压裂管柱有限元分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压裂作业是改进油气层渗透率、提高油气井产量的有效途径之一,压裂管柱设计和施工参数优选的主要依据是压裂管柱受力变形分析。本文针对深井笼统压裂和分次压裂管柱、水平井双卡压裂管柱的结构,选取整体压裂管柱为研究对象,考虑了水力锚、封隔器、滑套喷砂器在下井、坐封、压裂工况下的受力状态和位移边界,建立了压裂管柱非线性力学分析模型。采用间隙元模拟压裂管柱与套管内壁接触摩擦状态,推导出轴向摩阻力与位移协调条件,统一描述水力锚、封隔器、滑套喷砂器在不同工况下的受力和变形状态,建立了压裂管柱双重非线性有限单元法。采用delphi语言开发了“压裂管柱受力变形分析”软件,可计算管柱在不同排量、压力、卡距等条件下管柱的变形、内力和应力,以及水力锚、封隔器、滑套喷砂器的受力状态和轴向位移。通过实例计算可得出,在深井3800m笼统压裂管柱中,当压裂压力由60MPa增加到80MPa时,水力摩阻由9.81MPa/1000m变为15.87MPa/1000m,井口轴力由826.85kN变为1046.85kN,水力锚锚定力由129.28kN增加至336.31kN,最大等效应力由507.68MPa变为655.33MPa。在水平井2087m双卡压裂管柱中,当压裂压力为50MPa时,上封隔器的轴向位移相对于坐封工况向下窜动的最大距离为0.19mm,在卡距为10m、20m、30m时,下封隔器的轴向位移分别为11.17mm、23.78mm、36.46mm。在深井3800m分次压裂管柱中,当管柱上提0.2m时,在一次压裂作业中,滑套喷砂器由于坐封压力相对于下井位置向上滑动了2.89mm,在压裂工况中相对于坐封位置向上滑动了1.21mm;在二次压裂作业中,滑套喷砂器由于坐封压力相对于下井位置向下滑动了171.39mm,在压裂工况中相对于坐封位置向下滑动了4.64mm;管柱提升距离只要大于176mm时,滑套喷砂器与固定封隔器在两种压裂作业下均没有发生接触,为了保证固定封隔器在压裂作业中安全工作,推荐下井时将管柱上提0.2m距离。经现场试验井表明,根据计算出的轴向位移能准确控制压裂位置,设计出的压裂管柱能满足工艺要求和强度条件,验证了理论方法的正确性和软件的实用性。
     为了进一步描述压裂液温度和压力对管柱受力状态的影响,选取管内流动的压裂液、管柱外环空静止井液和压裂管柱为研究对象,建立了温度场、流场和应力场耦合分析的多物理场模型,计算得到1000m压裂管柱在井底处内壁温度36.99℃、外壁温度50.55℃,压裂液轴向压降0.83MPa,为压裂管柱力学分析中准确描述压裂液温度、压力作用提供了理论依据。
Fracturing operation was one of the effective way to improve hydrocarbon reservoir’s permeability and raise oil and gas well’s production. The mechanical analysis was the basis of designing the fracturing string and optimizing the construction parameters. This article was in view of the configuration about vague, graded fracturing string in deep well and the fracturing string in horizontal well. The overall fracturing string was selected as research objects. The load conditions and displacement boundary of the packer, hydraulic anchor and sand blasting sleeve was considered in the descent down hole, setting and fracturing operational mode. The nonlinear mechanical model about fracturing string was established. The gap element was adopted to simulate the contact condition between the fracturing string and the inside wall of the casing. The conditions of compatibility between the axial friction and the axial displacement was derived out. The forces and deformation status of the hydraulic anchor, packer and sand blasting sleeve were unified described under different operational mode. The dual nonlinear finite element methods was established. The software about the“deformation analysis of fracturing string”was developed by delphi language. It could compute the fracturing string’s deformation, internal force and stress as well as the axial force displacement of the hydraulic anchor, packer and sand blasting sleeve under the different conditions of the displacement, pressure, card distance. In the vague fracturing string with well depth of 3800m, when the fracture pressure became form 60 MPa to 80 MPa, the hydraulic friction was form 9.81 MPa/1000m to 15.87 MPa/1000m, the axial force was form 826.85 kN to 1046.85 kN , the anchorage force was from 129.28 kN to 336.31 kN, the max equivalent stress became form 507.68 MPa to 655.33 MPa. In the horizontal dual grip fracturing string with the depth of 2087m, when the fracture pressure was 50 MPa, the axial displacement of the upper packer was 0.19 mm. For the card distance from the 10m to 30m at dual-card fracturing string, the axial displacement of the lower packer was respectively 11.17 mm, 23.78 mm, 36.46 mm. At graded fracturing string with the depth of 3800m,when lifting the string 0.2m, in primary fracturing, the sand blasting sleeve’s axial displacement was 2.89 mm in the setting operational mode, while in the fracturing operational mode, the value was 1.21 mm. In the after fracturing, the axial displacement was respective 171.39 mm,4.64 mm. If the lifting distance of the fracturing string was greater than 176 mm, there was no contact between the sand blasting sleeve and the fixed packer. In order to guarantee a fixed packer fracturing safe in operations,0.2m was recommend. The axial displacement could accurately predict the location of fracturing. Therefore,it verify the accuracy of the theoretical methods and the practicality of the software.
