化学镀镍磷镀层三价铬与无铬钝化膜的制备及成膜机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学镀Ni-P镀层因其具有良好的均镀性、优良的耐蚀、耐磨和可焊性,在航空航天、石油化工、国防、能源以及电子微电子等领域得到广泛的应用。但由于金属镍具有较强的自钝化特性,使镀层表面容易形成镍的氧化物而失去光泽甚至变色,严重影响镀层外观。而且该膜层易遭破坏,也会使镀层的可焊性与耐蚀性受到严重影响。因此,有必要对Ni-P镀层进行有针对性的后处理,以提高镀层抗氧化变色性能与耐蚀性。传统的六价铬钝化处理可满足上述要求,但六价铬对人体与环境都具有很大的危害,加之人们对生态重要性的认识,研究无六价铬的钝化工艺已势在必行。
     本文通过无六价铬钝化处理来提高Ni-P镀层的抗氧化变色性能和耐蚀性。基于绿色环保的指导思想,系统研究了化学镀Ni-P层三价铬钝化膜和无铬钝化膜的制备工艺与成膜机制。为便于对比,同时也对六价铬钝化膜的耐蚀性与成膜机制进行了探讨。
     本研究的实验发现,酸性钝化体系易使镀层变色,尤其当pH值低于2.0时,镀层极易发黑,较难实现镀层的有效钝化。采用碱性三价铬工艺成功实现了化学镀Ni-P层的钝化,并以单因素实验确定了钝化体系主盐用量,体系操作温度,pH值等工艺参数。采用硝酸点滴法以及在3.5%NaCl溶液中的Tafel测试方法快速检验镀层抗氧化变色性能与耐腐蚀性能。结果表明,三价铬钝化膜可使镀层耐氧化性以及耐Cl-腐蚀的性能得到明显提高。
     以月桂酸为成膜剂,实现了Ni-P镀层的无铬钝化,并通过单因素实验确定了月桂酸用量及钝化体系的操作工艺。快速检测表明,该无铬钝化膜对镀层抗氧化能力提高有限,但可显著提高镀层耐Cl-侵蚀的能力。对硅烷偶联剂采用适当比例进行水解可得到稳定性超过一年的镀层封闭试剂。使用该试剂对Ni-P镀层进行封闭处理,可在镀层上获得一层致密的自组装膜,该膜层可使镀层抗氧化能力提高一个数量级,耐Cl-侵蚀能力可提高两个数量级以上。
     采用电化学方法研究了各种钝化膜在3.5%NaCl溶液中的腐蚀特性。使用扫描电子显微镜(SEM)考察了六价铬与三价铬钝化处理对镀层形貌的影响。使用X射线光电子能谱(XPS)方法研究了钝化膜的元素组成,并通过拟合分析了膜层中各元素的化合物形态。采用Mott-Schottky曲线分析了各膜层的半导体特性。电化学测试表明,EIS结果与Tafel测试结果一致性较好,硝酸点滴结果显示几种钝化膜抗氧化能力强弱顺序为:六价铬钝化膜>硅烷膜>三价铬膜>月桂酸膜。SEM观察显示,钝化处理后的表面与空白表面无明显差异。XPS分析表明六价铬钝化膜中可检测到O,Cr,Ni元素,而三价铬膜层可检测到C、N、O、Cr、Ni、P等六种元素。对六价铬钝化膜中Cr 2p精细XPS谱图分析发现,膜层中的Cr元素仅以三价铬形式存在,其化合物形式为Cr_2O_3和Cr(OH)3,其中Cr_2O_3占87.0at%。三价铬钝化膜中Cr元素也以Cr_2O_3和Cr(OH)_3形式存在,但Cr_2O_3仅占21.4at%。半导体特性分析表明,镀层表面的六价铬钝化膜、三价铬钝化膜和月桂酸钝化膜在较宽的频率区间内均表现为n型半导体特征;而硅烷自组装膜则主要表现为低电位p型,高电位n型的特征。
     根据六价铬钝化膜的XPS测试结果,探讨了六价铬钝化过程中镀层Ni元素与P元素的作用。研究表明,在采用K_2Cr_2O_7钝化处理的过程中,Ni-P镀层中的Ni与P均参与了反应,但二者的反应产物均未参与钝化膜的成膜过程。根据三价铬钝化膜的元素组成分析,钝化液中的芳香族化合物参与了成膜过程,以吸附态的形式参与成膜。由于其吸附过程消耗镀层附近的OH~-,从而促使碱性条件下以Cr(OH)4-状态存在的Cr~(3+)转化为Cr(OH)_3沉积到镀层表面形成钝化膜。通过分析月桂酸钝化膜的Tafel测试结果发现,月桂酸在镀层上形成的钝化膜是化学吸附膜,其吸附满足Langmuir等温模型,即为单分子层吸附膜。硅烷自组装膜通过硅醇分子中的羟基与镀层表面吸附的羟基缩合而与镀层结合,同时硅醇分子间也通过羟基脱水缩合形成致密的膜层,从而起到对镀层的保护作用。
The electroless Ni-P coating (ENPC) has been widely applied in field of petrochemical, aerospace, national defense, energy source and micro-electron because of its high throwing power, excellent corrosion and wear resistance as well as solderability. Despite its excellent properties, the strong tendency of self-passivation of Ni in coating makes the outermost layer of the coating be easily oxidized and thus lose its brightness even discolor, which will seriously affect the appearance of the coating. And this Ni oxide film is susceptible to breakage, and its presence will deteriorate the solderability and weaken the corrosion resistance of the Ni-P coating. Thus it is necessary that the coating must be treated by some appropriate post treatments to improve its corrosion performance and anti-discoloration (anti-oxidization) ability. The traditional chromate (Ⅵ) treatment can meet the demand of corrosion resistance and anti-discoloration, but chromate (Ⅵ) will bring very serious damage to both human beings and environment. Since the importance of eco-enviroment has been awared, the urgent action should be taken to research chromate(Ⅵ)-free passivation technics for ENPC.
     In this work, chromate(Ⅵ)-free methods were used to solve the mentioned problems on Ni-P coating. To avoid pollution, the preparation technics for environmental friendly chromate(Ⅲ) and chromium-free passive films were systematically researched. The forming mechanisms of the passive films were also proposed. At the same time, for the purpose of comparison, the forming process of chromate(Ⅵ) passive film was also discussed.
