodynamics of Cu-H2SO4-Cl--H2O and Cu-NH4Cl-H2O based on predominance-existence diagrams and Pourbaix-type diagrams. Hydrometallurgy,1996,42:63-82.
    [110]Powell R.E., Latimer W.M. J Chem Phys.1951,9:19-24.
    [111]Connick R.E., Powell R.E. J Chem Phys.1953,12:21-25.
    [112]Criss C M, Cobble J W.J Am Chem Soc.1964,86:5390-5394.
    [113]邓志敢.石煤氧压酸浸萃取提钒新工艺研究[硕士论文].2008,昆明理工大学,有色金属冶金.
    [114]Li Minting, Wei Chang, Fan Gang, et al. Acid leaching of black shale for the extraction of vanadium. International Journal of Mineral Processing,2010,95(1-4),62-67.
    [115]Lozano L.J., Juan D. Leaching of vanadium from spent sulphuric acid catalysts. Miner. Eng.,2001,14(5):543-546.
    [116]Ognyanova A., Ozturk A.T., De Michelis I., et al. Metal extraction from spent sulfuric acid catalyst through alkaline and acidic leaching. Hydrometallurgy,2009, 100(1-2):20-28.
    [117]ZhuY.G., Zhang G.F., Feng Q.M., et al. Acid leaching of vanadium from roasted residue of stone coal. Trans. Nonferrous Met. Soc. China.,2010,20:107-111.
    [118]Shang-Lin Tsai, Min-Shing Tsai. A study of the extraction of vanadium and nickel in oil-fired fly ash. Resour Conserv Recy.,1998,22:163-176.
    [119]Luo L., Miyazaki T., Shibayama A., et al. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap. Miner. Eng.,2003,16:665-670.
    [120]Kuniaki Murase, Ken-ichi Nishikawa, Tetsuya Ozaki, et al. Recovery of vanadium, nickel and magnesium from a fly ash of bitumenin-water emulsion by chlorination and chemical transport. J. Alloys Compd.,1998,264:151-156.
    [121]Krzysztof Mazurek, Katarzyna Bialowicz, Mieczyslaw Trypuc. Recovery of vanadium, potassium and iron from a spent catalyst using urea solution. Hydrometallurgy, 2010,103:19-24.
    [122]Potgieter J.H., Kabemba M.A., Teodorovic A., et al. An investigation into the feasibility of recovering valuable metals from solid oxide compounds by gas phase extraction in a fluidised bed. Miner. Eng.,2006,19:140-146.
    [123]Debaraj Mishra, Dong J. Kim, David E. Ralph, et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J. Hazard. Mater.,2008,152:1082-1091.
    [124]刘公召,安源,隋智通.HDS废催化剂碱浸取提钒的动力学研究.矿冶工程,2004,24(2):65-68.
    [125]Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions,2d English ed. National Association of Corrosion Engineers, Houston, Tex,1974.
    [126]胡克俊.国内外三氧化二钒提取工艺发展状况.钢铁钒钛,1995,16(4):55-62.
    [127]李传启.硫酸亚铁铵滴定法快速测定钢铁中钒.冶金分析,2008,28(6):79-80.
    [128]Souza A.D., Pina P.S., Santos F.M.F., et al. Effect of iron in zinc silicate concentrate on leaching with sulphuric acid. Hydrometallurgy,2009,95:207-214.
    [129]Antonijecvic M.M., Jankovic A.D., Dimitrijevic M.D. Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid. Hydrometallurgy,2004,71:329-334.
    [130]Aydogan S. Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium. Chem. Eng. J.,2006,123:65-70.
    [131]Nizamettin Demirkiran. Dissolution kinetics of ulexite in ammonium nitrate solutions. Hydrometallurgy,2009,95:198-202.
    [132]Padilla R., Rivas C.A., Ruiz M.C. Kinetics of pressure dissolution of enargite in sulfate-oxygen media. Metall. and mater. Trans.,2008,39B:399-407.
    [133]Wladyslawa Mulak, Beata Miazga, Anna Szymczycha. Kinetics of nickel leaching from spent catalyst in sulphuric acid solution. Int. J. Miner. Process.,2005,77:231-235.
    [134]Padilla R., Pavez P., Ruiz M.C. Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2. Hydrometallurgy,2008,91:113-120.
    [135]Padilla R., Vega D., Ruiz M.C. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media. Hydrometallurgy,2007,86:80-88.
    [136]Habashi, F. Kinetics of metallurgical process, second ed., Metallurgic Extractive Qucbcc, Qucbcc, Canada,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700