枳椇肉质果梗多糖的分离纯化、结构分析及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枳椇(Hovenia dulcis)为鼠李科(Rhamnaceae)高大落叶乔木,在我国分布广泛。枳棋属植物中的肉质果梗作为中药使用已有上千年的历史,其具有清热利尿,止渴除烦和解酒毒等功效。现代药理证明,枳棋肉质果梗具有解酒护肝、抗脂质过氧化以及抗疲劳等功能活性。
     目前对枳棋肉质果梗的研究主要集中在其粗提物和小分子化合物,而关于肉质果梗多糖的研究则未见报道。本论文以枳椇肉质果梗为原料,主要包括提取条件优化、分离纯化、理化性质、初步结构分析、抗氧化活性、抗急性酒精性肝损伤活性、免疫调节活性以及抑制肿瘤细胞增殖活性。主要结果如下:
     1枳椇肉质果梗多糖提取条件优化
     选择提取温度、提取时间和液料比3个因素分别进行单因素实验,在此基础上设计三因素五水平的响应面法实验进行提取条件的优化,通过Design-Expert软件对数据进行处理,得到枳椇肉质果梗多糖最佳提取条件为:提取温度96℃,提取时间200min,液料比21mL/g,提取次数3次。在此条件下多糖的得率为10.47%。
     按最优提取条件提取得到的枳椇肉质果梗多糖,经过冻融法去除淀粉和S-8大孔吸附树脂法脱色后,溶解性提高,颜色变浅,最终的粗多糖得率为3.3%。
     2枳椇肉质果梗多糖分离纯化、理化性质及初步结构分析
     采用DEAE-纤维素阴离子交换柱色谱法和葡聚糖G-100凝胶过滤柱色谱法对枳棋肉质果梗粗多糖进行两步纯化,获得三个纯化组分HDPS-1、HDPS-2和HDPS-3,得率分别是29.64%、10.93%和18.20%。采用HPLC法对HCPS-1、HCPS-2和HCPS-3的纯度进行进一步鉴定,结果表明HDPS-1、HDPS-2和HDPS-3三者都是均一的多糖组分。其相对重均分子量分别为:234.75,69.72和52.50kD。
     采用苯酚硫酸法、间羟联苯法、氯化钡-明胶法、考马斯亮蓝法对粗多糖、HDPS-1、 HDPS-2和HDPS-3中总糖含量、糖醛酸含量、硫酸基含量、蛋白质含量进行了测定。结果表明,粗多糖、HDPS-1、HDPS-2和HDPS-3中总糖含量分别是68.13%、86.94%、73.62%和69.41%;糖醛酸含量分别是16.54%、2.10%、8.80%和43.95%;硫酸基含量分别是8.45%,2.68%,2.98%和3.53%。另外,蛋白质含量测定结果表明粗多糖含有1.50%蛋白质,而纯化各组分则不含有蛋白质。GC分析表明,粗多糖由7种单糖组成,分别为鼠李糖、阿拉伯糖、岩藻糖、木糖、甘露糖、葡萄糖和半乳糖,其摩尔比是19.50:31.4:1.53:3.68:1.58:12.88:29.25;HDPS-1,HDPS-2和HDPS-3的主要单糖组成为鼠李糖,阿拉伯糖和半乳糖,三个样品中这三种单糖所占的摩尔百分比分别是HDPS-1:42.04%,17.00%和30.91%;HDPS-2:5.32%,48.76%和44.14%;HDPS-3:30.77%,37.76%和22.32%。
     红外光谱扫描表明,HDPS-1、HDPS-2和HDPS-3含有多糖的特征吸收峰。高碘酸氧化和Smith降解结果表明,三个纯化组分HDPS-1,HDPS-2,HDPS-3均是以1→3或1→3,6或1→3,4或1→3,4,6或1→2,3或1→2,4或1→2,4,6或1→2,3,4键连接糖基为主,分别占各自总摩尔数比例为59%,54%和61%。
     3枳棋肉质果梗多糖抗氧化活性和抗急性酒精性肝损伤活性
     采用化学分析的方法评价了枳棋肉质果梗粗多糖的体外抗氧化活性。结果表明,枳棋肉质果梗粗多糖具有清除超氧阴离子、抗脂质过氧化以及螯合金属离子的能力。在此基础上,采用酒精灌胃制备小鼠急性酒精性肝损伤模型,评价了枳棋肉质果梗粗多糖体内抗急性酒精性肝损伤的效果。结果表明,提前给药枳棋肉质果梗粗多糖20天,能显著减弱因肝损伤引起的血液中ALT和AST含量的升高,显著增强酒精性肝损伤小鼠肝脏中抗氧化酶SOD和GSH-Px的活性、减少脂质过氧化产物MDA的生成。结果表明,枳棋肉质果梗粗多糖可能是通过增强体内抗氧化酶的活性、直接清除ROS、抑制脂质过氧化以及螯合金属离子等途径来拮抗氧化应激引起的急性酒精性肝损伤。
     4枳棋肉质果梗多糖免疫调节活性
     首先采用体外细胞培养模型初步评价了枳棋肉质果梗多糖三个纯化组分的免疫调节活性。并根据体外实验的筛选结果,对于具有相对最强体外免疫调节活性的纯化组分,进一步研究了其在小鼠体内的免疫调节活性。
     体外免疫实验结果显示,HDPS-1,HDPS-2和HDPS-3均能在不同程度上刺激脾细胞增殖、促进巨噬细胞NO的合成、增强巨噬细胞酸性磷酸酶活性和巨噬细胞吞噬中性红的能力,说明HDPS-1,HDPS-2和HDPS-3均具有不同程度的体外免疫调节活性。对实验结果的对比分析发现,免疫调节活性在三个纯化组分之间存在显著差异,从强到弱依次是:HDPS-1>HDPS-2>HDPS-3。
     HDPS-1的体内免疫实验结果显示,不同剂量的HDPS-1均可以拮抗环磷酰胺导致的小鼠脾脏萎缩,提高脾脏中的溶菌酶活性,一定剂量的HDPS-1还能显著的提高免疫抑制小鼠血清中IL-6和IFN-γ水平。此外,HDPS-1体内发挥免疫调节活性具有很强的剂量依赖性,即在中、低浓度时具有促进免疫的作用,而在高浓度时具有一定程度的免疫抑制作用。这些结果表明,HDPS-1可能是通过调控与细胞免疫和体液免疫相关细胞因子的分泌来发挥其双向免疫调节活性。
     5枳棋肉质果梗多糖抑制肿瘤细胞增殖活性
     采用MTT法考察了HDPS对三种肿瘤细胞(A549、HepG2和BGC-823)的抑制增殖作用,并选取其中对HDPS最敏感的肿瘤细胞株,进一步研究HDPS对该细胞株细胞形态以及细胞凋亡的影响。
     实验结果表明,HDPS-1,HDPS-2和HDPS-3对肿瘤细胞A549和Hep G2均无明显的增殖抑制作用,但对肿瘤细胞BGC-823细胞抑制增殖效果显著。三个组分对肿瘤细胞BGC-823的增殖抑制作用均呈显著的量效和时效关系,在给药时间72h、给药浓度320μg/mL时,HDPS-1,HDPS-2和HDPS-3的抑制率分别为:93.94%,84.38%和78.33%。其中HDPS-1具有最强的增殖抑制作用,在给药时间为24,48和72h时,HDPS-1的半数抑制浓度分别为:207.05,44.13和5.02μg/mL.