     A series of experiments found that the ENPC is apt to discolor and difficult to be effectively passivated at acid condition, especially when the pH value of passive bath is lower than 2.0, the coating is likely to darken. By a alkaline bath, a chromate(Ⅲ) passive film was obtained on ENPC. The content of main salt, working temperature and pH value for the bath were determined by single-factor experiments. Taking nitric acid (50vol.%) exposure test and Tafel test in 3.5%NaCl solution as fast-checking methods, the corrosion resistance and anti-discoloration ability of the chromate(Ⅲ) passive film were checked. The test results indicated that the chromate(Ⅲ) passive film can improve the anti-oxidation ability of the coating and obviously enhance the corrosion performance in Cl--containing solution.
     At alkaline condition, with dodecanoic acid (DA) as film-forming agent, a chromium-free passive film was prepared on ENPC, the content of DA and working pH value were determined by single-factor experiments. Fast-checking tests showed that although the improvement of anti-oxidation ability of the DA film in nitric acid exposure test was almost negligible, this chromium-free passive film could dramatically impove the corrosion resistance of ENPC in 3.5%NaCl solution.. A sealing agent for ENPC, whose storage time is more than one year, can be obtained by hydrolyzing SCA at an appropriate proportion between SCA, ethanol and water. A compact self-assembled film would form on ENPC by treated in the sealing agent, and this compact film could improve the corrosion resistance of EPC in 3.5%NaCl solution by two orders of magnitude, while the anti-oxidation in nitric acid was only impoved by one order of magnitude.
     The nitric acid exposure test, Tafel test and electrochemical impedance spectroscopy (EIS) were employed to analyze the anti-oxidation ability and corrosion resistance of the researched passive films, including chromate(VI) passive film. The scanning electronic microscopy (SEM) was utilized to observe the effect of Cr3+- and Cr6+-treatment on the appearance of ENPC, the elemental composition of the Cr3+ and Cr6+ passive films were studied by X-ray photoelectron spectroscopy (XPS) and the chemical states of these elements were analyzed by high resolution XPS spectra. The research on the semiconductor properties of the films was conducted by Mott-Schottky (M-S) method. The electrochemical tests indicated that the result of Tafel test was in good agreement with that of EIS, and the order of the anti-oxidation ability for the various films was: chromate(Ⅵ) passive film > SCA self-assembled film > chromate(Ⅲ) passive film > DA passive film. The SEM result showed that no obvious difference could be observed between the blank Ni-P coating and passivated coating (both Cr3+- and Cr6+-treated coatings). The XPS analysis on the Cr6+-treated coating illustrated that the passive film comprised O,Cr and Ni, while the chromate(Ⅲ) passive film was made up of C, N, O, Cr, Ni and P. The high resolution XPS analysis indicated that the Cr in chromate(Ⅵ) passive film was only in the state of trivalence, its existence form was Cr_2O_3 and Cr(OH)_3, 87.0at% of the total Cr was in the form of Cr_2O_3. The element Cr in chromate(Ⅲ) passive film was also in the form of Cr_2O_3 and Cr(OH)_3, but only 21.4at% of the Cr was Cr_2O_3. The M-S test results illustrated that Cr~(6+) passive film, Cr~(3+) passive film, and DC passive film exhibit n-type characteristic at lower potential and p-type at higher potential at various frequencies; while the SCA film shows a contrary p/n characteristic, namely p-type at lower potential and n-type at higher potential.
