黑龙江省东宁县洋灰洞子铜矿床的成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省东宁县洋灰洞子铜矿床是近几年发现的,作者在黑龙江省有色金属地质勘查七O二队工作期间,参与了项目有关的设计和野外生产工作。在收集和整理前人资料的基础上,通过两年多的野外生产和学习,着重研究了洋灰洞子铜矿床含矿石英脉的流体包裹体和矿石矿物中硫铅同位素特征,并讨论了洋灰洞子铜矿床的成矿物质来源、成矿流体运移及演化和成矿作用,最终确定洋灰洞子铜矿床的成因类型。通过本文的研究,得出了以下结论:
     (1)洋灰洞子铜矿床位于中国东部中生代环太平洋成矿带的北东端,黑龙江省东南部的完达山—太平岭金铜多金属成矿带上,区域性敦化—密山深大断裂的东侧。区域出露的地层主要为新元古界黄松群杨木组和阎王殿组,古生界下二叠统双桥子组和少量的中生界下侏罗统绥芬河组及第三系船底山玄武岩。研究区内岩浆活动强烈,以中深成的花岗岩为主,可分张广才岭期、印支晚期和燕山早期,主要岩石类型为花岗闪长岩、二长花岗岩、花岗斑岩、花岗闪长斑岩、流纹斑岩等。
     (2)洋灰洞子铜矿床的矿石矿物主要是有黄铜矿、黄铁矿、毒砂,还有少量辉钼矿、闪锌矿、方铅矿、磁黄铁矿等。围岩蚀变主要有硅化、黑云母化、绢(白)云母化、绿泥石化、碳酸盐化、绿帘石化等,与成矿关系密切的有黑云母化、硅化、绢(白)云母化。根据矿体的相互穿切关系、共生组合、矿石结构构造等特征,同时结合洋灰洞子铜矿床流体包裹体测温结果将洋灰洞子铜矿床划分为热液期和表生期两个成矿期,而前者又包括石英—黄铁矿阶段(Ⅰ)、石英—硫化物阶段(Ⅱ)、多金属硫化物阶段(Ⅲ)、碳酸岩阶段(Ⅳ)四个成矿阶段。
     (3)洋灰洞子铜矿床的流体包裹体主要为气液两相包裹体和少量透明无色的纯气相或纯液相包裹体。个体相对较小集中在4μm~10μm之间,气液比[V气/(V气+V液)]集中在10%~20%、大于20%、大于80%三个区间。均一温度变化于130℃~420℃之间,显示四阶段成矿特征即:早期石英—黄铁矿阶段(Ⅰ)的成矿温度在380℃~420℃之间;中期石英—硫化物阶段(Ⅱ)的成矿温度在330℃~370℃之间,此阶段是成矿的主要阶段之一;中晚期多金属硫化物阶段(Ⅲ)的成矿温度在190℃~290℃之间,为最主要的成矿阶段;晚期碳酸岩阶段(Ⅳ)的成矿温度在130℃~180℃之间,晶洞中偶见颗粒状黄铁矿等硫化物。成矿流体的盐度区间为0.87wt%NaCl~13.55wt%NaCl,平均值为5.57wt%NaCl,中值介于4.0wt%NaCl~8.0wt%NaCl之间;成矿流体的密度在0.56g/cm~3~0.98g/cm~3之间,平均值为0.84g/cm~3,中值为0.70g/cm~3~0.90g/cm~3;气液两相包裹体的压力区间为9.69MPa~32.82MPa;成矿深度区间为0.36km~1.22km,平均成矿深度为0.77km。综上所述,洋灰洞子铜矿床成矿流体具有中高温、低盐度、低压力与成矿浅的特征。
     (4)该矿床中与成矿密切相关的花岗闪长斑岩的锆石U-Pb年龄为194.8±1.9Ma,推断其成矿时代应为早侏罗世。成矿作用过程为:早侏罗世花岗闪长斑岩体上侵,提供了热量和少量岩浆热液,驱动阎王殿组千枚岩地层中的建造水,沿构造裂隙产生对流循环,同时在其循环过程中淋滤地层(主要为新元古界阎王殿组千枚岩)和侵入岩体,使其中成矿元素活化、迁移、富集,最终成矿物质由于温度、PH值等物理化学条件的改变,并在层间薄弱部位或构造破碎带中沉淀,形成铜矿体。
     (5)基于矿床地质特征,物质来源,流体演化及成岩成矿时代等方面的研究结果,初步确定洋灰洞子铜矿床为早侏罗世形成的中高温热液交代型铜矿床。
The Yanghuidongzi copper deposit, located in the Dongning county,Heilongjiang province was found in recent years. I took part in related designand field work of the project when I was in Non-ferrous Metal GeologicalExploration702team, Heilongjiang province. Based on collected andorganized previous data, I have studied the deposit according to field workabout two years. The author mainly studied on characteristics of ore-bearingquartz-hosted fluid inclusion and S, Pb isotope from ore mineral of theYanghuidongzi copper deposit, and discussed source of metallogenic material,migration and evolution of ore-forming fluid, and metallogenesis. Finally, theauthor determined the genetic type of Yanghuidongzi copper deposit, anddraw the following conclusions according to research in this paper:
     (1) The Yanghuidongzi copper deposit is located in the northeast part ofMesozoic circum Pacific metallogenic belt, east China, the southeastHeilongjing of Wandashan-Taipingling gold, copper polymetallic metallogenicbelt, east of Dunhua-Mishan fault. The exposed stratum mainly are theNeo-proterozoic Huangsong complex Yangmu group and Yanwangdian group,Paleozoic Lower Triassic Shuangqiaozi group and less Mesozoic LowerJurassic Suifenghe group, as well as Cenozoic Chuandishan basalt. Themagmatism in the area is intensity and mainly on mesogene granite. Thegranite can be classified into three periods: Zhangguangcailing epoch, LateIndo-Chinese epoch and Late Yanshanian. The rock type is mainly ongranodiorite, monzonite granite, granite porphyry, porphyritic granodiorite and porphyritic rhyolite.