     细胞形态学研究证明HDPS-1可以显著的抑制肿瘤细胞BGC-823的生长,且随剂量的增长细胞密度逐渐下降,细胞萎缩变形直至发生凋亡;Hoechst33258染色和流式细胞仪检测同时证明,HDPS-1诱导的细胞凋亡是其发挥抑制肿瘤细胞BGC-823增殖的主要原因。
Hovenia dulcis, belongs to a small genus of Rhamnaceae, is a tall deciduous tree that widely distribute in China. The peduncles of Hovenia dulcis have been used as a traditional Chinese herbal medicine for more than a millennium. The main effect including clear away heat, diuretic, slak thirst, and detoxify alcoholic intoxication. Modern pharmaceutical researches revealed that the peduncles of Hovenia dulcis could reduce alcohol toxicity, protect liver injury, resist fatigue and have anti-lipidperoxidation activities.
     Recent studies about the peduncles of Hovenia dulcis were mainly concentrated on its' crude extracts and some of low molecular weight chemical constituents, there is no report about the water-soluble polysaccharide from peduncles of Hovenia dulcis (HDPS). In this thesis, HDPS was studied, including optimization of extraction parameters, isolation and purification, chemical characterization, preliminary analysis of structures, antioxidant activity, hepatoprotective activity against acute alcohol-induced liver injury, immunomodulatory activity and inhibition activity of tumor proliferation. Main results are listed as follows:
     1. Optimization of extraction parameters of HDPS
     Extraction temperature, extraction time and liquid-raw ratio were selected in single-factor experiments. Based on the single-factor experiments, response surface methodology (RSM) experiments were applied for the optimization of extraction parameters of HDPS. Then the data was analyzed by Design-Expert Software, and the optimum extraction parameters were obtained as follows:extraction temperature96℃, extraction time200min, liquid-raw ratio21mL/g and extraction times3. Under optimum extraction conditions, the real extraction yield of HDPS was10.47%.
     HDPS obtained with the optimum extraction conditions, was treated by freeze-thaw action and S-8macroporous resin to remove starches and decolor, respectively. After two step treatment, HDPS with a little color and high soluble, the yield of crude HDPS was methods. The results showed that crude HDPS could scavenge O2· free radicals, inhibit lipid-peroxidation and chelate Fe2+in vitro. Based on its' antioxidant activities in vitro, hepatoprotective activity against acute alcohol-induced liver injury were evaluated by acute alcohol administration mice model. The results showed that crude HDPS pretreatment for20days could remarkably prevent alcohol-induced elevation of ALT and AST, enhance the activity of antioxidant enzymes (SOD and GSH-Px) and decrease the generation of lipid-peroxidation production (MDA). These results suggested that crude HDPS possessed a hepatoprotective effect against acute alcohol-induced liver injury via enhancing activity of antioxidant enzymes, scavenging reactive oxygen species, inhibiting lipid-peroxidation and chelating metal irons against the oxidative stress.
     4. Immunomodulatory activity of HDPS
     Firstly, Immunomodulatory activities in vitro of HDPS-1, HDPS-2and HDPS-3were evaluated by using the cell model experiments. Then according to the screening results of in vitro experiments, the purified fraction possessing best in vitro immunomodulatory activity was further studied for its' immunomodulatory activity in vivo.
     Immunomodulatory activities in vitro results demonstrated that all the three fractions had potent immunostimulatory activity, resulting in stimulating proliferation of splenocytes, enhancing phagocytosis, nitric oxide production and acid phosphatase activity of peritoneal macrophages. Furthermore, the three polysaccharide fractions had significant differences in stimulatory effect at every evaluation item, and their effects were in the order of HDPS-1> HDPS-2>HDPS-3(from high to low).
     Immunomodulating activities in vivo results showed that different dose HDPS-1could resist mice spleen weight decrease induced by Cyclophosphamide and enhance activity of LZM in spleen, and a certain dose HDPS-1could significantly enhance the content of IL-6and IFN-y in serum of immune suppress mice. In addition, HDPS-1plays an immunomodulatory activity in vivo with a high dose-dependent manner, that is, the low or medium dose could promote the immune function, and in high dose has an immunosuppressive activity to a certain degree. These results suggested that HDPS-1possessing a double immunomodulatory activity via regulating the generation of cytokine related with cellular and humoral immunity.
     5. Proliferation inhibitory activities of HDPS on tumor cells
     Proliferation inhibitory activities of HDPS for three tumor cell lines (A549, HepG2and BGC-823) were evaluated by MTT assay. For the most sensitive cell line to HDPS, the effects of HDPS on its'morphology and apoptosis were further studied.
     Results showed that HDPS-1, HDPS-2and HDPS-3have no significant inhibitory effect on the proliferation of tumor cell line A549and Hep G2, but have significant inhibitory effect for BGC-823. Three purified fractions have proliferation inhibition on BGC-823at significant time and dose dependent manner. Under drug administration time72h and dose320μg/mL, the inhibition rates of HDPS-1, HDPS-2and HDPS-3on BGC-823proliferation were93.94%,84.38%and78.33%,respectively. Among them HDPS-1showed the strongest inhibitory effect on the proliferation of BGC-823. At drug administration time24,48and72h,50%concentration of inhibition of HDPS-1was207.05,44.13and5.02μg/mL.