     Based on the XPS analysis of Cr6+ passive film formed on the ENPC, the function of Ni and P in the forming process of passive film was discussed. It could be inferred that both Ni and P in coating will react during the chromate(Ⅵ) passivation process, but the reaction products of Ni and P will not involve in the formation of passive film. In the light of the XPS analysis on the Cr~(3+) passive film, the aromatic compound in chromate(Ⅲ) passive bath would participate in the formation of Cr~(3+) passive film by chemisorption on Ni-P coating. Because the consumption of OH- during the adsorption leads to decrease of pH value in the solution layer very clear to Ni-P coating, Cr(OH)_4~-particles will change into Cr(OH)_3 and deposit on the surface of Ni-P coating and eventually form Cr~(3+) passive film. The research on the DA passive film found that the DA molecules adsorb on Ni-P coating by chemisorption, its adsorption process meet the Langmuir isothermal, namely monolayer adsorption film. At cure temperature, the SCA film was formed through a self-assembled process by condensation reaction between hydroxyl in silanol molecule and hydroxyl on Ni-P coating, at the same time the condensation reactions will also take place between the hydroxyl groups of silanol molecules and form a compact SCA film.
引文
1.洪乃丰.基础设施的腐蚀破坏不容忽视.腐蚀与防护, 2001, 22(9): 389-391.
    2.张剑锋.谈腐蚀与防护的重要性.内蒙古石油化工, 1999, 25(3): 82.
    3. H. Zhao, J.Z. Cui. Electroless plating of silver on AZ31 magnesium alloy substrate. Surf. Coat. Technol., 2007, 201(8): 4512-4517.
    4. C.D. Gu, J.S. Lian, G.Y. Li, et al. High corrosion-resistant Ni-P/Ni/Ni-P multilayer coatings on steel. Surf. Coat. Technol., 2005, 197(1): 61-67.
    5.候高文,常宝林,刘新全等.非金属材料在油田工程防腐中的应用综述.断块油气田, 1994, 1(6): 1-6.
    6.杨海恩,李谦定,杨全安.陇东油田油井套管外防腐技术的应用及发展趋势.油气田地面工程, 2005, 24(5): 52-53.
    7.李旭东.大庆油田金属储罐外防腐涂层结构的优化研究.杭州:浙江大学硕士学位论文, 2002: 39-40.
    8.贾韦,宣天鹏.化学镀镍在微电子领域的应用及发展前景.稀有金属快报, 2007, 26(3): 1-6.
    9. D.D.N. Singh, R. Ghosh. Electroless nickel–phosphorus coatings to protect steel reinforcement bars from chloride induced corrosion. Surf. Coat. Technol., 2006, 201(1-2): 90-101.
    10. C.K. Lee. Corrosion and wear-corrosion resistance properties of electroless Ni-P coatings on GFRP composite in wind turbine blades. Surf. Coat. Technol., 2008,202(19): 4868-4874.
    11. M. Crobu, A. Scorciapino, B. Elsener et al. The corrosion resistance of electroless deposited nano-crystalline Ni–P alloys. Electrochim. Acta, 2008, 53(8): 3364-3370.
    12. Y.W. Song, D.Y. Shan, E.H. Han. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys. Electrochim. Acta, 2008, 53(5): 2135-2143.
    13. H.P. Liu, N. Li, S.F. Bi, et al. Effect of organic additives on the corrosion resistance properties of electroless nickel deposits. Thin Solid Films, 2008, 516, (8): 1883-1889.
    14.陈伟.限制使用有毒有害物质(RoHS)认证.电视技术, 2005, 12: 86-88.
    15.林吉曙.化学镀Ni-P合金及其复合材料镀层的特性与应用.成都纺织高等专科学校学报, 2003, 20(2): 23-25.
