超空泡高速射弹变深度航行振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当水下航行体在一定速度下运动时会在弹体表面生成超空泡,这时水下航行体的粘湿面积可以达到最小状态,使水下航行体表面的液体摩擦阻力降到很小的值,是实现水下航行体超高速运动的一种理想手段。超空泡航行体在300m/s到1000m/s航速下,航行体与空泡壁发生连续的碰撞即尾拍现象。在连续的尾拍冲击作用下,航行体的结构动力学特性不同于传统的航行器。本文采用理论和仿真研究的手段对尾拍过程中,变深度航行时超空泡航行体的尾部激振力和结构振动特性进行了研究。主要内容如下:
     在前人的基础上,对小型超空泡射弹变深度航行时的尾拍冲击载荷进行了研究,得出了变深度航行时尾拍载荷的时间变化形式,通过计算得出航行深度对尾拍运动的影响。
     在尾拍载荷研究基础上,对射弹变深度航行时尾拍振动的结构响应进行了仿真模拟。得到了弹体各部位应力应变随时间的变化和频域特性,以及弹体加速度响应的时域和频域特性。
     应用流固耦合仿真分析方法对变深度航行时尾拍载荷进行了研究,得出深度和角速度对尾拍运动的影响。
     本文的研究结果,可以为以后的超空泡航行体尾拍振动方面的实验研究提供参考,并为超空泡航行体的结构优化设计等工作提供必要的基础。
Moving in a certain speed, underwater vehicle will produce supercavitation on the surface .At the same time, its sticky area reach to the minimum and this make fluid friction of surface reach to the minimum. Theoretically, the underwater vehicle will reach to the ultra-high speed in this situation. When the vehicle move in the speed from 300m/s to 1000m/s, it will make lasting tail-slaps to keep balance. Under the impact of the continuing tail-slaps, the structure of underwater vehicle is different from the traditional vehicle. In this paper we use theoretical and simulation methods to do some research on the tail exciting force and vibration characteristics of supercavitation underwater vehicles in the tail-slaps process. Main content as follows:
     Based on the last research,we do the research on the vibration characteristic of Supercavitation high-speed projectile navigation in different depths. Also,we get the time variations of tail-slaps in variable depth navigation and the effect of variable depth on tail-slaps.
     Based on the tail slaps research, we study structural response simulation of tail-slaps vibration when supercavitation projectile move in the different depth. We get the time domain and frequency domain characteristics of projectile body parts stress and acceleration response. Using FSI simulation analysis, we do the research on the tail-slaps vibration structure response in the high-speed navigation and get depth and angular velocity effect on the tail beat movement.
     The results of this study can provide reference to the supercavitating vibration experiment and become the necessary basis of the work the supercavitation structure optimization design.
引文
[1]于开平,隗喜斌,蒋增辉.俄罗斯和乌克兰超空泡减阻技术研究进展.飞航导弹. 2007(8):5-11
    [2]曹伟,魏英杰,王聪,邹振祝等.超空泡技术现状、问题与应用.力学进展. 2006,36(4):571~579
    [3]魏平,侯健,杨柯.超空泡射弹研究综述.舰船电子工程. 2008(28)4:13~17
    [4]陈兢.新概念武器——超空泡水下高速武器.飞航导弹. 2004(10):34~37
    [5]谭顺谋.“水下快车”美国研制超高速潜艇.现代船舶. 2007年第2期
    [6]黄继汤.空化与空蚀的原理与应用.清华大学出版社. 1991:7~14
    [7] Y. N. Savchenko, V. N. Semenenko, S. I. Putlin, G. Yu. Savchenko, and Ye. I. Naumova. Some Problems of the Supercavitating Motion Management. Sixth International Symposium on Cavitation, Cav2006, Wageningen, September 2006
    [8] J. A. Geurst. Linearized Theory for Partially Cavitated Hydrofoils. International Shipbuilding Progress,1959,6(60):369~384
    [9] M. P. Tulin. Supercavitating Flows—Small Perturbation Theory. Journal of Ship Research,1964,5(1):13~33
    [10] M. P. Tulin. Steady Two-Dimensional Cavity Flows about Slender Bodies. The David W. Taylor Model Basin, Washington,1953,Report 834