     Study on the cell morphology showed that HDPS-lcould significantly inhibit proliferation of BGC-823,the cell density decreased with the increase of sample dose, cellular atrophy and even apoptosis. Hoechst33258stain and flow cytometry detection confirmed that HDPS-1-induced cell apoptosis plays a main effect on its' proliferation inhibitory effect to BGC-823.
引文
[1]谢宗万,余友岑.全国中草药名鉴,上册[M].北京:人民卫生出版社,1996:464-472.
    [2]黄雯,林富聪,张庆美.珍稀树种枳椇研究现状与应用前景[J].福建热作科技,2010,35(3):44-48.
    [3]丁向阳.枳椇种质资源及利用[J].经济林研究,2005,23(3):85-88.
    [4]陈艺林.中国植物志(48卷第一分册).北京:科学出版社,1982:88.
    [5]嵇扬,陆红.枳椇子研究进展[J].中草药,2002,33(9):附5-附7.
    [6]谢志民.枳椇和枳椇子得本草考证[J].中药材,1994,17(6):44-46.
    [7]汤银红,丁斌如.枳椇子水提物对乙醇脱氢酶活性的影响[J].中药药理与临床,2004,20(2):24.
    [8]陈春晓.酒精性肝炎大鼠模型建立及枳椇子的干预作用[J].浙江中西医结合杂志,2007,17(5):285-287.
    [9]Fang H L, Lin H Y, Chan M C, et al. Treatment of chronic liver injuries in mice by oral administration of ethanolic extract of the fruit of Hovenia dulcis [J]. American Journal of Chinese Medicine,2007,35(4):693-703.
    [10]Yoshikawa M, Murakami T, Ueda T, et al. Bioactive saponins and glycosides.Ⅳ. Four methyl-migrated 16,17-seco-dammarane triterpene glycosides from Chinese natural medicine, Hoveniae Semen Seu Fructus, the seeds and fruit of Hovenia dulcis Thunb:Absolute stereostructures and inhibitory activity on histamine release of hovenidulciosides A1, A2, B1, and B2 [J]. Chemical & Pharmaceutical Bulletin,1996,44(9):1736-1743.
    [11]Kawai K I, Akiyama T, Ogihara Y, et al. A new sapogenin in the saponins of Zizyphus Jujuba, Hovenia dulcis and Bacopa monniera [J]. Phytochemistry,1974,13:2829-2832.
    [12]Yasuko K, Yoshimasa K, Tadahiro T, et al. Three new saponins from the leaves of Hovenia dulcis (Rhamnaceae) [J]. Journal of the Chemical Society, Perkin transactions 1,1981,1923-1927.
    [13]Kobayashi Y, Takeda T, Ogihara Y, et al. Novel dammarane triterpenoid glycosides from the leaves of Hovenia dulcis. X-Ray crystal structure of hovenolactone monohydrate [J]. Journal of the Chemical Society, Perkin transactions 1,1982,2795-2799.
    [14]Yoshikawa K, Tumura S, Yamada K, et al. Antisweet natural products:VII. Hodulosides Ⅰ, Ⅱ, Ⅲ, e IV, and V from the leaves of Hovenia dulcis Thunb [J]. Chemical & Pharmaceutical Bulletin,1992, 40(9):2287-2291.
    [15]Yoshikawa K, Nagai Y, Yoshida M, et al. Antisweet Natural-Products.VIII. Structures of Hodulosides VI-X from Hovenia-Dulcis Thunb Var Tomentella Makino [J]. Chemical & Pharmaceutical Bulletin,1993,41(10):1722-1725.
    [16]梁侨丽,丁林生.枳棋叶化学成分研究(III)[J].中国药科大学学报,1996,27(7):401-404.
    [17]Yoshikawa M, Ueda T, Muraoka O, et al. Absolute Stereostructures of Hovenidulcioside A1 and Hovenidulcioside A2 Bioactive Novel Triterpene Glycosides from Hoveniae-Semen-Seu-Fructus, the Seeds and Fruit of Hovenia Dulcis Thunb [J]. Chemical & Pharmaceutical Bulletin,1995,43(3): 532-534.
    [18]Yoshikawa K, Nagai M, Wakabayashi M, et al. Aroma glycosides from Hovenia dulsis [J]. Phytochemistry,1993,34(5):1431-1433.
    [19]张晶,陈全成,田义新.枳棋子中的萜类成分[J].中国天然药物,2007,5(4):315-316.
    [20]衣淑珍,傅秋生.枳棋子促智活性成分的研究[J].第二军医大学学报,2009,30(11):1281-1287.
    [21]梁侨丽,丁林生.枳棋叶的化学成分研究(I)[J].中草药,1999,27(10):581-583.
    [22]丁林生,梁侨丽,腾艳芬.枳棋子黄酮类成分研究[J].药学学报,1997,32(8):600-602.
    [23]Yoshikawa M, Murakami T, Ueda T, et al. Bioactive constituents of Chinese natural medicines.3. Absolute stereostructures of new dihydroflavonols, hovenitins Ⅰ, Ⅱ, and Ⅲ, isolated from Hoveniae Semen Sen Fructus, the seed and fruit of Hovenia dulcis THUNB, (Rhamnaceae):Inhibitory effect on alcohol-induced muscular relaxation and hepatoprotective activity [J]. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan,1997,117(2):108-118.
    [24]沙美,丁林生.枳棋子得化学成分研究[J].中国药科大学学报,2001,32(6):418-420.
    [25]Takai M, Ogihara Y, Shibata S. New peptide alkaloids from Hovenia Dulcis and H. Tomentella [J]. Phytochemistry,1973,12:2985-2986.
    [26]金宝渊,朴万基,朴政一.枳棋子生物碱成分的研究[J].中草药,1994,25(3):161.
    [27]贾春晓,张峻松,毛多斌,等.拐枣种子油中脂肪酸的GC-MS分析[J].分析科学学报,2004,20(3):333-334.
    [28]时涛,陈振德,陶金城,等.枳棋子脂肪油超临界C02流体萃取及GC-MS分析[J].中国药房,2007,18(24):1866-1867.
    [29]王玲,李志西,于修烛,等.枳棋籽油理化性质及其脂肪酸分析[J].中国油脂,2010,35(7):73-75.
    [30]贾春晓,熊卫东,毛多斌,等.拐枣果梗中有机酸成分的GC-MS分析[J].中国食品学报,2005,5(1):72-74.
    [31]梁侨丽,丁林生.枳棋叶化学成分研究(II)[J].中草药,1997,28(8):457-459.