     In order to further describe the impact of the fluid temperature and pressure on the fracturing string, the flow fracturing fluid, the static fluid outside the tubular and the fracturing string was selected as objects. The coupling analysis model of the physical field with the temperature field, flow field and stress field was set up. The inner wall temperature was 36.99℃. Its outer wall temperature was 50.55℃. The axial pressure drop with the fracturing fluid was 0.83 MPa. It would provide a theoretical basis for accurately describing the fracturing fluid temperature and pressure.
引文
[1]李文洪,王吉文.分层压裂工艺技术研究[J].吐哈油气,2006,11(3):258~262.
    [2]王金友,冯立,谢建华.徐深气田分层压裂、排液一体化工艺管柱研究[J].油气田地面工程,2006,25(3):9~10.
    [3]江汉石油管理局采油工艺研究所.封隔器理论基础与应用[M].北京:石油工业出版社,1983. 30~37.
    [4]杜现飞,王海文,王帅等.深井压裂井下管柱力学分析及应用[J].石油矿场机械,2008,37(8):28~33.
    [5]黄云.注水工艺管柱力学行为研究[D].西南石油学院硕士学位论文,2005.
    [6]周望,谢朝阳.大庆油田水力压裂技术的发展[J].大庆石油地质与开发,1998,11(2):35~37.
    [7] Lubinski, A.,Althouse, W.S., Logan, J.L. Helical Buckling of Tubing sealed in Packers [J]. JPT, 1962,14(3):pp655-670.
    [8] Hammerlindl, D.L. Movement, Forces and Stresses Associated with Combination Tubing Strings sealed in Packers[J]. PET, 1977,29(1): pp195-208.
    [9] Hammerlindl, D.J. Basic Fluid and Pressure Forces on oil well Tubular [J]. J.PET. Tech.,1980,32(3):pp153-159.
    [10] Hammerlindl, D.J.Packer-to-Tubing Forces for Intermediate Packers [J]. J. PET. Tech., 1980,32(2):pp515-527.
    [11] Cheatham, J.B., Pattillo, P.D. Helical Postbuckling Configuration of a Weightless Column Under the Action of an Axial Load [J]. SPE,J. 1984,(4):pp467-472.
    [12] E.E.Maidla, A.K.Woitanowicz. Predicting of casing running loads in directional well. The 20th annual OTC in Houston, Tekas, May2-5,1998.
    [13] Wu, J., Juvkam-wold, H.C. Helical Buckling of Pipes in Extended Reach and Horizontal wells-Part1: Preventing Helical Buckling[J]. Jour. Of Energy Resources Tech. 1993,115(3):pp190-195.
    [14] Wu, J., Juvkam-wold, H.C. Preventing Helical Buckling of Pipes in Extended Reach and Horizontal Wells[C]. 93-PET-7. Energy-Sources Tech. Conference & Exhibition , 1993: pp1-6.
    [15] Wu, J., Juvkam-wold, H.C. Helical Buckling of Pipes in Extended Reach and Horizontalwells-Part2: Frictional Drag Analysis[J]. Jour. of Energy Resources. Tech. 1993,115(3):pp196-201.
    [16] Wu, J., Juvkam-wold, H.C.Frictional Drag Analysis for Helically Buckled Pipes in Extended and Horizontal Wells[C].93-PET-8. Energy-Sources Tech. Conference & Exhibiton, 1993:pp1-8.
    [17]冯建华、罗铁军、金学锋.双封隔器复合管柱受力分析方法及应用[J].石油钻采工艺,1993,16(2):65~68.