    [11] H. Cohen, C. D. Sutherland, Y. O. Tu. Wall Effects in Cavitating Hydrofoil Flow. Journal of Ship Research,1957,3:31~39
    [12] Y. S. Chou. Axisymmetric Cavity Flows Past Slender Bodies of Revolution. Hydronautics,1974,8(1)
    [13] A. N. Varghese, J. S. Uhman, I. N. Kirchner. Axisymmetric Slender-Bodies Analysis of Supercavitating High-Speed Bodies in subsonic Flow. PhD Dissertation, in Gieseke, 1997
    [14] A. D. Vasin. Supercavities in Compressible Fluid. RTO AVT/VKI special course:supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 February 2001
    [15] V. Serebryakov. Supercavitation Flows with Gas Injection Prediction and Drag Redaction Problems. Proceedings of the 5th International Symposium on Cavitation. Osaka, Japan:cav2003,Cav03-OS-7-003
    [16] I. Nesteruk. Influence of the Unsteadiness, Compressibility and Capillarity on Long Axisymmetrie Cavities. Proceedings of the 5th International Symposium on Cavitation. Osaka,Japan:Cav2003,Cav03.GS.6-004
    [17] G. V. Logvinovich. On Law of an Unsteady Cavity Expansion. Applied hydromechanics, Kiev, v. 2(74), #3, 2000: 60-64 (in Russian)
    [18] G. V. Logvinovich, V. N. Buyvol, A. S.Dudko, S. I.Putilin and Yu. R. Shevchuk. Flows with Free Boundaries. Naukova Dumka, Kiev, 1985: 296 (in Russian)
    [19]张学伟,张亮,王聪,张嘉钟,魏英杰.基于Logvinovich独立膨胀原理的超空泡形态计算方法.兵工学报. 2009,30(3):361~365
    [20] H. Lemonnier, A. Rowe. Another approach in modelling cavitating flows. J Fluid Mech, 1988, 195: 557~580
    [21] S. A. Kinnas, N. E. Fine. A numerical nonlinear analysis of the flow around 2-D and 3-D partially cavitating hydrofoils. J Fluid Mech, 1993, 254(9): 151~181
    [22] M. Deshpande, J. Feng, C. L. Merkle. Nonlinear euler analysis of 2-D cavity flow. Cavitation and Multiphase Flow Forum FED, 1993, 135: 149~155.
    [23] Y. Chen, S. D. Heister. A numerical treatment for attached cavitation. J Fluid Eng, 1994, 116: 613
    [24] C. L. Merkle, J. Feng. Buelow. Computational modeling of the dynamics of sheet cavitation. In 3rd International Symposium on Cavitation, Grenoble, France, 1998
    [25] R. F. Kunz, D. A. Boger, T. S. Chyczewski, et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. ASME FEDSM 99-7364, San Francisco, USA, 1999
    [26] I. Senocak. Computatuonal methodology for the simulation of turbulentcavitating flows. PhD Dissertation, University of Florida, USA, 2002
    [27] R. Vaidyanathan, I. Senocak, J. Wu, W. Shyy. Sensitivity Evaluation of a Transport Equation Based Turbulent Cavitation Model. AIAA, 2002~3184
    [28]黄海龙,魏英杰,黄文虎,王聪,于开平,黄庆新.重力场对通气超空泡影响的数值模拟研究.哈尔滨工业大学学报. 2007,39(5):800~803
    [29]王海斌,张嘉钟,魏英杰,等.空泡形态与典型空化器参数关系的研究——小空泡数下的发展空泡形态.水动力学研究与进展. 2005, 20(2):251~257
    [30]张鹏,傅慧萍.跨超音速射弹的超空泡数值模拟. 2009, 29(5):166~169
    [31]易文俊,李月洁,王中原,熊天红,钱吉胜.小攻角下水下高速射弹的空泡形态特性.南京理工大学学报(自然科学版). 2008, 32(4):464~467
    [32] A. Kubota, H. Kato, H. Yamaguchi. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. Journal of Fluid Mechanics, 1992, 240:59~96
    [33] C. C. S. Song, Q. Qin. Numerical simulation of unsteady cavitating flow. In 4th International Symposium on Cavitation, Pasadena, USA, 2001