    [32]申向荣,张德志.枳棋子石油醚部位的化学成分研究[J].广东药学学报,2006,22(6):594-595.
    [33]王平.拐枣果浸渍液对机体乙醇代谢的影响[J].中南林学院学报,1997,17(3):65-67.
    [34]嵇扬,李俊,杨平.枳棋子对急性酒精中毒的作用[J].中药材,2001,24(2):126-128.
    [35]嵇扬,陆红,杨平.枳棋子酒与枳棋子水提取液解酒毒作用比较研究[J].时珍国医国药,2001,12(6):481-483.
    [36]任发政,罗云波,杜海全,等.枳棋子浸提液影响乙醇吸收的研究[J].食品科学,2003,24(1):31-33.
    [37]韩钰,王艳林,樊玉谷,等.枳棋子对实验性肝损伤的防护作用[J].现代应用药学,1997,14(2):6-9.
    [38]Hase K, Ohsugi M, Xiong Q B, et al. Hepatoprotective effect of Hovenia dulcis Thunb. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide [J]. Biological & Pharmaceutical Bulletin,1997,20(4):381-385.
    [39]张洪,何文,李志建.枳棋子提取物对乙醇所致小鼠肝损伤的拮抗作用[J].广东药学院学报,2001,17(3):180-183.
    [40]嵇扬,陆红.枳棋子水提液对四氯化碳致小鼠肝损伤的保护作用[J].时珍国医国药,2002,13(6):327-328.
    [41]嵇扬,杨平,李俊.枳棋子对乙醇所致小鼠肝脏损伤的预防作用[J].中药药理与临床,2000,16(3):19-20.
    [42]嵇扬,陆红.枳棋子水提液对原代培养大鼠肝细胞促生长作用的使用研究[J].中国中医药科技,2001,8(3):162-163.
    [43]文为,张洪,叶丽萍.枳椇子对CCl4大鼠肝纤维化预防肝组织病理变化的影响[J].云南中医学院学报,2004,27(4):23-27.
    [44]谢立,陈振德,孙新华,等.枳棋子解酒活性提取部位的研究[J].中国药房,2007,18(33):2570-2572.
    [45]张洪,叶丽萍,张如洪,等.枳棋子有效部位的初步研究[J].广东药学院学报,2003,19(2):111.115.
    [46]王艳林,韩钰,钱京萍.枳棋子抗脂质过氧化作用的实验研究[J].中草药,1994,25(6):306-307,316,335.
    [47]汪海涛,嵇扬,徐永祥,等.枳棋子提取物对D-半乳糖致亚急性衰老小鼠氧化损伤的保护作用[J].中国药学杂志,2008,43(8):591-594.
    [48]王飞,张洪,刘秀玲.枳棋子各部位清除羟自由基作用的比较[J].华西药学杂志,2006,21(1):48-50.
    [49]Li G, Min B, Zheng, C, et al. Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis [J].Archines of Pharmacal Research,2005,28(7):804-809.
    [50]嵇扬,王文俊,孙芳.枳棋子水提液对小鼠综合体能的影响[J].中医药学报,2003,31(3):22-23.
    [51]伊佳,嵇扬,王文俊.枳棋子水提物对小鼠耐寒耐热耐缺氧作用的实验研究[J].解放军药学学报,2008,24(5):414-416.
    [52]伊佳,嵇扬,刘俊,等.枳棋子水提物抗疲劳作用及机制的实验研究[J].中药材,2009,32(6):962-965.
    [53]伊佳,嵇扬,刘俊,等.枳棋子乙酸乙酯提取物对小鼠耐缺氧能力及糖原含量影响实验研究[J].解放军药学学报,2009,25(2):130-132.
    [54]汪海涛,嵇扬,徐永祥,等.枳棋子乙醇提取物抗疲劳作用的实验研究[J].解放军药学学报,2008,24(2):121-123.
    [55]杨智源.枳棋子水煎液对高脂血症大鼠LDL-C、HDL-C影响的实验研究[D].长春:长春中医药大学,2009:1.
    [56]杨光.枳棋子水煎液对高脂血症大鼠TC/TG影响的实验研究[D].长春:长春中医药大学,2009:1.
    [57]沈莉纳摘.国外医药-植物药分册,1993,8(2):89.
    [58]嵇扬,狄亚敏,陶胜源,等.枳棋细胞毒作用和抑瘤作用的实验研究[J].中国中医药科技,2003,10(2):98-99.
    [59]Park S H, Chang E Y. Antimutagenic and cytotoxic effects of Hovenia dulcis Thumb leaves extracts [J]. Journal of the Korean Society of Food Science and Nutrition,2007,36(11):1371-1376.
    [60]Cho J Y, Moon J H, Eun J B, et al. Isolation and characterization of 3(Z)-Dodecenedioic acid as an antibacterial substance from Hovenia dulcis Thunb [J].Food Science and Biotechnology,2004, 13(1):46-50.
    [61]Gadelha A P R, Vidal F, Castro T M, et al. Susceptibility of Giardia lamblia to Hovenia dulcis extracts [J].Parasitol Research,2005,97:399-407.
    [62]王艳林,韩钰,樊玉谷.拐枣的食用价值研究I:营养成分分析[J].天然产物研究与开发,1994,6(1):89-92.
    [63]王艳林,韩钰,黄利鸣,等.拐枣的食用价值研究II.食用安全性分析[J].天然产物研究与开发,1994,6(2):79-83.
    [64]方积年,王顺春.香菇多糖的研究进展[J].中国药学杂志,1997,32(6):332-334.
    [65]林志彬.灵芝多糖的免疫药理学研究及其意义[J].北京医科大学学报,24(4):271-274.
    [66]单俊杰,王易,王顺春,等.当归多糖对小鼠脾淋巴细胞增殖及诱生INF-γ的影响[J].药学学 报,2002,37(7):497-500.
    [67]张信岳,杨根元,梁丽坚,等.羧甲基茯苓多糖钠体外抗单纯疱疹病毒I型的作用[J].中药新药与临床药理,2003,14(3):161-163.
    [68]李贵荣.枸杞多糖的提取及其对活性氧自由基的清除作用[J].中国现代应用药学杂志,2002,19(2):94-95.
    [1]丁向阳.枳棋种质资源及利用[J].经济林研究,2005,23(3):85-88.
    [2]慕运动.响应面方法及其在食品工业中的应用[J].郑州工程学院学报,2001,22(3):91-94.
