几种金属在海水中阴极保护数值计算及瞬态激励影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于阴极保护下海洋钢结构物(如海洋环境中的管线、船体、储油罐和油气平台等)的电位分布情况,国内外已有较多研究报道。其研究主要集中在稳态下海洋钢结构物的电位和电流分布特征,外加条件通常只有阴极保护而没考虑其它附加激励影响。海洋工程结构的阴极保护系统设计和监、检测较复杂,实海工程造价成本高、工作量大、周期长。数值模拟方法能够减少或避免经验估算法造成的局部区域过保护和欠保护状态,能够计算预测监、检测过程中遗漏的数据和实验手段无法测试的数据。本论文采用理论分析、预实验、模拟计算、实验验证等研究流程,分别对铝基牺牲阳极阴极保护Q275钢、Q275钢保护紫铜、缝隙腐蚀、小尺度激励实验模拟、大尺度激励实验模拟进行了研究。主要工作如下:
     1、设计了海水中铝基牺牲阳极保护Q275钢的电极电位分别处于保护范围内、过保护、欠保护状态下的物理模型,推导Laplace方程的弱形式方便了有限元程序设计。利用Kriging网格化插值法比较了有限元计算和实验数据。结果表明,有限元法模拟计算三种保护状态下的电位分布接近测量值。
     2、在海水中使用Q275钢作为牺牲阳极保护紫铜,建立了6个二维物理模型。用有限元法模拟计算了各物理模型阴极保护体系的电位分布,并进行实验验证。结果表明,二维有限元法能很好地模拟该阴极保护体系的电位分布。在小范围内Q275钢和紫铜电偶对的距离远近对电位分布影响不大。各模型中具有代表性的X轴、Y轴方向的电位模拟计算值与实测值接近。Q275钢阴极保护紫铜具有可行性,有限元法计算能够为其阴极保护设计提供依据。
     3、研究建立了薄、窄缝隙内的化学反应机理模型,该稳态模型细致的描述了缝隙内溶解氧、氢离子反应。模型包括了缝隙内六个平行的电化学反应:多电极反应(Fe、Cr、Ni的溶解氧化反应)和三个阴极反应(氧还原反应、氢还原、水解离)。计算中认为阳极金属反应对腐蚀过程的影响与金属中各元素成分的摩尔比成正比。计算得到了缝隙内pH值、电压、电流密度和氧浓度分布,并进行了实验验证。经分析,计算值和实验验证值接近。
     4、提出了阴极保护下海洋钢结构物电化学瞬态响应研究,探讨了在附加恒电量瞬态激励下,钢结构物表面的电位和电流密度分布的响应变化规律。研究介质为海水,分别建立了304不锈钢和Q235钢在不同几何结构、尺寸等边界条件下电位和电流密度随时间的变化响应数值模型。用自制矩阵电极和多通道腐蚀监测器进行了相应的测试实验。进行了附加电化学瞬态激励钢结构物的电位分布实验,并对各模型进行数值模拟。
     5、完成了海水中大尺度钢架在有或无阴极保护下,受附加电化学瞬态激励后的电位响应实验。分别建立不同瞬态激励实验模型,通过模拟计算,初步研究了各模型的钢架表面电位和电流密度分布随时间延迟的响应变化规律。
There are many researches on the potential distributions of marine steel structure under cathodic protection (CP) condition, such as pipelines, hulls, oil tanks and oil/gas platforms in marine environment. These researches were focused on the study of potential distributions and current distributions of marine structures which were under steady state condition of CP, and other transient impulses were not considered. It is difficult to design an effective cathodic protection system and corrosion detection and monitoring system for complicated and huge steel structures in marine environment. The engineering will cost a lot of time and money with a lot of works. Numerical simulation method could decrease over-protection or defective protection in local area of the traditional methods based on experiential estimate in real marine environment. The calculation could offer lost collecting data of detection and monitoring, and could get the data which experiments could not test. The study of the paper follows the following order: theory analysis, pre-experiments, numerical simulation, and verification test. The study has learned Q275 steel protected by aluminum sacrificial anode, copper protected by medium carbon steel, crevice corrosion, small scale electrochemical transient impulse test, and large scale electrochemical transient impulse test. The highlights are summarized as follows:
     1. Physical models of cathodic protection for Q275 steel by aluminum sacrificial anode in seawater were built, under different conditions of normal cathodic protection, over-protection and under-protection, respectively. And the weak form of Laplace equation was deduced to make finite element method (FEM) numerical calculation conveniently. The comparison of FEM data and measured experimental data was made by Kriging gridding interpolation. The results show that the potential distributions under three protection conditions simulated by FEM approximated to measured experimental results.
     2. Six different 2-D physical models for cathodic protection of copper by medium carbon steel as sacrificial anode in seawater are built in this paper. Potential distribution of various physical models was computed by FEM, and followed by experimental measurements for validation. The results show clearly that potential distribution of the cathodic protection system could be well simulated by the 2-D FEM solution. The distance of the galvanic couples is not a key factor influencing potential distribution in small range. Typical simulation data (along X-axis and Y-axis) of different models are consistent with the experimentally measured results. Therefore, it should be feasible to protect copper with medium carbon steel as sacrificial anode, and FEM could afford well a basis for cathodic protection design.