     (2) The ore mineralogy is dominated by chalcopyrite, pyrite, arsenopyrite,with minor molybdenite, sphalerite, galena, pyrrhotite. Wall-rock alterationassociated with mineralization consists of biotite development, silicificationand sericitization. Four stages of mineralization have been identified usingmineral paragenetic relationships:(I) a quartz–pyrite stage,(II) aquartz–sulfide stage,(III) a polymetallic sulfide stage, and (IV) a carbonatitestage.
     (3) The fluid inclusions from the Yanghuidongzi copper deposit isdominated by gas–liquid inclusion and minor colorless pure gaseous or pureliquid inclusions. The fluid inclusions are relatively small and focus on4μm–10μm. The ratio of gas and liquid focus on10%–20%,>20%and>80%. The homogenization temperature vary from130℃to420℃with fourstages of metallogenic characteristic: a quartz–pyrite stage (I) withmetallogenic temperature of380℃–420℃, a middle quartz–sulfide stage (II)with metallogenic temperature of330℃–370℃, and this stage is one of mainmetallogenic stages. The middle–late polymetallic sulfide stage (III) withmetallogenic temperature of190℃–290℃, and this stage is mainmetallogenic stage. The late a carbonatite stage (IV) with metallogenictemperature of130℃–180℃and granulate pyrite was observed in geode.The salinity of ore–forming fluid is range from0.87%to13.55wt%NaCl andmean value is5.57wt%NaCl. The mid–value is range from4.0%to8.0wt%NaCl. The density of ore–forming fluid is range from0.56g/cm~3to0.98g/cm~3and mean value is0.84g/cm~3. The mid–value is range from0.70g/cm~3to0.90g/cm~3. The pressure for gas–liquid inclusion is range from9.69MPa to32.82MPa. The depth for metallogenesis is range from0.36km to1.22kmand mean value is0.77km. In conclusion, the ore–forming fluid for theYanghuidongzi copper deposit is characterized by medium-high temperature,low salinity, low pressure and low metallogenic depth.
     (4) The zircons from porphyritic granodiorite, which is closely related tometallogenesis yielded U–Pb age of194.8±1.9Ma, and inferred thatmetallogenic epoch is the Early Jurassic. The process of metallogenesis isdiscussed following: The intruded upward of the Earlyl Jurassic porphyriticgranodiorite provided heat and minor magmatic hydrothermal, which drived formation water from the Yanwangdian group phylite migrated along tectonicfissure. Meanwhile, magmatic hydrothermal leached stratum (theNeo-proterozoic Yanwangdian group phylite) and intrusion rock, which madeore–forming elements activated, migrated and enriched. Then theore–forming elements deposited in structural fracture zone and formed copperdeposit with changing of physical and chemical conditions of metallogenicmaterials, such as temperature, PH value.
     (5) Based on research into geologic characteristic, material source,evolution of fluids and petrologenesis and metallogenesis, we preliminaryconfirmed that the Yanghuidongzi copper deposit is a medium-hightemperature pyrometasomatic deposit formed in the Early Jurassic.