    [3]Paseephol T, Small D, Sherkat F. Process optimization fro fractionating Jerusalem artichoke fructans with ethanol using response surface methodology [J]. Food Chemistry,2007,104:73-80.
    [4]Wu Y, Cui S W, Tang J, et al. Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology [J]. Food Chemistry,2007,105: 1599-1605.
    [5]Luo J, Liu J, Sun Y, et al. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilat [J]. Carbohydrate Polymers,2010, 81(3):533-540.
    [6]Faveri D D, Torre P, Perego, P. et al. Statistical investigation on the effects of starting xylose concentration and oxygen mass flowrate on xylitol production from rice straw hydrolyzate by respone surface methodology [J]. Journal of Food Engineering,65(3):383-389.
    [7]Liu J, Luo J, Sun Y, et al. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin [J]. Bioresource Tchnology,2010,101(15):6077-6083.
    [8]Sun L, Feng K, Jiang R, et al. Water-soluble polysaccharide from Bupleurum chinense DC:isolation, structural features and antioxidant activity [J]. Carbohydrate Polymers,2010,79(1):180-183.
    [9]Lonseny T,何国庆,尹源明,等.香菇多糖提取条件的优化研究[J].科技通报,2006,22(3):342-346.
    [10]Li W, Cui S W, Kakuda Y. Extraction, fractionation, structural and physical characterization of wheat β-D-glucans [J]. Carbohydrate Polymers,2006,63(3):408-416.
    [11]Braga M E M, Moreschi S R M, Meireles M A A. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches [J]. Carbohydrate Polymers,2006,63(3): 340-346.
    [12]Ray B. Polysaccharides from Enteromorpha compressa:Isolation, purification and structural features [J]. Carbohydrate Polymers,2006,66(3):408-416.
    [13]Hou X, Chen W. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology [J]. Carbohydrate Polymers,2008,72:67-74.
    [14]Sun Y, Liu J, Kennedy J F. Extraction optimization of antioxidant polysaccharides from the fruiting bodies of Chroogomphis rutilus (Schaeff.:Fr.) O.K. Miller by Box-Behnken statistical design [J]. Carbohydrate Polymers,2010,82:209-214.
    [15]赵鹏,李稳宏,朱聚海,等.款冬花多糖提取工艺的研究[J].中成药,2010,32(1):58-61.
    [16]高愿军,张家泉,司俊娜,等.响应面法优化桦褐孔菌多糖提取工艺[J].食品研究与开发,2009,30(6):7-10.
    [17]余杰,崔鹏举,卓健勇,等.响应面分析方法在鸡腿菇多糖提取中的应用[J].食品科学,2009,30(8):93-96.
    [1]Roy S K, Maiti D, Mondal S, et al. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan [J]. Carbohydrate Research,2008,343(6),1108-1113.
    [2]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260.
    [3]Jones T M, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides [J]. Plant Physiology,1972,49:926-936.
    [4]Oades J M. Gas-liquid chromatography of alditol acetates and its application to the analysis of sugars in complex hydrolysates [J]. Journal of Chromatography A,1967,28:246-252.
    [5]Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids [J]. Analytical Biochemistry,1973,54:484-489.
    [6]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Biochemistry,1956,28,350-356.
    [7]Bradford M M.A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytic Biochemistry,1976,72,248-254.
    [8]Dodgson K S, Price R G. A note on the determination of the ester sulfate content of sulfate polysaccharides [J]. Biochemistry Journal,1962,84,106-110.
    [9]Qiao D, Liu J, Ke C, et al. Structural characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2010,82(4):1184-1190.
    [1]李伟球.有关酒精性肝损伤的研究进展[J].南京部队医药,1999,1(1):73-75.
    [2]中华医学会肝病学发挥脂肪肝和酒精性肝病学组.酒精性肝病诊疗指南(2010年1月修订)[J].现代医药卫生,2011,27(6):801-804.
    [3]Diehl A M. Liver disease in alcohol abusers:clinical perspective [J]. Alcohol,2002,27(1):7-11.
    [4]姚桢.酒精性肝病[M].中国医药科技出版社,2001:120-211.
    [5]Koch O R, Pani G, Borrello S. et al. Oxidative stress and antioxidant defenses in ethanol-induced cell injury [J]. Molecular Aspects of Medicine,2004,25:191-198.
    [6]Diluzio N R. Prevention of the acute ethanol-induced fatty liver by the simultaneous administration of antioxidants [J]. Life Science,1964,3:113-118.
    [7]Diluzio N R, Hartman A D. Role of lipid peroxidation in pathogenesis of ethanol-induced fatty liver [J]. Federation Proceedings,1967,26:1436-1442.
    [8]Tomasi A, Albano E, Biasi F, et al. Activation of chaloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique [J]. Chemico-Biological Interactions,1985,55:303-316.
    [9]Reinke L A, Lai E K, DuBose C M, et al. Reactive free radical generation in the heart and liver of ethanol-fed rats:correlation with in vitro radical formation [J]. Proceedings of the National Academy of Sciences of the United States of America,1987,84:9223-9227.
    [10]Rashba-Step J, Turro N J, Cederbaum A I. Increased NADPH-and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment [J]. Archives of Biochemistry and Biophysics,1993,300:401-408.
    [11]Knecht K T, Bradford B U, Mason R P, et al.In vivo formation of a free radical metabolite of ethanol [J]. Molecular Pharmacology,1990,38:26-30.
    [12]Arteel G E. Oxidants and antioxidants in alcohol-induced liver disease [J]. Gastroenterology,2003, 124(3):778-790.
    [13]Ruperez P, Ahrazem O, Leal J A. Potential antioxidant capacity of sulfated polysaccharides from the dedible marine brown seaweed focus vesiculosus [J]. Journal of Agricultural and Food Chemsitry,2002,50(4):840-845.
    [14]Zhang Q B, Li N, Zhou G F, et al. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice [J]. Pharmacological Research,2003,48(2): 151-155.
    [15]Yuan Y V, Bone D E, Carrington M F. Antioxidant activity of dulse(Palmaria palmata) extract evaluated in vitro [J]. Food Chemistry,2005,91(3):485-494.
    [16]Wu J H, Xu C, Shan C Y, et al. Antioxidant properties and PC12 cell protective effects of APS-1, a polysaccharide from Aloe vera var. chinensis [J]. Life Sciences,2006,78(6):622-630.
    [17]Chen J, Hu T, Zheng R. Antioxidant activities of Sophora subprosrate polysaccharide in immunosuppressed mice [J]. International Immunopharmacology,2007,7(4):547-553.