    16.方景礼. 21世纪表面处理新技术.表面技术, 2005, 34(5): 1-5.
    17. E. Gyeongan, E. Kim, K.W. Oh. Electromagnetic Interference Shilelding Effectiveness of Electroless Cu Plated PET Fabrics. Synthetic Metal, 2001, 123: 469-476.
    18.李宁.化学镀实用技术.化学工业出版社, 2004: 202-203.
    19.张轲,刘道新. FS-1化学镀Ni-P镀层的性能研究.腐蚀科学与防护技术, 2002, 14(6): 346-348, 358.
    20.韩廷亮,刘钧泉,罗韦因.镀后处理技术研究及其发展动态.材料保护, 2005, 38(8): 31-34.
    21.牛振江,沈吉军,李则林等.原位XRD研究热处理Ni-P化学镀合金的结构.材料保护, 2003, 36(7): 45-47.
    22. Y.F. Wang, W.G. Fu, M. Feng et al. Investigation of the structure and the physical properties of nickel-phosphorus ultra-black surfaces. Applied Physics A, 2008, 90: 549-553.
    23. P. Verhoeren. Conversion composition and process, U.S.P. 4983262(1991).
    24. M. Horiuti, S. Kodama, K. Kuroda . Ultral-black film and method of manufacturing the same, U.S.P. 4984855(1991).
    25. M. Horiuti, S. Kodama, K. Kuroda. Ultral-black film and Method of manufacturing the same, U.S.P. 5083222(1992).
    26. M. Horiuti, S. Kodama, K. Kuroda. Ultral-black film and Method of manufacturing the same, U.S.P. 5111335(1992).
    27.江文世.镍镀层在钼酸盐-磷酸盐溶液中的阴极彩色配合物着色膜的研究.西南民族大学学报, 2004, 30(5): 598-601.
    28.刘海萍,李宁,毕四富等.无氰置换镀金工艺研究.电镀与环保, 2007, 27(4): 26-28.
    29.常立民.镀镍层快速退镀工艺.化学世界, 1995, 6: 294-295.
    30.刘定福.化学镀Ni-P合金镀层的退除.电镀与环保, 1999, 19(1): 26-28.
    31. L. J. Oblonsky, T. M. Devine. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless stee. Corros. Sci., 1995, 37(1): 17-41.
    32.沈报恩,李本乐,唐寅轩等.镍在酸性介质中的阳极钝化研究.杭州大学学报, 1985, 12(1): 86-90.
    33.鲜晓红,陈国昌,辜敏. Ni在酸性介质中钝化的现场X-射线衍射.重庆大学学报, 2007, 30(5): 88-91.
    34.冯春梁,马爱莲.不同电解质溶液对Ni腐蚀行为的影响.辽宁师范大学学报, 2006, 29(2): 200-203.
    35. M. R. Barbosa, J. A. Bastos, J. J. García-Jare?o et al. Chloride role in the surface of nickel electrode . Electrochim. Acta, 1998, 44(6-7): 957-965.
    36. A. L. Pulvirenti, E. J. Bishop, M. A. Adel-Hadadi et al. Solubilization of nickel from powders at near-neutral pH and the role of oxide layers . Corros. Sci., 2009, 51(9): 2043-2054.
    37. J.C. Nelson, R.A. Oriani. Stresses produced by the anodic oxidation of nickel . Electrochim. Acta, 1992, 137(11): 2051-2057.
    38. E. E. Abd El Aal. Breakdown of passive film on nickel in borate solutions containing halide anions . Corros. Sci., 2003, 45(4): 759-775.
    39.崔海涛,陈慎豪,赵世勇.氯离子诱导的镍在硝酸溶液中的电流振荡.山东大学学报, 2002, 37(2): 149-152.
    40.孙冬柏,杨德钧,马杰.化学镀Ni-P合金在氯化物溶液中的化学钝化.腐蚀科学与防护技术, 1994, 6(2): 131-136.
    41.张信义.化学镀镍磷合金的钝化及孔蚀.安徽建筑工业学院学报, 1996, 2: 53-56.
    42.侯晓梅.化学镀镍-磷非晶态合金的阳极行为及钝化特性.安徽建筑工业学院学报, 2000, 8(2): 73-75.
    43.康乃旺.白铜零件酸洗钝化工艺选择.电镀与环保, 1989, 9(1): 42-43.
    44.阎冬青,胡建文,刁美艳等. Ni-P化学镀层镀后封闭工艺研究.河北师范大学学报, 2006, 30(6): 689-692.