引文
[1] Isuk E E. Solubility of molybdenite in the system NaO-K2O-Si02-MoS2-H2O–CO2with geological application [D]. Iowa: University of Iowa,1976. Geol,2001,96:1408-1429.
    [2] Potter R W, Clynne M A, Brown D L. Freezing point depression of aqueoussodium chloride solutions. Econ. Geol.1978,73:288-289.
    [3] Yamamoto J, Kaneoka I, Nakai S, et al. Evidence for subduction-relatedcomponents in thesubcontinental mantle from low3He/4He and40Ar/36Ar ratio inmantle xenoliths from Far Eastern Russia [J]. Chem. Geol,2004,207:237-259.
    [4] Torgersen T, Kennedy B M, Hiyagon H. Argon accumulation and the crustaldegassing flux of40Arin the Great Artesian Basin, Australia [J]. Earth Planet Sci.Lett,1988,92:40-59.
    [5] Wiedenbeck M, Alle P, Corfu F et al. Three natural zircon standards for U-Th-Pb,Lu-Hf, traceelement and REE analyses [J]. Geostand Newsl,1995,19:1-29.
    [6] Andersen T. Correction of common lead in U-Pb analyses that do not resportPB[J]. Chem. Geol,2002,192:59-75.
    [7] Nions R K, Tolstikhin I N.1994. Behavior and residence times of lithophile andrare gas tracers inthe upper mantle [J]. Earth and Planetary Sci.Lett,124:131-137.
    [8] Langmuir C H, VOcke R D Jr, Hanson GN, et al.1978. A general mixingequation with applicationsto Icelandic basalts. Earth and Planet [J]. Sci.Lett,37:370-392.
    [9] Kim K H, Nagao K, Tanaka T, et al.2005. He-Ar and Nd-Sr istopic compositionsof ultramafic xenoliths and host alkali basalts from the Korean peninsula [J].Geochemical J,39:340-356.
    [10] Moore J N, Norman D I, Kennedy B M.2001. Fluid inclusion gas compositionsfrom an active magmatic-hydrothermal system:a case study of The Geysersgeothermal field, USA [J]. Chemical Geology,173:3-39.
    [11] Gautheron C and Moreira M. Helium signature of the subcontinentallithospheric mantle [J]. Earth Planet. Sci. Lett,2002,199:39-47.
    [12] Roedder E F. Fluid inclusion evidence bearing on the environments of golddeposition. In: Gold’82: Geological Society of Zimbabwe, Special PublicationNo.1,1984.129-163.
    [13] Kesler S E. Nature and composition of mineralizing solutons. In: Robert F, et al.Greenstone Gold and Crustal Evolution.1990.86-98.
    [14] Crawford M L. Fluid inclusion-what can we learn? Earth Science Reviews,1992,32:134-139.
    [15] Colvine A C, Fyon JA, Heather KB, et al. Archean lode gold deposits inOratorio. Oratorio Geol. Surv. Miscell. Pap.139,1988.136p.
    [16] Groves D I, et al. Geneticmodels for Archean lode gold deposits in WesternAustralia. In: Ho S E, Groves D I, ed. Advance in understanding Precambriangold deposits,1988.1-26.
    [17] Robert F, Kelly W C, Ore-forming fluids in Archean gold-bearing quartz veinsat the Sigma mine, Abitibi greenstone belt, Quebec, Canada. Economic Geology,1987,82:1464-1486.
    [18] Roberts R G. Archean lode gold deposits. Geoscience Canada,1987,(14):37-52.
    [19] Ho S E, Groves D I, Mc Naughton H J, et al. The source of ore fluids andsolutes in Archeanlode-gold depo sits of Western Australia. J. Volcanology andGeothermal Research,1992,50:173-197.
    [20] Sheppard S M F, Nielson R L, Taylor H P J. Oxygen and hydrogen isotope ratiosof clay minerals from porphyry copper deposits [J]. Econ Geol,1971,66:98-110.
    [21] Sheppard S M F. Hydrogen and oxygen isotope ratios in minerals from porphyrycopper deposits [J]. Econ Geol,1971,66:515-544.
    [22] Roedder E. Fluid Inclusion studies on the porphyry-type ore deposit at Bingham,Utah, Butte, Montana, and Climax, Colorado [J]. Econ Geol,1971,66:98-121.
    [23] Reyonids T J, Beae R E. Evolution of hydrothermal fluid characteristics at theSanta Rita, New Mexico, porphyry copper deposit [J].1985,80:1328-1345.