    [18]刘巨保,栾绍信,张学鸿.水平井压裂管柱受力变形分析的间隙元法[J].石油学报,1994,15(1):135~140.
    [19]李文魁.深井高能气体压裂技术试验研究[J].石油钻采工艺,1995(2):55~60.
    [20]虞建业.江苏油田分层压裂工艺技术与研究[J].试采技术,1995,16(2):38~42.
    [21]刘巨保,张学鸿,朱振锐.水平井分流压裂管柱设计与力学分析[J].天然气工业,1998,18(3):46~49.
    [22]陈明忠.分层压裂技术在多层开采中的应用[J].钻采工艺,2001,24(4):81~82.
    [23]岳惠,余梅卿,鲁献春,等.高压分层酸化管柱的研制和应用[J].石油机械,2001,29(2):44~46.
    [24] Josef . shaul, Edgar Folmar, Klaaas van Gijtenbeek, Halliburton. Hydraulic Fracturing improves Recovery in a Layered Reservoir Under Waterflood in Kazakhstan[R]. SPE 75146,2002.
    [25]孙爱军,徐英娜,李洪洌,等.注水管柱的受力分析及理论计算[J].钻采工艺,2003,26(3):55~57.
    [26]窦益华,张福祥.高温高压深井试油井下管柱力学分析以其应用[J].钻采工艺,2007,30(5):17~20.
    [27]王祖文,林玉玺,窦益华.大庆油田高温深井试气井下管柱力学分析及应用[J].大庆石油地质与开发,2007,26(6):102~106.
    [28]李敬元,李子丰,李天降.井下作业管柱力学分析软件及应用[J].石油钻采工艺,2008,30(5):118~121.
    [29]常会军,谢圣龙,李明琴,等.水力压缩式封隔器卡水管柱在抽油井上的应用[J].石油钻探技术,2002,30(5):58~59.
    [30]马卫荣,裴付林,张波.塔河油田酸压工艺管柱研究[J]新疆石油学院学报,2004,16(3):48-52.
    [31]生丽敏.井下管柱力学分析及优化设计[D].成都:西南石油学院,2005.
    [32]姜瑞忠,蒋廷学,汪永利.水力压裂技术的近期发展与展望[J].石油钻采工艺,2004,26(4):52~56.
    [33]丁鹏,闫相祯.高压注水管柱力学分析[J].石油钻探技术,2005,33(6):47~50
    [34]王宏坤.不动管柱两层压裂及排液一体化技术研究[D].大庆石油学院工程硕士学位论文,2007.
    [35]李钦道,谢光平,张娟.自由移动封隔器管柱变形量计算分析[J].钻采工艺,2002,25(1):60~64.
    [36]周全兴.钻采工具手册[M].北京:科学出版社,2000:137~139.
    [37] Rick Stanley. Fracturing for Water Control Utilizing Relative Perm Modifiers in Frac Fluids to Delay or Reduce Future Water Production Issues. presented at SPE ATW”Advancing the Application of the Hydraulic Fracturing”, March 9-14, 2003, Guilin, Guangxi,China.
    [38]刘巨保.石油设备有限元分析[M].北京:石油工业出版社,1996,77~80.
    [39]宋翔虎,杜华章.深井压裂工艺管柱研究[J].石油机械,2006,34(7):72~74.
    [40]于洋洋,张公社,段渊,等.高压注水管柱变形及强度校核研究[J].段块油气田,2007,14(3):75~76.
    [41]黄云,刘清友,莫丽.注水管柱温度场数值计算模型研究[J].钻采工艺,2008,31(5):44~46.
    [42]梁政,邓雄.高温高压深井测试管柱力学研究初探[J].天然气工业,1998,18(4):62~65.
    [43]何祖清,朱晓荣,刘清友,等.注水管柱温度场计算模型研究[J].长江大学学报,4(2):255~256.
    [44]乔智国,叶翠莲.注入井井筒内温度分布数学模型的建立和求解[J].天然气技术,2008,2(3):30~31.
    [45]李兆敏.非牛顿流体力学[M].北京:石油工业出版社,2001,67~80.
    [46]陈涛平,胡靖邦.石油工程[M].北京:石油工业出版社,2004,376~380.
    [47]肖国华.不动管柱分层酸化压裂工艺管柱研究[J].石油机械,2004,32(2):49~55.
    [48]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2004,20~25.
    [49]刘国庆,杨庆东. ANSYS工程应用教程-机械篇[M].北京:中国铁道出版社,2003,263~270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700