    45.郑环宇,安茂忠,范立双. Zn-Ni合金镀层的黑色钝化工艺研究.电镀与涂饰, 2005, 24(5): 10-13.
    46.孙冬柏,杨德钧,朱日彰.非晶态Ni-P合金的再钝化行为.北京科技大学学报, 1992, 14(2): 239-243.
    47. G.J. Lu, E.T. Ada, G. Zangari. Investigations of the effect of chromate conversion coatings on the corrosion resistance of Ni-based alloys Electrochim. Acta, 2004, 49( 9-10): 1461-1473.
    48.胡光辉,李大树,柴志强等.化学镀镍层抗氧化性的电化学研究.材料保护, 2006, 39(12): 64-67.
    49.李宁,袁国伟.化学镀镍合金理论与技术.哈尔滨:哈尔滨工业大学出版社, 2000,45-50.
    50. Z. L. Long, Y. C. Zhou, L. Xiao. Characterization of black chromate conversion coating on the electrodeposited zinc–iron alloy. Appl. Surf. Sci., 2003, 218(1-4): 124-137.
    51. J.N. Balaraju, V.E. Selvi, V.K.W. Grips et al. Electrochemical studies on electroless ternary and quaternary Ni-P based alloys. Electrochim. Acta, 2006, 52(3): 1064-1074.
    52. R. Berger, U. Bexell, T.M. Grehk et al. A comparative study of the corrosion protective properties of chromium and chromium free passivation methods. Surf. Coat. Technol., 2007, 202(2): 391-397.
    53. H. Li, H.X. Li, W.L. Dai et al. XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties . Appl. Surf. Sci., 1999, 152(1-2): 25-34.
    54. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart et al. New interpretations of XPS spectra of nickel metal and oxides. Surface Science, 2006, 600(9): 1771-1779.
    55.刘文科,曹小华,彭述明等.钛膜表面阳极氧化层制备及表征.表面技术, 2007, 36(1): 51-55.
    56.齐国超,贡雪南,孙德恩等.镀锡钢板六价铬钝化膜的X射线光电子谱分析. 2006, 27(8): 875-878.
    57. S.A. Kulinich, A.S. Akhtar, D. Susac et al. On the growth of conversion chromate coatings on 2024-Al alloy. Appl. Surf. Sci., 2007, 253(6): 3144-3153.
    58. J. Zhao, G. Frankel, R. L. McCreery. Corrosion protection of untreated AA-2024-T3 in chloride solution by a chromate conversion coating monitored with Raman spectroscopy. J. Electrochem. Soc., 1998, 145: 2258-2264.
    59. L. Xia, R.L. McCreery. Chemistry of a chromate conversion coating on aluminum alloy AA2024-T3 probed by vibrational spectroscopy. J. Electrochem. Soc. 1998, 145: 3083-3089.
    60. J. Zhao, L. Xia, A. Sehgal et al. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surf. Coat. Technol., 2001, 140(1): 51-57.
    61. K. Raeissi, M.R. Toroghinejad. The effect of chromated and organic layers on corrosion resistance of galvanized steel sheets. Progress in Organic Coatings, 2008, 62(1): 61-64.
    62. M. Kendig, S. Jeanjaquet, R. Addison et al. Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys. Surf. Coat. Technol., 2001, 140(1): 58-66.
    63. R. Ramanauskas, L. Gudaviciute, L. Diaz-Ballote et al. Corrosion behaviour of chromated Zn and Zn alloy electrodeposits. Surf. Coat. Technol., 2001, 140(2): 109-115.
    64. N.S. McIntyre, A.R. Pratt, H. Piao et al. Resolution enhancement of X-ray photoelectron spectra by maximum entropy deconvolution Appl. Surf. Sci., 1999(144-145): 156-160.
    65. D. Chidambaram, G.P. Halada, C.R. Clayton. Development of a technique to prevent radiation damage of chromate conversion coatings during X-ray photoelectron spectroscopic analysis. Appl. Surf. Sci., 2001, 181: 283-295.
    66. X. Zhang, C.V. Bos, W.G. Sloof et al. Comparison of the morphology and corrosion performance of Cr(VI) and Cr(III)-based conversion coatings on zinc. Surf. Coat. Technol., 2005, 199(1): 92-104.
    67.张云莲,史美伦,陈志源.钢筋钝化膜半导体性能的Mott-chottky研究.机械工程材料, 2006, 30(7): 7-10.
    68. W.P. Gomes, D. Vanmaekelbergh. Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochim. Acta, 1996, 41(7-8): 967-973.