    [18]Qiao D L, Ke C L, Hu B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,78(2):199-204.
    [19]南京中医药大学.中药大辞典[M].2版.上海:上海科技出版社,2006:2232-2234.
    [20]Hase K, Ohsugi M, Xiong Q B, et al. Hepatoprotective effect of Hovenia dulcis Thunb. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide [J]. Biological & Pharmaceutical Bulletin,1997,20(4):381-385.
    [21]Yoshikawa M, Murakami T, Ueda T, et al. Bioactive constituents of Chinese natural medicines.Ⅲ. Absolute stereostructures of new dihydroflavonols, hovenitins Ⅰ,Ⅱ, and Ⅲ, isolated from Hoveniae Semen Sen Fructus, the seed and fruit of Hovenia dulcis THUNB.(Rhamnaceae):Inhibitory effect on alcohol-induced muscular relaxation and hepatoprotective activity. [J].Yakugaku Zasshi,1997, 117(2):108-118.
    [22]Ji Y, Li J,Yang P. Effects of fruits of Hovenia dulcis Thunb on acute alcohol toxicity in mice [J]. Zhong Yao Cai,2001,24(2):126-128.
    [23]Na C S, Chung N C, Yang KH, et al. Hapatoprotective and blood alcohol lowering effects of fruit peduncle extract of Hovenia dulcis var [J]. Yakhak Hoeji,2004,48:34-40.
    [24]Fang H L, Lin H Y, Chan M C, et al. Treatment of chronic liver injuries in mice by oral administration of ethanolic extract of the fruit of Hovenia dulcis [J]. American Journal of Chinese Medicine,2007,35(4):693-703.
    [25]Liu F, Ooi V E C, Chang S T. Free radical scavenging activities of mushroom polysaccharide extracts [J]. Life Sciences,1997,60:763-771.
    [26]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro [J]. Carbohydrate Polymers,2006,66(1):34-42.
    [27]Yen G C, Hsieh C L. Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) towards various lipid peroxidation models in vitro [J]. Journal of Agricultural and Food Chemistry,1998,46: 3952-3957.
    [28]Yang X B, Gao X D, Han F, et al. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2005,1725(1):120-127.
    [29]Qi H, Zhang Q, Zhao T, et al. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) [J]. Bioorganic & Medicinal Chemistry Letters,2006,16(9):2441-2445.
    [30]Wang H, Feng F, Zhuang B, et al. Evaluation of hepatoprotective effect of Zhi-Zi-Da-Huang decoction and its two fractions against acute alcohol-induced liver injury in rats [J]. Journal of Ethnopharmacology,2009,126:73-279.
    [31]Khanal T, Choi J H, Hwang Y P, et al. Saponins isolated from the root of Platycodon grandiflorum protect against acute ethanol-induced hepatotoxicity in mice [J]. Food and Chemical Toxicology, 2009,47:530-535.
    [32]Wickens A P. Ageing and the free radical theory [J]. Respiration Physiology,2001,128:379-391.
    [33]乌日娜,李大力,孙丽艳,等.中药蒙药抗脂质过氧化体外测定法[J].时珍国医国药,2000,1:3-4.
    [34]Abuja P M, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins [J]. Clinica Chimica Acta,2001,306:1-17.
    [35]Liu C, Wang C, Xu Z, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water [J]. Process Biochemistry,2007,42(6):961-970.
    [36]赵静波,王泰龄,张晶,等.大鼠急性酒精性肝损伤模型分析[J].中日友好医院学报,1996,10(1):17-20.
    [37]刘耕陶,魏怀玲,宋振玉.联苯双酯对小鼠肝损伤保护作用的进一步研究[J].药学学报,1982,17(2):101-106.
    [38]朱文莲.联苯双酯预防抗结核药物引起肝损伤的临床观察[J].中原医刊,2004,31(1):46.
    [39]符铁波,刘耕陶.联苯双酯抗肝细胞损伤作用的实验研究[J].中华医学杂志,1990,70(4):201-204.
    [40]Pan S, Yang R, Dong H, et al. Bifendat treatment attenuates hepatic steatosis in cholesterol/bile salt-and high-fat diet-induced hypercholesterolemia in mice [J], European Journal of Pharmacology, 2006,552:170-175.
    [41]Guan L P, Nan J X, Jin X J, et al. Protective effects of chalcone derivatives for acute liver injury in mice [J]. Archives of Pharmacal Research,2005,28:81-86.
    [42]Amacher D E. Serum transaminase elevations as indicators of hepatic injury following the administration of drugs [J]. Regulatory Toxicology and Pharmacology,1998,27(2):119-130.
    [43]于学美,韩涛,崔西泉,等.补益肝气方药对酒精性脂肪肝模型大鼠TNF-a含量的影响[J]. 泰山医学院学报,2007,28(11):841-843.
    [44]Lander H M. An essential role for free radicals and derived species in signal transduction [J]. The Journal of the Federation of American Societies for Experimental Biology,1997,11:118-124.
    [45]MatEs J M, P6rez-Gomez C, Nunez De Castro I. Antioxidant enzymes and human diseases [J]. Clinical Biochemistry,1999,32(8):595-603.
    [46]Gonzalez F J. Role of cytochromes P450 in chemical toxicity and oxidative stress:studies with CYP2E1 [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2005, 569(1-2):101-110.
    [47]McCord J M, Fridovic I. Superoxide dismutase, An Enzymic Function for Erythrocuprein (hemocuprein) [J]. The Journal of Biological Chemistry,1969,244:6049-6055.
    [48]Kim S J, Lee J W, Jung Y S, et al. Ethanol-induced liver injury and changes in sulfur amino acid metabolomics in glutathione peroxidase and catalase double knockout mice [J]. Journal of Hepatology,2009,50:1184-1191.
    [49]吴蠡荪.自由基与临床医学(上)[J].微循环学杂志,1998,8(3):34-36.
    [50]曾涛.大蒜油拮抗酒精性肝损伤及相关机制的研究[D].济南,山东大学,2010:70.
    [51]Li X M. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats [J]. International Journal of Biological Macromolecules,2007,40:461-465.
    [52]Guo T, Xu H, Zhang L, et al. In vivo protective effect of Porphyra yezoensis polysaccharide against carbon tetrachloride induced hepatotoxicity in mice [J]. Regulatory Toxicology and Pharmacology, 2007,49:101-106.