     3. A mechanistic model was presented to describe the chemical reactions within the corroding thin and narrow crevice. In the mathematical model, a two-dimensional steady-state was used to predict the crevice pH profile by taking into account dissolved oxygen and hydrogen ions within the crevice. It consists of six parallel electrochemical reactions: multi-anodic reactions (Fe, Cr, Ni dissolution reactions) and three cathodic reactions (the oxygen reduction, the hydrogen reaction and water dissociation). Current density distributions and oxygen concentration distribution were determined to be corresponding to the evolution of potential distribution within the crevice. The contribution of each metal reaction to the overall corrosion process was in proportion to the mole fraction, and the simulation provided a good agreement with published experimental results for the crevice corrosion of stainless steel in sodium chloride solution.
     4. The electrochemical response behaviors on marine structures by electrochemical transient impulse were studied in this paper. The law of potential and current density distributions of steel structure surface with coulostatic impulse response was discussed. The numerical simulation models of potential vs. time for 304 stainless steel and Q235 steel were established in seawater. Its boundary includes different geometry structures and sizes. The self-made array electrodes and multi-channel corrosion monitor were used for tests. Potential distribution of steel structures was impulsed by electrochemical transient response. And all models were calculated by numerical simulation.
     5. The paper has accomplished the tests of potential responses for large scale steel frame which were with or without cathodic protection influenced by electrochemical transient impulse. Different transient impulse models of experiments were respectively established. The variation laws of potential and current distributions of steel frame surfaces as time delayed were studied by numerical simulation.
引文
[1]胡士信.阴极保护工程手册[M].北京:化学工业出版社, 1999.
    [2]吴荫顺,曹备.阴极保护和阳极保护-原理、技术及工程应用[M].北京:中国石化出版社,2007.
    [3] Y. S. Choi, J. G. Kim. Determination of cathodic protection potential criterial for thermally insulated pipeline in synthetic groundwater[J]. Corrosion, 2009, 62(2):88-95.
    [4] J. G. Kim, Y. W. Kim. Cathodic protection criteria of thermally insulated pipeline buried in soil[J]. Corrosion Science. 2001, 43: 2011-2021.
    [5] C. Batt, M. J. Robinson. Cathodic protection requirements for high strength steel in sea water assessed by potentiostatic weight loss measurements[J]. British Corrosion Journal, 2002, 37(1): 31-36.
    [6] J. A. Klingent, S. Lynn, C. W. Tobias. Evaluation of current distributionin electrode systems by high-speed digital computers[J]. Electrochimica Acta. 1964, 9: 297-311.
    [7] P. Doig, P. E. J. Fiewitt. A finite difference numerical analysis of galvanic corrosion[J]. J. Electrochem. Soc. 1979, 126(12): 2057-2063.
    [8] R. D. Strommen. Computer Modeling of Offshore Cathodic Protection Systems Utilized in CP Monitoring[C]. Offshore Technology Conference, 1982, Houston, Texas.
    [9] R. Strommen, A. Rodland. Computerized techniques applied in offshore cathodic protection systems[J]. Materials Performance, 1981, 20(4): 15-20.
    [10] J. W. Fu, J. S. Chow. Cathodic protection designs using an integral equation numerical method[J]. Material Performance, 1982, 21(10): 9-12.
    [11] N. G. Zamani. Boundary element simulation of the cathodic protection system in a protptype ship[J]. Applied Mathematics and Computation. 1988, 26(2): 119-134.
    [12]孙虎元,王在锋,孙立娟.海洋用A3钢阴极保护电场的三维有限元建模[J].海洋科学, 2005, 29(7): 50-54.
    [13]马伟平,张国忠,梁昌华,张大鹏.深井阳极对储罐底板阴极保护的数值模拟[J].油气储运, 2004, 23(9): 31-35.
    [14]姚华.数值模拟计算在地下管线及储罐的阴极保护设计中的应用[J].材料开发与应用. 2008, 23(3): 24-28.
    [15] H. P. E. Helle, G. H. M. Beek, J. TH. Ligtelijn. Numerical determination of potential distributions and current densities in multi-electrode systems[J]. Corrosion, 1981, 37(9): 522-530.
    [16] M. E. Orazem, J. M. Esteban, K. J. Kennelley, R. M. Degerstedt. Mathematical models for cathodic protection of an underground pipeline with coating holidays: part1-theoretical development[J]. Corrosion, 1997, 53(4): 264-272.
    [17] M. E. Orazem, J. M. Esteban, K. J. Kennelley, R. M. Degerstedt. Mathematical models for cathodic protection of an underground pipeline with coating holidays: part2-case studies of parallel anode cathodic protection systems[J]. Corrosion, 1997, 53(6): 427-436.
    [18] R. G. Kasper, M. G. April. Electrogalvanic finite element analysis of partially protected marine structures[J]. Corrosion, 1983, 39(5): 181-188.
    [19] F. Thébault, B. Vuillemin, R. Oltra, K. Ogle, C. Allely. Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modeling[J]. Electrochimica Acta. 2008, 53: 5226-5234.
    [20] N. Murer, R. Oltra, B. Vuillemin, O. Néel. Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques[J]. Corrosion Science, 2010, 52(1): 130-139.
    [21] D. P. Ricmcr, M. E. Orazem. A mathematical model for the cathodic protection of tank bottoms[J]. Corrosion Science, 2005, 47(3): 849-868.
    [22]李艳辉,李伟华.牺牲层腐蚀二维数值模拟与仿真[J].半导体学报, 2006, 27(7): 1321-1325.
    [23]王秀通.海水和海泥中阴极保护系统的边界元计算[D].中国科学院海洋研究所. 2005.
    [24]夏兰廷,黄桂桥,张三平.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社. 2003.
    [25]王志武,原素芳.黄铜HSn70-1A、HA177-2A的抗冲刷能力比较研究[J].中国腐蚀与防护学报, 2005, 25(3): 179-182.