    69.孟国哲,李瑛,王福会. Fe-20Cr纳米涂层的电化学行为.中国腐蚀与防护学报, 2006, 26(1): 11-18.
    70.吴群,刘玉,杜荣归等.氯离子对模拟混凝土孔溶液中钢筋钝性影响的电化学研究.金属学报, 2008, 44(3): 346-350.
    71. A.A. Sagüés, S.C. Kranc, E.I. Moreno. The time-domain response of a corroding system with constant phase angle interfacial component: Application to steel in concrete. Corros. Sci., 1995, 37(7): 1097-1113.
    72. D.S. Kong, S.H. Chen, C.Wang et al. A study of the passive films on chromium by capacitance measurement . Corros. Sci, 2003, 45: 747-758.
    73.程学群,李晓刚,杜翠薇等. 316L不锈钢在醋酸溶液中的钝化膜电化学性质.北京科技大学学报, 2007, 29(9): 911-915.
    74. B. Lonyuk, I. Apachitei, J. Duszczyk. Effect of high-phosphorus electroless nickel coating on fatigue life of Al–Cu–Mg–Fe–Ni alloy. Scripta Materialia, 2007(8): 783-786.
    75. Y.M Liu, Y. Sung, N.W. Pu et al. Electroless deposition of nickel-phosphorous nano-dots for low-temperature crystallization of amorphous silicon. Thin Solid Films, 2008, 517(2): 727-730.
    76.张轲.刘道新. FS-1化学镀Ni-P镀层的性能研究.腐蚀科学与防护技术, 2002,14(6): 346-349.
    77. W.B. Yang, S.K. Luo, B.J. Zhang, et al. Electroless preparation and characterization of magnetic Ni–P plating on polyurethane foam. Appl. Surf. Sci., 2008, 254(22): 7427-7430.
    78. Q.Y. Zhang, M. Wu, W. Zhao. Electroless nickel plating on hollow glass microspheres. Surf. Coat. Technol., 2005, 192(2-3): 213-219.
    79.贾韦,宣天鹏.化学镀镍在微电子领域的应用及发展前景.稀有金属快报, 2007, 26(3): 1-6.
    80.吴昊.不锈钢化学镀镍.电镀与精饰,2001, 23(6): 19-20.
    81.吴其毅.电子元件表面化学镀镍的可焊性参数.电子工艺技术, 1990, 5: 60-62.
    82.俞宏英,孙冬柏,黄锦滨等.化学镀镍磷合金镀层孔隙率的电化学评价.电化学, 2000, 6(3): 335-340.
    83.郭莉莉,孙莹.化学镀镍制品铬酸钝化与否的判断.中国表面工程, 2007, 20(2): 30-32.
    84.马静,胡建文,阎冬青等. Ni-P化学镀层钝化处理工艺研究.河北工业科技, 2008,25(2): 82-85.
    85.田伟,谢发勤,吴向清.锌-镍合金镀层钝化膜研究.电镀与精饰, 2007, 29(1): 9-11.
    86.杨胜奇.稀土在金属表面处理工艺中的应用技术(5).材料保护, 2008, 41(7): 75-77.
    87.卢燕平,何英,孟惠民等.锌镍合金镀层的铬酸盐钝化.北京科技大学学报, 1994, 16: 27-31.
    88.邵海波,张鉴清,王建明等.纯铝在强碱溶液中阳极溶解的电化学阻抗谱解析.物理化学学报, 2003, 19(4): 372-375.
    89. K.W. Cho, V.S. Rao, H.S. Kwon. Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc Electrochim. Acta, 2007, 52(13): 4449-4456.
    90. P. Campestrini, E.P.M.V. Westing, J.H.W.D. Wit. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth. Electrochim. Acta, 2001, 46(16): 2553-2571.
    91.曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002, 10-12.
    92. G.F. Cui, N. Li, D.Y. Li et al The physical and electrochemical properties of electroless deposited black nickel-phosphorus alloys. Surf. Coat. Technol., 2006, 200(24): 6808-6814.
    93. A.E. Hughes, R.J. Taylor, B.R.W. Hinton. Chromate Conversion Coatings on 2024 Al Alloy. Surface and interface analysis, 1997, 25: 223-234.
    94. G.X. Shen, Y.C. Chen, L. Lin et al. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochim. Acta, 2005, 50(25-26): 5083-5089.
    95. T. Liu, Y.S. Yin, S.G. Chen et al. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochim. Acta, 2007, 52(11): 3709-3713.