    [34] Q. Qin, C. C. S. Song, R. E. A. Arndt. A virtual single-phase nature cavitation model and its application to CAV2003 hydrofoil. In 5th International Symposium on Cavitation, Osaka, Japan, 2003
    [35]冯光,颜开.超空泡航行体水下弹道的数值计算.船舶力学. 2005, 9(2):1~8
    [36]程晓俊,鲁传敬.二维水翼的局部空泡流研究.应用数学和力学. 2000, 21(12):1310~1317
    [37]袁绪龙,张宇文,杨武刚.高速超空化航行体典型空化器多相流CFD分析弹箭与制导学报. 2005, 25(1):53~55
    [38]贾力平,张嘉钟,于开平,王聪,王海斌.空化器线形与超空泡减阻效果关系研究.船舶工程. 2006, 28(2):20~23
    [39]褚学森,王志,颜开.自然空化流动数值模拟中参数取值影响的研究.船舶力学. 2007,11(1):32~39
    [40]曹伟,魏英杰,韩万金,等.超空泡航行体阻力系数的数值模拟研究.工程力学. 2008, 25(12):208~212
    [41]易文俊,李铁鹏,熊天红,等.水下高速航行体自然超空泡形态特性仿真研究.南京理工大学学报. 2009, 33(3):330~334
    [42] Y. D. Vlasenko. Experimental Investigations of High Speed Unsteady Supercavitating Flows. Proceedings of Third International Symposium on Cavitation, 1998(24):524-528
    [43] Y. N. Savchenko. Modeling the Supercavitation Processes. International Journal of Fluid Mechanics research. 2001, 28(5):644-659
    [44] R. Kuklinski, C. Henoch and J. Castano. Experimental Study of Ventilated Cavities on Dynamic Test Model. Naval Undersea Warfare Center, Cav2001:Session B3. 004
    [45] H. Reichardt. The Laws if Cavitation Bubbles at Axially Symmetrical Bodies in a Flow. Ministry of Aircraft Production Volkenrode, MAP-VC,Report and Translations766,ONR,1946
    [46] B. B. Phillip. Supercavitation. California State Science Fair 2002 Project Summary. Project Number: J0102, 2002
    [47] E. Silberman, C. S. Song. Instability of Ventilated Cavities. Journal of Ship Research, 1961,5(1):13~33
    [48] R. Kuklinski, C. Henoch, J, Castano. Experimental Study of Ventilated Cavities on Dynamic Test Model. Cav2001:Session B3.004
    [49] J. D. Hrubes. High-speed imaging of supercavitating underwater projectiles. Experiments in Fluids. 2001,30:57~64
    [50]蔡悦斌,鲁传敬,何友声.瞬态空化泡的成长与溃灭.水动力学研究与进展. 1995,10(6):653~659
    [51]王怀应.不同测量点的潜艇螺旋桨空化噪声差异性研究.声学与电子工程. 1996,4:40~43
    [52]刘全俊.利用尖脉冲检测螺旋桨空化.声学与电子工程. 1988年02期
    [53]孙小鹏.压力脉动下空化的概率估计.水利学报. 1988年12期
    [54]谢正桐,何友声.小攻角带空泡细长体的试验研究.水动力学研究与进展. 2001, 16(3):374~381
    [55]谢正桐,何友声.小攻角下轴对称细长体的充气肩空泡试验研究.试验力学. 1999, 14(3):279~287
    [56] X. M. Feng, C. J. Lu, T. Q. Hu. Experimental Research on A Supercavitating Slender Body of Revolution With Ventilation. Journal of Hydrodynamics, Ser. B , 2002 14(2):17~23
    [57]袁绪龙,张宇文,刘乐华,陈伟政,邓飞.水下航行体通气超空泡形态试验研究.应用力学学报. 2004, 21(3):33~37
    [58] G. Y. Wang, X. B. Li, M. D. Zhang. Multiphase Dynamics of Supercavitating Flows around a Hydrofil. Sixth International Symposium on Cavitation. Cav2006, Wageningen, The Nethelands, September 2006
    [59]张博,张宇文,李文哲,杨武刚,范辉.超空泡航行体前部线型对空泡生成速度影响实验研究.西北工业大学学报. 2008, 26(5):540~544
    [60]张学伟,魏英杰,张嘉钟,王聪,于开平.模型结构对通气超空泡影响的实验研究.工程力学. 2008, 25(9):203~208
    [61]万小辉.超空泡流动稳定性及其控制方法研究[D].哈尔滨:哈尔滨工业大学学位论文,2010
    [62]金大桥.水下动能射弹空泡形态及流体动力特性研究[D].哈尔滨:哈尔滨工业大学学位论文,2010
    [63]杨洪澜.非定常超空泡绕流研究[D].哈尔滨:哈尔滨工业大学学位论文,2007
    [64]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则.工程力学. 2007
    [65]李政,金先龙,亓文果.流体-结构耦合问题的有限元并行计算研究.计算力学学报. 2007
    [66]周凌,安伟光,安海.超空泡运动体强度与稳定性的非概率可靠性分析.哈尔滨工程大学学报. 2009
    [67]张劲生.超空泡航行体尾拍冲击与振动特性的研究[D].哈尔滨:哈尔滨工业大学学位论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700