    [26]王杏卿.热力设备的腐蚀与防护[M].北京:水利电力出版社, 1988, 239.
    [27]赵永韬,李海洪,陈光章.铜合金在海水中电化学阻抗谱特征研究[J].海洋科学, 2005, 29(7): 21-25.
    [28]李光林,穆永智.凝汽器铜管的腐蚀原因分析与防护措施[J].腐蚀科学与防护技术, 2004, 16(4): 256-258.
    [29] R. K. Pandey. Failure analysis of refinery tubes of overhead condenser[J]. Engineering Failure Analysis, 2006, 13(5): 739-746.
    [30] H. M. Shalaby. Failure investigation of a convection line elbow[J]. Engineering Failure Analysis, 2007, 14(4): 739-742.
    [31] H. M. Shalaby. Failure investigation of Muntz tubesheet and Ti tubes of surface condenser[J]. Engineering Failure Analysis, 2006, 13(5): 780-788.
    [32]王顺.铜管不锈钢管腐蚀性能及铁牺牲阳极保护研究[D].中国科学院海洋研究所. 2008.
    [33]傅丽英,陈中兴,蔡兰坤等.溶液pH值与氯离子对青铜腐蚀的影响[J].腐蚀与防护, 2000, 21(7): 294-296.
    [34]胡荣宗,赵雄超,翁玉华,林昌健.醋酸介质中溶解氧对不锈钢和磷脱氧铜腐蚀行为影响[J].电化学, 2002, 8(4): 409-413.
    [35]周臣,田浩,王风云.水中常见离子对铜合金HSn70-1B的腐蚀性能影响[J].华东电力, 2004, 32(10): 22-24.
    [36]吴一平,褚红玉,周国定,孙心利.凝汽器铜管腐蚀研究(2)-水质对HSn70-1A和BFe30-1-1铜管的影响[J].中国电力, 2000, 33(6): 14-19.
    [37]陈贵军,阿布里提.高温冷凝水的酸性腐蚀分析[J].能源技术, 2005, 26(5): 268-269.
    [38]夏明珠,雷武,王凤云.不同水质工况下电厂铜管的腐蚀[J].工业水处理, 2006, 26(1): 46-48.
    [39]翟祥华,包伯荣,葛红花,周国定.模拟冷却水中304不锈钢的耐蚀性影响因素研究[J].材料保护, 2003, 36(4): 25-28.
    [40] G.. Kear, B. D. Barker, F. C. Walsh. Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corrosion Science, 2004, 46(1): 109-135.
    [41] C. SWU, Z. Zhang, F. H. Cao, J. Q. Zhang, M. Wang. Influence of SO42- and Cl- on the corrosion behavior of copper tube on air-conditioning system[J]. Acta Metallurgica Sinica(English Letters), 2004, 17(1): 92-96.
    [42] T. K. G. Namboodhiri, R. S. Chaudhary, B. Prakash, M. K. Agrawal. The dezincification of brasses in concentrated ammonia[J]. Corrosion Science, 1982, 22(11): 1037-1047.
    [43]朱志平,杨道武,周琼花等.凝汽器空冷区铜管气侧氨腐蚀研究[J].腐蚀科学与防护技术, 2005, 17(2): 101-103.
    [44]朱志平,黄可龙,周琼花,马迪东.凝汽器铜管氨腐蚀的研究[J].材料保护, 2005, 38(7): 46-48.
    [45] I. Bibicu, A. Samide, M. Preda. Steel corrosion in diluted ammonia solutions studied by Mossbauer spectrometry[J]. Materials Letters, 2004, 58(21): 2650-2653.
    [46]孙虎元,王顺,孙立娟.铜管、304不锈钢管在氨溶液中的腐蚀性能对比研究[J].腐蚀科学与防护技术, 2009, 21(3): 320-322.
    [47] S. Ariely, A. Khentov. Erosion corrosion of pump impeller of cyclic cooling water system[J]. Engineering Failure Analysis, 2006, 13(6): 925-932.
    [48] A. Igual Mu?oz, J. García Antón, S. López Nuévalos, J. L. Gui?ón, V. Pérez Herranz. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures[J]. Corrosion Science, 2004, 46(12): 2955-2974.
    [49] E. Blasco-Tamarit, A. Igual-Munoz, J. Garc Anton, D. Garc-Garc. Effect of aqueous LiBr solutions on the corrosion resistance and galvanic corrosion of an austenitic stainless steel in its welded and non-welded condition[J]. Corrosion Science, 2006, 48(4): 863–886.
    [50]黄乃宝,梁成浩.溴化锂吸收式制冷机中铜及其合金的腐蚀研究进展[J].制冷, 2001, 20(2): 25-28.
    [51]黄佳典,郭伟,刘波,王茂生.铁合金牺牲阳极在铜及其合金海水管路中的应用[J].中国修船, 2002, (4): 37-38.
    [52]陈丽君,丁国清,张波,王佳.铁基牺牲阳极性能及其对12Cr钢管的阴极保护[J].腐蚀与防护. 2009, 30(9): 669-672.
    [53]魏宝明.金属腐蚀理论及应用[M].化学工业出版社. 2007.
    [54] H. W. Pickering. On the roles of corrosion products in local cell processes[J]. Corrosion, 1986, 42(3): 125-140.
    [55] Y. Xu, M. H. Wang, H. W. Pickering. On electric-field-induced breakdown of passive films and the mechanism of fitting corrosion[J]. J. Electrochem. Soc. 1993, 140(12): 3448-3457.