    [24] Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins andgeodynamic settings of supergiant gold metallogenic provinces [J]. Science inChina,2000,43:1-64.
    [25]黑龙江省地质局.黑龙江省区域地质[M].北京:地质出版社,1978:7-24.
    [26]双宝,田世良等.黑龙江省主要金属矿产找矿潜力分析[J].金属矿山,2008:89-92.
    [27]杨增武,董传统等.黑龙江省洋灰洞子铜矿床地质特征及成因探讨[J].地质与勘探,2005:27-29.
    [28]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004:169-194.
    [29]汤倩,邸文.同位素地球化学及其在地学研究中的应用[J].中山大学研究生学刊.2006:91-99.
    [30]鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].科学出版社,1997∶72-89.
    [31]王秀芝,赵清泉.黑龙江省东宁县洋灰洞子铜矿床成矿岩体特征[J].矿产与地质,2004∶450-454.
    [32]董传统.黑龙江省鸡东县金场沟铜钼矿床地质特征及找矿潜力评价
    [D].2009:12-34.
    [33]姚风良,孙丰月主编.矿床学教程[M].北京:地质出版社,2006,12-68.
    [34]杨增武等.黑龙江省鸡东县金场沟矿区铜钼矿普查地质报告[R].牡丹江,2003,27-32.
    [35]任纪舜,陈廷愚等.中国东部及邻区大陆岩石圈的构造演化[M].北京:科学技术出版社,1990:41-67.
    [36]韩吟文,马振东,张宏飞等.地球化学[M].北京:地质出版社,2003.56-166.
    [37]魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988.102-146.
    [38]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.1-265.
    [39]季克俭,吴学汉,张国柄.关于德兴斑岩铜矿的初步研究[J].北京:矿床地质,1984,3(2).
    [40]孙丰月,石准立.试论幔源C-H-0流体与大陆板块内某些地质作用.地学前缘,1995,2(1-2).
    [41]李光辉.黑龙江省完达山-太平岭成矿带成矿系列与找矿预测[D].2011:1-14.
    [42]陈文明,党泽发.论中国斑岩、矽卡岩型铜钼矿床的形成与地壳演化的关系[J].北京:大地构造与成矿学,1989,13(3):213-225.
    [43]芮宗瑶,张洪涛.试论中国斑岩型矿床系列.北京,中国地质科学院,1986,14:69-100.
    [44]邵洁连.金属找矿矿物学[M].武汉,中国地质大学出版社,1988,24-52.
    [45]冷成彪,张兴春,王守旭,等.滇西北雪鸡坪斑岩铜矿S、Pb同位素组成及对成矿物质来源的示踪[J].矿物岩石,2008,28(4):70—88.
    [46]曲晓明,侯增谦,李佑国.S、Pb同位素对冈底斯板岩铜矿带成矿物质来源和造山带物质循环的指示[J].地质通报,2002,21(11):758—776.
    [47]赵准.中甸地区与印支期斑岩有关的铜钼矿床成矿模式[J].昆明:云南地质,1995,14(4):322-349.
    [48]梁婷,王登红,蔡明海,等.广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪[J].地质学报,2008,82(7):957—977.
    [49]刘斌,朱思林,沈昆.流体包裹体热力学参数计算软件及算例[M].北京,地质出版社,2000,1-230.
    [50]刘斌,沈昆.流体包裹体热力学[M].北京,地质出版社,1999.
    [51]刘劲鸿,松权衡.吉林省延边地区天宝山—天桥岭多金属成矿带的成矿物质来源[J].吉林地质,2000,19(3):26-54.
    [52]李永森,陈文明等.怒江—澜沧江—金沙江地层重要金属矿产成矿特征及分布规律[J].北京:地矿部地质专辑(4),矿床与矿产,第3号.
    [53]李宝树,李鹤年.多金属矿床的复式成因—吉林天宝山矿床成因探讨[J].长春地质学院学报,1991,21(2):165-182.
    [54]孟祥金,侯增谦,李振清.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,2006,80(4):551-560.
    [55]章邦桐,陈培荣,陈迪云,等.再论长英质隐爆角砾岩的气液流体溶浸成矿机制—隐爆角砾岩型铀矿床的稳定同位素地球化学证据[J].矿床地质,2002,21(3):243-245.
    [56]孙钧.吉林省天宝山多金属矿床系列特征及其找矿意义[J].吉林地质,1994,13(2):41-50
    [57]朴清龙,孙淑云.天宝山多金属矿床地球化学模式[J].吉林地质,2000,19(1):36-46.