    96. M.J. Carmezim, A.M. Simoes, M.O. Figueiredo et al. Electrochemical behavior of the thermally treated Cr - oxide films deposited on stainless steel. Corros. Sci., 2002, 44: 451-465.
    97.邹锦光,刘建平,曾振欧等.镀锌层的三价铬钝化.电镀与涂饰, 2005, 24(8): 46-48.
    98.周谟银.钼酸盐在金属表面处理中的应用(1).材料保护, 2000, 33(10): 45-47.
    99.郑环宇,安茂忠,赖勤志.镀锌层无铬钝化工艺的研究.材料保护, 2005, 38(9): 18-21.
    100.A.A.O. Magalha?es , I.C.P. Margarit , O.R. Mattos. Molybdate conversion coatings on zinc surfaces. J. Electroanalytical Chemistry, 2004, 572: 433-440.
    101.李燕,张关永,陆柱.除氧中性水中钨酸盐对碳钢的缓蚀机理研究.中国腐蚀与防护学报, 2000, 20(6): 352-353.
    102.J.W.J. Silva, E.N. Codaro, R.Z. Nakazato et al. Influence of chromate, molybdate and tungstate on pit formation in chloride medium. Appl. Surf. Sci., 2005, 252: 1117-1122.
    103.C.G..D. Silva, A.N. Correia, P. D. Lima-Neto et al. Study of conversion coatings obtained from tungstate-phosphoric acid solutions. Corros. Sci., 2005, 47: 709-722.
    104.刘飞.钛盐钝化在锡镀层和黄铜带上的应用.电镀与环保, 2000, 20(3): 29-30.
    105.朱立群,杨飞.环保型镀锌层蓝色钝化膜耐腐蚀性能的研究.腐蚀与防护, 2006, 27(10): 503-507.
    106.G.D. Wilcox, J A Wharton. A Review of Chromate-Free Passivation Treatments for Zinc and Zinc Alloys . Trans IMF, 1997, 75 (6): B140.
    107.J. A. Sinsel , R. Herczeg , H. Francis et al. Plant Trial Evaluations of Non-chromium Passivations for Electrolytic Tinplate ( ETP). Second North American Steel Packaging Conference. 2002.
    108.龙晋明,杨宁,陈庆华等.锌表面稀土化学钝化及耐蚀性研究.稀有金属, 2002, 26(2): 98-102.
    109.F. Mansfeld. The Ce-Mo process for the development of a stainless aluminum. Electrochim. Acta, 1992, 37(12): 2277-2282.
    110.K. Aramaki. Preparation of self-healing protective films on a zinc electrode treated in a cerium(III) nitrate solution and modified with sodium phosphate and cerium(III) nitrate . Corros. Sci., 2004, 46: 1565-1579.
    111.徐溢,徐铭熙,王楠等.金属表面直接硅烷试剂防腐涂层性能测试.应用化学, 2000, 17(3): 331-334.
    112.M.F. Montemor, R. Pinto, M.G..S. Ferreira. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles . Electrochim. Acta, 2009, 54(22): 5179-5189.
    113.F. Zucchi, A. Frignani, V. Grassi et al. Organo-silane coatings for AZ31 magnesium alloy corrosion protection . Materials Chemistry and Physics, 2008, 110(2-3): 263-268.
    114.胡会利,李宁,程瑾宁.镀锌植酸钝化膜耐蚀性的研究.电镀与环保, 2005, 25(6): 21-26.
    115.夏光祥,陈家镛. Ni在氨性溶液中溶解动力学的研究.金属学报, 1980, 16(3): 290-301.
    116.郑家燊.缓蚀剂的研究现状及其应用.腐蚀与防护, 1997, 18(1): 34-37.
    117.徐群杰,周国定,陆柱等.交流阻抗法对几种铜缓蚀剂比较研究.华东理工大学学报, 1998, 24(3): 324-328.
    118.张大全,陆柱.各类缓蚀剂开发和应用过程中环境影响的探讨.腐蚀与防护, 1999, 20(3): 99-102
    119.郑粟,王云燕,柴立元.基于配位理论的碱性硫脲选择性溶金机理.中国有色金属学报, 2005, 15(10): 1629-1635.
    120.陈尚冰,王静云,张璐.月桂酸类缓蚀剂与钼酸钠的协同缓蚀作用研究.油气田地面工程, 1997, 16(1): 34-36.
    121.王成,江峰,余刚等.月桂酸钠对LY12铝合金的缓蚀作用.全面腐蚀控制, 2002, 16(1): 24-25.
    122.王雪明,李爱菊,李国丽等.金属表面KH-560硅烷膜的粘结性能研究.机械工程材料, 2005, 29(11): 8-10.