    [56] M. I. Abdulsalam, H. W. Pickering. Effect of the applied potential on the potential and current distributions within crevices in pure nickel[J]. Corros. Sci. 1999, 41(2): 351-372.
    [57] M. I. Abdulsalam, H. W. Pickering. The effect of crevice-opening dimension on the stability of crevice corrosion for nickel in sulfuric acid[J]. J. Electrochem. Soc. 1998, 145(7): 2276-2284.
    [58] K. Cho, M. I. Abdulsalam, H. W. Pickering. The effect of electrolyte properties on the mechanism of crevice corrosion in pure iron[J]. J. Electrochem. Soc. 1998, 145(6): 1862-1869.
    [59] M. I. Abdulsalam. Significance of temperature change on the behavior of crevice corrosion[J]. Corrosion, 2002, 58(4): 364-369.
    [60] A. M. Al-Zahrani, H. W. Pickering. IR voltage switch in delayed crevice corrosion and active peak formation detected using a repassivation-type scan[J]. Electrochimica Acta, 2005, 50(16-17): 3420-3435.
    [61] M. A. Rodriguez, R. M. Carranza, R. B. Rebak. Effect of potential on crevice corrosion kinetics of alloy 22. Corrosion, 2010, 66(1): 015007.
    [62] J. C. Velazquez, F. Caleto, A. Valor, J. M. Hallen. Technical note: field study-pitting corrosion of underground pipelines related to local soil and pipe characteristics[J]. Corrosion, 2010, 66 (1): 016001.
    [63] J. C. Velazquez, F. Caleto, A. Valor, J. M. Hallen. Predictive model for pitting corrosion in buried oil and gas pipelines[J]. Corrosion, 2009,65(5): 332-342.
    [64] J. W. Oldfield, W. H. Sutton. Crevice Corrosion of Stainless Steels-I. A Mathematical Model[J]. British Corrosion Journal, 1978, 13(1): 13-22.
    [65] J. W. Oldfield, W. H. Sutton. Crevice corrosion of stainless steels-II. Experimental studies[J]. British Corrosion Journal, 1978, 13(3): 104-111.
    [66] S. Bernhardsson, L. Eriksson, J. Oppelstrup, I. Puigdomenech, T. Wallin. Proceedings of the eighth international congress on metallic corrosion, 1981, 193-198.
    [67] R. C. Alkire, D. Siitari. Initiation of crevice corrosion. 2. mathematical-model for aluminum in sodium-chloride solutions[J]. J. Electrochem. Soc. 1982, 129(3): 488-496.
    [68] K. Hebert, R. C. Alkire. Dissolved metal species mechanism for initiation of crevice corrosion of aluminum. 2. experimental investigations in chloride solutions[J]. J. Electrochem. Soc. 1983, 130(5): 1001-1007.
    [69] K. Hebert, R. C. Alkire. Dissolved metal species mechanism for initiation of crevice corrosion of aluminum. 2. mathematical-model[J]. J. Electrochem. Soc. 1983, 130(5): 1007-1014.
    [70] J. W. Fu, S. K. Chan. A finite element method for modeling localized corrosion cells[J]. Corrosion, 1984, 40(10): 540-544.
    [71] M. Watson, J. Postlethwaite. Numerical simulation of crevice corrosion of stainless steels and nickel alloys in chloride solutions[J]. Corrosion, 1990, 46(7): 522-530.
    [72] A. S. Agarwal, U. Landau, J. H. Payer. Modeling particulates effects on the cathodic current capacity in crevice corrosion[J]. J. Electrochem. Soc. 2008, 155(5): C269-C278.
    [73] A. S. Agarwal, U. Landau, J. H. Payer. Modeling the current distribution in thin electrolyte films with applications to crevice corrosion[J]. J. Electrochem. Soc. ,2010, 157(1): C9-C17.
    [74] Z. Y. Chen. F. Cui, R. G. Kelly. Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments[J]. J. Electrochem. Soc. 2008, 155(7): C360-C368.
    [75] F. Gan, Z. W. Sun, G. Sabde, D. T. Chin. Cathodic protection to mitigate external corrosion of underground steel pipe beneath disbanded coating[J]. Corrosion, 1994, 50(10): 804-816.
    [76] D. T. Chin, G. M. Sabde. Current distribution and electrochemical environment in a cathodically protected crevice[J]. Corrosion, 1999, 55(3): 229-237.
    [77] D. T. Chin, G. M. Sabde. Modeling transport process and current distribution in a cathodically protected crevice[J]. Corrosion, 2000, 56(8): 783-793.
    [78] R. R. Fessler, A. J. Markworth, R. N. Parkins. Cathodic protection levels under disbanded coatings[J]. Corrosion, 1983, 39(1): 20-25.
    [79] R. Brousseau, S. Qian. Distribution of steady-state cathodic currents underneath a disbanded coating[J]. Corrosion, 1994, 50(12): 907-911.
    [80] Z. F. Li, F. X. Gan, X. H. Mao. A study on cathodic protection against crevice corrosion in dilute NaCl solutions[J]. Corrosion Science, 2002, 44(4): 689-701.
    [81] M. C. Yan, J. Q. Wang, E. H. Han, W. Ke. Electrochemical measurements using combination microelectrode in crevice simulating disbonded of pipeline coatings under cathodic protection[J]. Corrosion Engineer, Science and Technology, 2007, 42(1): 42-49.
    [82] M. C. Yan, J. Q. Wang, E. H. Han, W. Ke. Local environment under simulated disbonded coating on steel pipelines in soil solution[J]. Corrosion Science, 2008, 50(5): 1331-1339.