    [53]Qin C, Huang K, Xu H. Protective effect of polysaccharide from the loach on the in vitro and in vivo peroxidative damage of hepatocyte [J]. The Journal of Nutritional Biochemistry,2002,13: 592-597.
    [54]Qi H M, Zhang Q B, Zhao T T, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chalorophyta) in vitro [J]. International Journal of Biological Macromolecules,2005,37:195-199.
    [55]Zhao T T, Zhang Q B, Qi H M, et al. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight [J]. International Journal of Biological Macromolecules,2006,38:45-50.
    [56]Tseng Y H, Yang J H, Mau J L, et al. Antioxidant properties of polysaccharides from Ganoderma tsugae [J]. Food Chemistry,2008,107:732-738.
    [57]Rao R S P, Muralikrishana G. Water soluble feruloyl arabinoxylans from rice and ragi:Changes upon malting and their consequence on antioxidant activity [J]. Phytochemistry,2006,67:91-99.
    [58]Tian L, Zhao Y, Guo C, et al. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata [J]. Carbohydrate Polymers,2010,83:537-544.
    [59]Capek P, Machova E, Turjan J. Scavenging and antioxidant activities of immunomodulating polysaccharides isolated from Salvia officinalis L. [J]. International Journal of Biological Macromolecules,2009,44:75-80.
    [1]田庚元.中药免疫调节剂的研究和开发[J].中国新药杂志,1999,8(11):721-724.
    [2]丁春秀,黄勃,樊美珍.一种虫草胞外多糖的初步研究[J].安徽农业大学学报,2002,29(3):260-264.
    [3]王道福.中药多糖免疫调节作用的研究进展[J].实用医药杂志,2007,24(2):235-237.
    [4]Ooi V E, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes [J]. Current Medicinal Chemistry,2000,7(7):715-729.
    [5]Yang T, Jia M, Meng J, et al. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis [J]. International Journal of Biological Macromolecules,2006,39(4-5):179-184.
    [6]Sun Y, Wang S, Li T, et al. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng [J]. Bioresource Technology,2008,99(4):900-904.
    [7]Liu C, Xi T, Lin Q, et al. Immunomodulatory activity of polysaccharides isolated from Strongylocentrotus nudus eggs [J]. International Immunopharmacology,2008,8(13-14), 1835-1841.
    [8]Luo J, Liu J, Ke C, et al. Optimization of medium composition for the production of exopolysaccharides from Phellinus baumii Pilat in submerged culture and the immuno-stimulating activity of exopolysaccharides [J]. Carbohydrate Polymers,2009,78(3):409-415.
    [9]Qiao D, Luo J, Ke C, et al. Immunostimulatory activity of the polysaccharides from Hyriopsis cumingii [J]. International Journal of Biological Macromolecules,2010,47(5):676-680.
    [10]Green L C, Wagner D A, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids [J]. Analytical Biochemistry,1982,126(1):131-138.
    [11]Chen J R, Yang Z Q, Hu T J, et al. Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserine [J]. Fitoterapia,2010,81(8):1117-1124.
    [12]刘军,吕吕龙,王庆辉,等.紫菜多糖对免疫低功小鼠脾细胞功能的影响[J].中国海洋药物杂志,2006,25(3):43-45.
    [13]王静珍,熊建荣.枸杞多糖对小鼠胸腺和脾脏保护作用的研究[J].宁夏医学杂杂志,2001,23(11):661.
    [14]金伯泉,熊思东.医学免疫学[M].5版.北京:人民卫生出版社,2008:116,127,136.
    [15]高玉民,尹昕,朱秀雄.小鼠腹腔活化巨噬细胞的酸性磷酸酶测定[J].细胞生物学杂志,10(4):188-190.
    [16]徐远义,黄允宁,常越,等.多抗甲素增强大鼠腹腔巨噬细胞抗癌免疫功能的研究[J].免疫学杂志,2006,22(4):396-398.
    [17]毛泽善,宋向凤,马全祥,等.丝瓜藤提取物对小鼠免疫功能的影响[J].新乡医学院学报,2004,21(1):8-10.
    [18]张明军,胡庆和,贾本立.枸杞多糖对小鼠腹腔巨噬细胞作用的定量细胞化学研究[J].宁夏医学院学报,1994,16(4):307-310.
    [19]许波,杨军.NO与巨噬细胞抗肿瘤细胞毒效应的关系[J].重庆医学,2003,32(3):277-279.
    [20]王翔岩,齐云,蔡润兰,等.肉从蓉多糖的巨噬细胞活化作用[J].中国药理学通报,2009,25(6):787-790.
    [21]徐军发,黄迪南,吕世静,等.酵母多糖对体外培养小鼠腹腔巨噬细胞免疫功能的增强作用[J].广东医学院学报,2003,21(3):199-200.
    [22]姚金凤,吴亮亮,吴希哲,等.海洋真菌多糖YCP对巨噬细胞免疫功能的影响[J].中国药科大学学报,2004,35(6):573-575.
    [23]陈国荣,杨开颜,邵黎明,等.香菇多糖对大鼠肺泡巨噬细胞活性的影响[J].中国中医结合杂志,1996,基础理论研究特集:133-134.
    [24]陈伟,林新华,陈俊,等.库拉索芦荟多糖对小鼠腹腔巨噬细胞的体外激活作用[J].中国药学杂志,2005,40(1):34-37.
    [25]Yanaki T, Ito W, Tabata K. Correlation between antitumor activity of schizophyllan and its triple heix [J]. Agricultural & Biological Chemistry,1986,509:2415-2426.
    [26]Wasser S P. Medicinal mushrooms as a source of anti-tumor and immunomodulating polysaccharides [J]. Applied Microbiology and Biotechnology,2002,60(3):258-274.
    [27]Novak M, Vetvicka V.β-Glucans, history, and the present:Immunomodulatory aspects and mechanisms of action. Journal of Immunotoxicology,2008,5(1):47-57.
    [28]Okazaki M, Adachi Y, Ohno N, et al. Structure-activity relationship of (1→3)-β-D-glucans in the induction of cytokine production from macrophages, in vitro [J]. Biological & Pharmaceutical Bulletin,1995,18(10):1320-1327.
    [29]Leung M Y, Liu C, Zhu L F, et al. Chemical and biological characterization of a polysaccharide biological response modifier from Aloe vera L. var.chinesis (Haw.)Berg [J]. Glycobiology,2004, 14(6):501-510.