    123.孙明志.化学镀镍磷合金镀层封孔工艺及耐蚀性研究.中国海洋大学硕士学位论文,山东青岛, 2009.6.
    124.R Zallen.非晶态固体物理学.黄畇译,北京:北京大学出版社, 1988, 313-331.
    125.H. Tsuchiya , S. Fujimoto , O. Chihara. Semiconductive behavior of passive films formed on pure Cr and Fe - Cr alloys in sulfuric acid solution. Electrochim Acta, 2002, 47(27): 4357-4366.
    126.A.C. Bastos, M.G. Ferreira, A.M. Simoes. Corrosion inhibition by chromate and phosphate extracts for iron substrates studies by EIS and SVET . Corros. Sci., 2006, 48: 1500-1512.
    127.M. Outirite, M. Lagrenée, M. Lebrini et al. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim. Acta, 2010, 55(5): 1670-1681.
    128.郝素娥.精细有机合成单元反应与合成设计.哈尔滨:哈尔滨工业大学出版社, 1998, 229.
    129.M. Lebrini, F. Bentiss, N. E. Chihib et al. Polyphosphate derivatives of guanidine and urea copolymer: Inhibiting corrosion effect of armco iron in acid solution and antibacterial activity . Corros. Sci., 2008, 50: 2914-2918.
    130.J.Z. Ai, X.P. Guo, Z.Y. Chen. The adsorption behavior and corrosion inhibition mechanism of anionic inhibitor on galvanic electrode in 1% NaCl solution . Appl. Surf. Sci. , 2006, 253(2): 683-688.
    131.李伟华,陶志华,张胜涛等.酸性介质中氮杂环类缓蚀剂在碳钢上的吸附行为.腐蚀科学与防护技术, 2010, 22(1): 39-42.
    132.庞雪辉,冉祥滨,解建东等.氯化2,3,5-三苯基-2H-四唑及2,4,6-三(2-吡啶基)-s-三嗪在1mol/L HCl中对Q235碳钢的缓蚀作用及机理的研究(II).化学学报, 2009, 67(20): 2279-2284.
    133.L. Elkadi, B. Mernari, M. Traisnel et al. The inhibition action of 3,6-bis (2-methoxyphenyl)-1,2-dihydro-1,2,4,5-tetrazine on the corrosion of mild steel in acidic media .Corros. Sci., 2000, 42(4): 703-719.
    134.F. Bentiss, C. Jama, B. Mernari et al. Corrosion control of mild steel using 3, 5-bis(4-methoxyphenyl)-4-amino-1,2,4- triazole in normal hydrochloric acid medium . Corros. Sci., 2009, 51(8): 1628-1635.
    135.F. Bentiss, M. Lebrini, M. Lagrene′e. Thermodynamic characterization of metal dissolution and inhibitoradsorption processes in mild steel/2,5-bis(n-thienyl) -1,3,4 - thiadiazoles/hydrochloric acid system .Corros. Sci., 2005, 47: 2915-2931.
    136.M. Bouklah, B. Hammouti, M. Lagrene′e et al. Thermodynamic properties of 2, 5-bis(4-methoxyphenyl)-1, 3, 4-oxadiazole as a corrosion inhibitor formild steel in normal sulfuric acid medium. Corros. Sci., 2006, 48(9): 2831-2842.
    137.H.G. Hong, W. Park. A study of adsorption kinetics and thermodynamics ofω-mercaptoalkylhydroquinone self-assembled monolayer on a gold electrode . Electrochim. Acta, 2005, 51: 579-587.
    138.郝素娥.精细有机合成单元反应与合成设计.哈尔滨:哈尔滨工业大学出版社, 1998, 73.
    139.王雪明,李爱菊,李国丽等.金属表面制备KH-560硅烷膜涂层的工艺研究.中国表面工程, 2004, 6: 27-31.
    140.吴森纪.有机硅及其应用.北京:科学技术文献出版社, 1990, (5): 282.
    141.王雪明,李爱菊,李国丽等.硅烷偶联剂在防腐涂层金属预处理中的应用研究.材料科学与工程学报, 2005, 23(1): 146-150.
    142.孙晓霞.海洋环境中增强化学镀镍磷合金镀层耐孔蚀性能的工艺研究.青岛,中国海洋大学硕士学位论文, 2006, 9-11.
    143.徐溢,唐守渊,陈立军.铁表面硅烷试剂膜的反射吸收红外光谱.分析测试学报, 2002, 21 (2): 72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700