    [83] X. Chen, C. W. Du, X. G. Li, Y. Z. Huang. Effects of cathodic potential on the local electrochemical environment under a disbonded coating[J]. J. Appl. Electrochem., 2009, 39(5): 697-704.
    [84] F. M. Song, D. A. Jones, D. W. Kirk. Predicting corrosion and current flow within a disc crevice on coated steels[J]. Corrosion, 2005, 61(2): 145-154.
    [85] F. M. Song, D. W. Kirk, J. W. Graydon, D. E. Cormack. CO2 corrosion of bare steel under an aqueous boundary layer with oxygen[J]. J. Electrochem. Soc. 2002, 149(11):B479-B486.
    [86] F. M. Song, N.Sridhar. Modeling pipeline corrosion under a disbanded coating under the influence of underneath flow[J]. Corrosion Science, 2008, 64(1): 40-50.
    [87] F. M. Song, N.Sridhar. Modeling pipeline crevice corrosion under a disbanded coating with or without cathodic protection under transient and steady state conditions[J]. Corrosion Science,2008, 50(1):70-83.
    [88] J. J. Perdomo, I. Song. Chemical and electrochemical conditions on steel under disbonded coatings: the effect of applied potential, solution resistivity, crevice thickness and holiday size[J]. Corrosion Science, 2000, 42(8): 1389-1415.
    [89] I. B. Ulanovskii, Zhurn. Prikl. Khim, 1966, 39: 814.
    [90] R. Scheidegger, R. O. Muller. Pitting and crevice corrosion of stainless-steels in chloride solutions[J]. Werkst. Korros-Mater. Corros., 1980, 31(5): 387-393.
    [91] E. McCafferty. Inhibition of the crevice corrosion of iron in chloride solutions by chromate[J]. J. Electrochem. Soc., 1979, 126(3): 385-390.
    [92] G. Bambara, D. Sinigaglia, G. Taccani, Electrochim. Met, 1968, 3: 81.
    [93] I. B. Ulanovskii, Yu. M. Korovin. Zashch. Metall., 1974, 10: 400.
    [94] E. D. Mor, V. Scotto, A. Mollica. Contribution to the discussion on localized corrosion of stainless-steels in natural sea-water[J]. Werkst. Korros-Mater. Corros., 1980, 31(4): 281-285.
    [95] R. M. Kain. Crevice corrosion behavior of stainless-steel in seawater and related environments[J]. Corrosion, 1984, 40(6):313-321.
    [96] R. J. Brigham. Temperature as a crevice corrosion criterion[J]. Corrosion, 1974, 30(11): 396-398.
    [97] R. J. Brigham, E. W. Tozer. Localized corrosion-resistance of mn-substituted austenitic stainless-steels - effect of molybdenum and chromium[J]. Corrosion, 1976, 32(7): 274-276.
    [98] R. J. Brigham. The initiation of crevice corrosion on stainless-steels[J]. Mater. Performance, 1985, 24(12): 44-48.
    [99] K. H. Yashiro, K. Tanna, H. Hanayama, A. Miura. Effect of temperature on the crevice corrosion of type-304 stainless-steel in chloride solution up to 250-degrees-C[J]. Corrosion, 1990, 46(9): 727-733.
    [100] I. B. Ulanovskii, Doctor’s Thesis, Institute of Physical Chemistry, USSR Academic of Science, Moscow, 1968.
    [101] R. F. Steigerwald, A. P. Bond, H. J. Dundas, E. A. Lizlovs. New Fe-Cr-Mo ferritic stainless-steels[J]. Corrosion, 1977, 33(8): 279-295.
    [102] J. W. Oldfield. Crevice corrosion resistances of stainless-steels in marine environments - the influence of N, Mn, and S[J]. Mater. Performance, 1988, 27(7): 57-58.
    [103] W. B. A. Sharp, L. H. Laliberte. Role of mo in inhibiting crevice corrosion on commercial stainless-steels[J]. J. Electrochem. Soc., 1977, 124(8): C283.
    [104] R. M. Kain. Electrochemical measurement of the crevice corrosion propagation resistance of stainless-steels - effect of environmental variables and alloy content[J]. Mater. Performance, 1984, 23(2):24-30.
    [105] R. J. Brigham. On the variability of crevice corrosion initiation in ferric-chloride exposure tests[J]. Corrosion, 1981, 37(10): 608-609.
    [106] R.W. Revie.尤利格腐蚀手册[M].北京:化学工业出版社. 2005.
    [107] J. W. Oldfield. Crevice corrosion-resistance of commercial and high-purity experimental stainless-steels in marine environments - the influence of N, Mn, and S[J]. Corrosion, 1990, 46(7): 574-581.
    [108] R. D. Knutsen, A. Ball. The influence of inclusions on the corrosion behavior of a 12 wt-percent chromium steel[J]. Corrosion, 1991, 47(5):359-368.
    [109] S. E. Lott, R. C. Alkire. The role of inclusions on initiation of crevice corrosion of stainless-steel. 1. Experimental studies[J]. J. Electrochem. Soc., 1989, 136(4): 973-979.
    [110] R. C. Alkire, S. E. Lott. The role of inclusions on initiation of crevice corrosion of stainless-steel. 2. Theoretical-studies [J]. J. Electrochem. Soc., 1989, 136(11): 3256-3262.
    [111]赵永韬.恒电量脉冲瞬态响应测试技术及解析方法研究[D].华中科技大学,2005.
    [112]胡会利,李宁.电化学测量[M].北京:国防工业出版社. 2007.
    [113] G. C. Barker. Transactions of the Symposium on Electrode Processes[M]. Philedelphia. 1959. New York: Wiley, 1961.