    [30]Schepetkin I A, Faulkner C L, Nelson-Overton L K, et al. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum [J]. International Immunopharmacology, 2005,5(13-14):1783-1799.
    [31]Schepetkin I A, Xie G, Kirpotina L N, et al. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha [J]. International Immunopharmacology,2008, 8(10):1455-1466.
    [32]Xie G, Schepetkin I A, Quinn M T. Immunomodulatory activity of acidic polysacchrides isolated from Tanacetum vulgare L [J]. International Immunopharmacology,2007,7(13):1639-1650.
    [33]Xie G, Schepetkin I A, Siemsen D W, et al. Fractionation and characterization of biologically-active polysaccharides from Artemisia tripartite [J]. Phytochemistry,2008,69(6):135-9-1371.
    [34]Karnjanapratum S, You S. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities [J]. International Journal of Biological Macromolecules,2011,48(2):311-318.
    [35]王惠国.安络小皮伞多糖的提取及其免疫调节作用研究[D].沈阳:辽宁中医药大学,2008:32.
    [36]郑玉淑,张善玉.复方黄芪多糖对环磷酰胺所致小鼠毒副作用的影响[J].延边大学医学学报,2007,30(4):252-254.
    [37]王新禹,梁前进.环磷酰胺的毒副作用机制及应对措施[J].药学进展,2006,30(10):452.
    [38]王惠国.安络小皮伞多糖的提取及其免疫调节作用研究[D].沈阳:辽宁中医药大学,2008:33.
    [30]毛跟年,许牡丹.功能食品生理特性与检测技术[M].北京:化学工业出版社,2005,387-394.
    [40]麻名文,李福吕.日粮精氨酸水平对断奶2月龄肉兔生长性能、免疫器官指数及血清指标的影响[J].动物营养学报,2009,21(3):405-410.
    [41]沈美玲,翟世康,罗英德,等.黄芪多糖生物活性的初步研究[J].中西医结合杂志,1984,4(10):615-617.
    [42]朱启,张东蕾,王芝萍,等.某些植物多糖对小鼠淋巴和造血细胞生成的影响[J].中国人民解放军军事医学科学院院刊,1985,3:279-285.
    [43]李先荣,康永,牛艳艳,等.注射用黄芪多糖药理作用的研究2.对免疫药理作用的实验研究[J].中成药,1989,11(5):26-28.
    [44]杨铁虹,卢保华,贾敏,等.当归多糖对小鼠免疫功能的影响[J].中国药理学通报,2003,19(4):448-451.
    [45]金伯泉,熊思东.医学免疫学[M].5版.北京:人民卫生出版社,2008:146.
    [46]荣晓花,凌沛学.溶菌酶的研究进展[J].中国生化药物杂志,1999,20(6):319-320.
    [47]楼善贤,苗德林.溶菌酶的研究进展[J].中国肿瘤临床,1994,21(9):709-711.
    [48]金伯泉,熊思东.医学免疫学[M].5版.北京:人民卫生出版社,2008:60.
    [49]单俊杰,王易,王顺春,等.当归多糖对小鼠脾淋巴细胞增殖及诱生IFN-的影响[J].药学学报,2002,37(7):497-500.
    [50]胡庭俊,陈炅然,程富胜,等.蕨麻多糖对小鼠血清中三种细胞因子水平的影响[J].中国兽医科技.2005,35(8):653-656.
    [51]黄玲,邝枣园,张敏.佛手多糖对免疫低’下小鼠细胞因子的影响[J].现代中西医结合杂志,2000,9(10):871-872.
    [52]路力生.白细胞介素6与肿瘤免疫[J].国外医学:免疫学分册,1991,6:298-302.
    [53]干惠国.安络小皮伞多糖的提取及其免疫调节作用研究[D].沈阳:辽宁中医药大学,2008:45.
    [54]郑元升,蒲含林,麻建军.牛大力多糖对小鼠T淋巴细胞增殖的双向调节作用[J].广东药学院学报,2008,24(1):58-61.
    [55]杜泽英,刘锡钧,王顺友.香菇多糖对人淋巴细胞IL-2分泌及IL-2R表达的双向调节作用[J].中国实验临床免疫学杂志,1994,6(1):40-43.
    [1]钝顶螺旋藻两个生态种多糖的抗菌、抗肿瘤活性及其机理的研究[D].呼和浩特:内蒙古农业大学,2010:62.
    [2]赖春丽,黄婉锋,祝晨蔯,抗肿瘤中药新药开发探讨[J].中药材,2003,26(9):677-680.
    [3]吴慧.抗肿瘤药物体外筛选方法[J].医学理论与实践,2005,18(2):146-147.
    [4]Ehrke M J. Immunomodulation in cancer therapeutics [J]. International Immunopharmacology,2003, 3:1105-1119.
    [5]王健,龚兴国.多糖的抗肿瘤及免疫调节研究进展[J].中国生化药物杂志,2001,22(1):52-54.
    [6]Zhang M, Cui S, Cheung P, et al. Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity [J]. Trends in Food Science & Technology,2007,18(1):4-19.
    [7]Wong C K, Leung K N, Fung, K P, et al. Immunomodulatory and antitumor polysaccharides from medicinal-plants [J]. Journal of International Medical Research,1994,22(6):299-312.
    [8]李杰,刘玉琴.MTT法在肿瘤研究中的改良及应用进展[J].中国肿瘤临床,1998,25(4):312-313.
    [9]王莉.米糠多糖及其硫酸酯的结构、抗肿瘤活性的研究[D].无锡:江南大学,2008:81
    [10]席艳,赵小磊,史本彩,等.肿瘤细胞凋亡与宫颈癌演进的关系[J].肿瘤基础与临床,2009,22(4):302-305.
    [11]巩涛,李勇,郭建文,等.ω-3多不饱和脂肪酸对人胃癌BGC-823细胞周期及凋亡的影响[J].中国临床营养杂志,2006,14(2):77-81.
    [12]胡映辉,林志彬.灵芝菌丝体多糖对HL-60细胞凋亡的影响[J].药学学报,1999,34(4):264-268.
    [13]Monari C, Paganelli F, Bistoni F, et al. Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms [J]. Cellular Microbiology,2008,10(10):2129-2137.
    [14]Ryu D S, Kim S H, Lee D S. Anti-proliferative effect of polysaccharides from Salicornia herbacea on induction of G2/M arrest and apoptosis in human colon cancer cells [J]. Journal of Microbiology and Biotechnology,2009,19(11):1482-1489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700