    [58]秦洪莲,袁平,姜福平,等.延边天宝山矿床地质特征及找矿前景分析[J].吉林地质,2006,25(4):9-13.
    [59]孙景贵,刑树文,郑庆道,等.中国东北部陆缘有色、贵金属矿床的地质、地球化学[M].长春:吉林大学出版社,2006.
    [60]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.
    [61]张德会,刘伟.流体包裹体成分与金矿床成矿流体来源[J].地质科技情报,1998,17(6):69-71.
    [62]张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997c,16(3):54-58
    [63]尚浚,卢静文,彭晓蕾,等.矿相学[M].北京:地质出版社,2007.
    [64]张理刚.稳定同位素在地质科学中的应用—金属活化热液成矿作用及找矿
    [M].西安:陕西科技出版社,1983.
    [65]陈雷.黑龙江宁安县英城子金矿床成矿作用与成矿模式研究[D].吉林大学硕士学位论文,2008.
    [66]侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J].2004,11(1),133-144.
    [67]孙丰月,金巍,李碧乐,等.关于脉状热液金矿床成矿深度的思考.长春科技大学学报[N],2000,30(增刊):25-30.
    [68]门兰静.黑龙江省东宁县金厂超大型金矿床的地质、地球化学特征及成矿模式[D].吉林大学硕士学位论文,2008.
    [69]赵俊康.延边小西南岔金铜矿成矿地球化学动力学研究[D].吉林大学硕士学位论文,2007.
    [70]刘斌.利用不混溶流体包裹体作为地质温度计和压力计[J].科学通报,1986,18:1431-1436.
    [71]宋贵.吉林省天宝山新兴角砾岩筒型铅锌矿床地质特征及成矿条件[J].吉林地质,1984,(4):47-53.
    [72]薛春纪,陈毓川,杨建民,等.滇西北兰坪铅锌银铜矿田含烃富CO2成矿流体及其地质意义[J].地质学报,2002,76(2):245-253.
    [73]祈进平,陈衍景,倪培,等.河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因[J].岩石学报,2007,23(9):2118-2130.
    [74]张本臣等.黑龙江省东宁县洋灰洞子铜矿详查报告[R].牡丹江,2009,10-35.
    [75]王莉绢,王玉往,王京彬,等.内蒙古大井锡多金属矿床流体成矿作用研究:单个流体包裹体组成LA-ICP-MS分析证据[J].科学通报,2006,10(10):1203-1211.
    [76]葛良胜,邓军,李汉光,等.云南大坪大型金多金属矿床叠加成矿作用:地质、流体包裹体和稳定同位素证据[J].岩石学报,2007,23(9):2132-2144.
    [77]张振亮,云南会泽铅锌矿床成矿流体性质和来源—来自流体包裹体和水岩反应试验的证据[D].中国科学院研究生院博士学位论文,2006.
    [78]刘正宏,徐仲元,王可勇.大青山高级变质岩仲复晶石英条带成因的显微构造和流体包裹体证据[J].中国科学,2007,34(4):488-493.
    [79]阎卫东.脉金矿床成矿理论研究进展[J].黄金科学技术,1995,3(5):13-17.
    [80]杨洪英,杨立.陈刚等.金厂沟梁金矿金的赋存状态[J].贵金属地质,1998,7(3):205-215.
    [81]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地址出版社,1985,1-344.
    [82]张长春,王时麒,张韬.内蒙古金厂沟梁金矿床稳定同位素组成和矿床成因讨
    [83]银建钊.我国金矿床成矿理论研究现状[J].地质科技情报,1994,13(2):58-65.论[J].地质力学学报,2002,8(2):156-166.
    [84]姚凤良,朴寿成,魏存第.金厂沟梁金矿地质特征及东西矿区远景评价.科研报告,2001.
    [85]尹冰川,安国英.区域成矿规律研究现状及发展趋势[J].世界地质,1995,14(1):56-68.
    [86]肖晓牛,喻学惠,杨贵来,等.滇西沧源铅锌多金属矿集区流体包裹体研究[J].矿床地质,2008,27(1):101-115.
    [87]曹勇华,赖健清,等.青海德合龙洼铜(金)矿成矿物质来源[J].中国有色金属学报,2012,27(1):761-770.
    [88]张振亮,吕新彪,饶冰.均匀流体和不均匀流体的形成机制:来自合成流体包裹体的证据[J].地球科学,2008,33(2):249-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700