    [114] P. Delahay. Coulostatic method for the kinetic study of fast electrode processes I-Theory[J]. J. Phys. Chem., 1962, 66(11): 2204-2207.
    [115] F. Delahay. Coulostatic method for the kinetic study of fast electrode processes II-Experimental results[J]. J. Phys. Chem., 1962, 66(11): 2208.
    [116] W. H. Reinmuth. Theory of coulostatic impulse relaxation[J]. Analytical Chemistry, 1962, 34(10): 1272-1276.
    [117] P. Delahay, D. M. Mohilner. Rate equation for adsorption of a neutral substance at a metal-electrolyte interface[J]. J. Phys. Chem., 1962, 66(5): 959-960.
    [118] P. Delahay, D. M. Mohilner. Rate equation for adsorption of a neutral substance at a metal-electrolyte interface[J]. J. Amer. Chem. Soc., 1962, 84(22): 4247-4252.
    [119] P. Delahay. Coulostatic study of adsorption kinetics at a metal-electrolyte interface[J]. J.Phys.Chem., 1963, 67(1): 135-137.
    [120] P. Delahay, Y. Ide. Coulostatic analysis direct-reading and recording instruments[J]. Anal. Chem., 1963, 35(9): 1119-1110.
    [121] A. Aramata, P. Delahay. Coulostatic anodic striping with a mercury electrode[J]. Anal. Chem., 1963, 35(9): 1117-1118.
    [122] O. A. Kopistko, M. K. Nauryzbase. On the theory of the coulostatic pulse technique as applied to redox electrode with two consecutive charge transfer steps[J]. J. Electroanal. Chem., 1998, 451(1-2): 19-27.
    [123] H. Reller, E. Kirowa-Eisner. The coulostatic method with finite pulse width[J]. J. Electrochem. Soc., 1987, 134(1): 126-132.
    [124] E. Santos, T. Iwastia, W. Vielstich. On the use the coulostatic method for the investigation of fast redox systems[J]. Electrochimica Acta, 1986, 31(4): 431-437.
    [125] J. M. Kudirka, P. H. Daum, C. G.. Enke. Comparison of coulostatic data analysis techniques[J]. Anal Chem., 1972, 44(2): 309-314.
    [126] K. Kanno, M. Suzuki, Y. Sato. An application of coulostatic method for rapid evaluation of metal corrosion rate in solution[J]. J. Electrochem. Soc., 1978, 125(9): 1387-1393.
    [127] K. Kanno. Tafel slope determination of corrosion reaction by the coulostatic method[J]. Corrosion Science, 1980, 20(8-9): 1059-1066.
    [128] M. Suzuki. An application of the coulostatic method to corrosion rate measurements[J]. Werkst. Korros., 1980, 31(5): 364-370.
    [129] Y. Sato. An application of coulostatic method for rapid evaluation of metal corrosion rate in solution. Proc. 11th Int. Congr. On metal Corrosion, Rio de Janeiro, 1978, 1945-1955.
    [130]宋诗哲.兵工学报(防腐包装手册), 1982, 1: 26.
    [131]赵常就,陈范才.恒电量法快速测定金属的腐蚀速度[J].腐蚀与防护, 1984, 4(4): 8-14.
    [132]赵常就,陈范才.溶液电阻对恒电量法测量的影响[J].腐蚀与防护, 1985, 5(2): 31-37.
    [133]郭兴蓬,叶康民.恒电量法及腐蚀测量自动解析系统的研究[J].华中理工大学学报,1989, 17(2): 149-155.
    [134]赵永韬,赵常就.模拟混凝土孔隙液中钢筋腐蚀行为的恒电量法监测[J].材料开发与应用,2000, 15(1): 9-12.
    [135]郭兴蓬,俞敦义,叶康民.缓蚀剂研究中的电化学方法-某些问题与新方法[J].材料保护, 1992, 10: 24-27.
    [136]刘立炳,赵常就.镀锌钝化膜耐蚀性能的研究[J].电镀与精饰, 1999, 21(4): 26-29.
    [137]文建国,周家茵,周世光.恒电量微扰法研究在含Cl-介质Ce3+对航空铝材的缓蚀作用[J].国防科技大学学报, 1998, 19(6): 118-122.
    [138]郭兴蓬,张华民,唐永凡.阴极保护最佳电位的确定[J].腐蚀科学与防护技术, 1989, 1(2): 6-9.
    [139]杨喜云,赵常就. CCMW-9810库仑斯特智能腐蚀监测仪在工业循环冷却水中的应用[J].腐蚀与防护, 1999, 20(11): 504-506.
    [140]赵永韬,郭兴蓬,董泽华.基于恒电量的便携式腐蚀监测系统的研究[J].计算机测量与控制, 2004, 12(10): 905-907.
    [141]赵永韬,郭兴蓬,董泽华等.恒电量瞬态扰动测量塔菲尔斜率及积分的数据处理方法[J],物理化学学报, 2005, 21(1):93-97.
    [142]赵永韬,王昱,郭兴蓬等.多个时间常数线性体系恒电量响应的频谱分析[J].物理化学学报, 2005, 21(5): 544-549.
    [143]赵永韬,王昱,郭兴蓬.基于小波的恒电量瞬态响应信号的滤波处理[J],物理化学学报, 2005, 21(9): 1017-1021.
    [144]赵永韬,刘昌飞,高晓健等.电化学方法检测混凝土横梁中高强钢丝的腐蚀[J].中国腐蚀与防护学报, 2003, 23(6): 362-366.
    [145]赵永韬,郭兴蓬,董泽华等.基于恒电量的酸性缓蚀剂快速评价方法研究[J],中国腐蚀与防护学报. 2004, 24(2): 116-120.
    [146] D. Rabiot , F. Dalard, J. J. Rameau, J. P. Caire, S. Boyer. Study of sacrificial anode cathodic protection of buried tanks: Numerical modeling[J]. Journal of applied electrochemistry, 1999, 29 (5): 541-550.
    [147] E. B. Muehlenkamp, M. D. Koretsky, J. C. Westall . Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete[J]. Corrosion, 2005, 61(6): 519-533.
    [148] R. Montoya, O. Rendon, J. Genesca. Mathematical simulation of a cathodic protection system by finite element method[J]. Materials and Corrosion, 2005, 56(6): 404-411.
    [149] L. Bortels, A. Dorochenko, B. V. D. Bosshe, G. Weyns, J. Deconinck. Three-dimensional Boundary Element Method and Finite Element Method simulations applied to stray current interference problems. A unique coupling mechanism that takes the best of both methods[J]. Corrosion, 2007, 63(6): 561-576.
    [150]孙虎元,王在峰,孙立娟.海洋用A3钢阴极保护电场韵三维有限元建模[J].海洋科学,2005, 29(7): 50-54.
    [151]王在峰,孙虎元,孙立娟.海水中A3钢样阴极保护电化学场的二维有限元计算[J].海洋科学, 2006, 30(7): 38-42.
    [152]王爱萍,杜敏,王庆璋,曹圣山,孙吉星.复杂阴极保护体系三维有限元建模研究[J].电化学, 2007, 13(4): 360-366.
    [153]钱伟长,叶开沅.弹性力学[M].北京:科学出版社. 1956.
    [154] F. Brichau, J. Deconinck. A numerical model for cathodic protection of buried pipes [J]. Corrosion, 1994, 50(1): 39-49.
    [155] K. Harriman, D. J. Gavaghan, P. Houston, E. Suli. Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode[J]. Electrochemistry Communications, 2000, 2(8): 567-575.
    [156] M. A. Khaleel, Z. Lin, P. Singh, W. Surdoval, D. Collin. A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC[J]. Journal of Power Sources, 2004, 130(1-2): 136-148.
    [157] C. T. J. Low, E. P. L. Roberts, F. C. Walsh. Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell[J]. Electrochenica Acta, 2007, 52(11): 3831-3840.
    [158] R. S. Munn, O. F. Devereux. Numerical modeling and solution of Galvanic corrosionsystems. 1. governing differential equation and electrodic boundary conditions[J]. Corrosion, 1991, 47(8): 612-618.
    [159] R. S. Munn, O. F. Devereux. Numerical modeling and solution of Galvanic corrosion systems. 2. finite-element formulation and descriptive examples[J]. Corrosion, 1991, 47 (8): 618-634.
    [160]邱枫,徐乃欣.钢质贮罐底板外侧阴极保护时的电位分布[J].中国腐蚀与防护学报, 1996, 16(1): 29-36.
    [161]邱枫,徐乃欣.码头钢管桩阴极保护时的电位分布[J].中国腐蚀与防护学报, 1997, 17(1): 12-18.
    [162] C. S. Lim, H. I. Lee, S. B. Shin, K. K. Baek. Evaluation of technical feasibility on applying calcareous deposit coatings to ship ballast tanks[J]. Corros. Rev., 2000, 18 (2-3): 181-193.
    [163]王爱萍,杜敏,陆长山,曹圣山,王庆璋.海洋平台复杂节点阴极保护电位分布的有限元法计算[J].中国海洋大学学报,2007,37(1): 129-134.
    [164] A. P. Wang, M. Du, Q. Z. Wang, S. S. Cao, J. X. Sun. Construction of three-dimensional finite element model for complicated cathodic protection system[J]. Electrochemistry, 2007, 13(4): 360-366.
    [165]曹圣山,孙吉星.阴极保护设计问题的优化模型[J].中国腐蚀与防护学报,2007, 27(2): 114-118.
    [166]杜艳霞,张国忠.输油泵站区域性阴极保护实施中的问题[J].腐蚀与防护,2006, 27(8): 417-421.
    [167]杜艳霞,张国忠,刘刚.阳极电场对罐底外侧阴极保护电位分布的影响[J].腐蚀科学与防护技术,2006, 18(5): 383-385.
    [168]杜艳霞,张国忠.储罐底板外侧阴极保护电位分布的数值模拟[J].中国腐蚀与防护学报, 2006, 26(6): 346-350.
    [169]杜艳霞,张国忠,刘刚.罐底外侧深井阳极阴极保护电位分布规律研究[J].电化学, 2006, 12(1): 55-59.
    [170]杜艳霞,张国忠,刘刚,周磊.金属储罐底板外侧阴极保护电位分布的数值模拟[J].金属学报,2007, 43(3): 297-302.
    [171]杜艳霞,张国忠,李健.阴极保护电位分布的数值计算[J].中国腐蚀与防护学报,2008,28(1): 53-58.
    [172] J. B. Jorcin, C. Blanc, N. Pebere. Galvanic coupling between pure copper and pure aluminum experimental approach and mathematical mode[J]. J. Electrochem. Soc., 2008, 155(1): 46-51.
    [173]罗兆红,龙萍,杨世伟,李莉,雷玉双,王海江.铁基材料的牺牲阳极性能[J].腐蚀与防护,1999,20(1): 22-23.
    [174]王顺,孙虎元,孙立娟.海水、淡水中铁基牺牲阳极的性能[J].腐蚀与防护,2008,29(5): 281-283.
    [175]邱枫,徐乃欣.用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布[J].中国腐蚀与防护学报. 1997, 17(2): 106-110.
    [176] M. Ergun, A. Y. Turan. Pitting potential and protection potential of carbon-steel for chloride-ion and the effectiveness of different inhibiting anions[J]. Corros. Sci., 1991, 32(10): 1137-1142.
    [177] S. P. White, G. J. Weir, N. J. Laycock. Calculating chemical concentrations during the initiation of crevice corrosion[J]. Corros. Sci., 2000, 42(4): 605-629.
    [178] M. I. Abdulsalam. Behaviour of crevice corrosion in iron[J]. Corros. Sci., 2005, 47(6): 1336-1351.
    [179] J. Mankowski, Z. Szklarska-Smialowska. Studies on accumulation of chloride ions in pits growing during anodic polarization[J]. Corros. Sci., 1975, 15(8): 493-501.
    [180] S. M. Sharland, P. W. Tasker, A mathematical model of crevice and pitting corrosion I. the physical model[J]. Corros. Sci., 1988, 28(6), 603-620.
    [181] S. M. Sharland. A mathematical-model of crevice and pitting corrosion .II. The mathematical solution[J]. Corros. Sci., 1988, 28(6): 621-630.
    [182] S. M. Sharland, C. P. Jackson, A. J. Diver. A finite element model of the propagation of corrosion crevice and pits[J]. Corros. Sci., 1989, 29(9), 1149-1166.
    [183] S. M. Sharland. A mathematical model of the initiation of crevice corrosion in metals[J]. Corros. Sci., 1992, 33(2): 183-201.
    [184] T. Suzuki, M. Yamabe, Y. Kitamura. Composition of anolyte within pit anode of austenitic stainless steels in chloride solution[J]. Corrosion, 1973, 29(1): 18-22.
    [185] A. Alavi, R. A. Cottis. The determination of pH, potential and chloride concentration in corroding crevices on 304 stainless steel and 7475 aluminium alloy[J]. Corros. Sci., 1987, 27(5), 443-451.
    [186] Q. Y. Wang, N. Kawagoishi, Q. Chen, R. M. Pidaparti. Evaluation of the probability distribution of pitting corrosion fatigue life in aircraft materials[J]. Acta Mechanica Sinica, 2003, 19(3), 247-252.
    [187] X. Zheng. A novel model for crevice corrosion of lap joints[J]. Corrosion, 2001, 57(7): 634-642.
    [188] H. Y. Chang, Y. S. Park, W. S. Hwang. Initiation modeling of crevice corrosion in 316L stainless steels[J]. J. Mater. Process. Technol., 2000, 103(2), 206-217.
    [189] B. Vuillemin, R. Oltra, R. Cottis, D. Crusset. Consideration of the formation of solids and gases in steady state modelling of crevice corrosion propagation[J]. Electrochim. Acta, 2007, 52(27): 7570-7576.
    [190] G. F. Kennell, R. W. Evitts. Crevice corrosion cathodic reactions and crevice scaling laws[J]. Electrochim. Acta, 2009, 54(20), 4696-4703.
    [191] F. M. Song, D. W. Kirk, J. W. Graydon, D. E. Cormack. Predicting carbon dioxide corrosionof bare steel under an aqueous boundary layer[J]. Corrosion, 2004, 60(8): 736-748.
    [192] S. Nesic, J. Postlethwaite, S. Olsen. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52(4): 280-294.
    [193] M. J. Weaver, F. C. Anson. Potential dependence of electrochemical transfer-coefficient - further-studies of reduction of chromium(III) at mercury-electrodes[J]. J. Phys. Chem., 1976, 80(17): 1861-1866.
    [194] L. Valek, M. Metiko?-Hukovi?, Z. Gruba?. Impedance spectroscopy characterization of the electrodeposited Ni-15Mo catalyst designed for the HER in acid solution: modified porous model[J]. J. New Mat. Electrochem. Systems, 2006, 9: 145-153.
    [195] F. M. Song, D. W. Kirk, J. W. Graydon, D. E. Cormack.Steel corrosion under a disbanded coating with a holiday-part1: the model and validation[J]. Corrosion, 2002, 58(12): 1015-1024.
    [196] F. M. Song, D. W. Kirk, J. W. Graydon, D. E. Cormack. Steel corrosion under a disbanded coating with a holiday-part2: corrosion behavior[J]. Corrosion, 2003, 59(1): 42-49.
    [197] F. M. Song. Simple algorithms for 1D oxygen concentration profile in an occluded region[J]. Corros. Sci., 2008, 50(12): 3287-3295.
    [198] A. J. Bard, L. R. Faulkner. Electrochemical Methods-Fundamentals and Applications[M], 2nd Edn., John Wiley & Sons, Inc., New York, 2000.
    [199] A. Tor, T. Büyükerkek, Y. ?engelo?lu, M. Ers?z. Simultaneous recovery of Cr(III) and Cr(VI) from the aqueous phase with ion-exchange membranes[J]. Desalination, 2005, 171(4): 233-241.
    [200]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,北京, 2008.
    [201] F. M. Song, D. W. Kirk, J. W. Graydon, D. E. Cormack. Effect of ferrous ion oxidation on corrosion of active iron under an aerated solution layer[J]. Corrosion, 2002, 58(2): 145-155.
    [202] Hyun-Young Chang, Yong-Soo Park, Woon-Suk Hwang, A study on the modeling of parameters affecting the IR drop mechanism in the initiation stage of crevice corrosion[J]. Metals and Materials, 2000, 6(6): 505-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700