半导体光催化材料中掺杂和耦合机理的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今正面临能源危机和环境问题,如何有效制备和利用环境友好且可再生的清洁能源(如氢能,具有高燃烧值、燃烧产物是水、无环境污染等优点)已引起世界各国高度关注和重视。近年来,利用太阳能基于各种半导体光催化剂分解水制氢引起了国内外科研工作者极大的研究兴趣,成为当前一个前沿热点研究课题。另一方面,随着计算硬件性能的提升和科学软件的开发,基于电子密度泛函理论的第一性原理计算在凝聚态物理、量子化学和材料科学中得到非常广泛和成功的应用,也是太阳能催化材料和光解水机理研究的重要理论手段。本博士学位论文主要采用第一性原理计算,研究半导体光催化材料和半导体复合体系,侧重掺杂改性规律,调控体系电子结构,优化其光催化活性,由如下几章组成。
     第一章,简要介绍了本论文所涉及到的理论背景知识以及所采用的科学计算软件。从薛定谔方程出发,先回顾了量子化学中的两大近似(绝热近似、单电子近似),再重温了密度泛函理论中Hohenberg-Kohn定理的建立以及Kohn-Sham方程的提出,最后综述了交换关联泛函的发展历程以及存在的问题,并对所采用的科学计算软件进行了点评。
     第二章,对太阳能光催化制氢的研究进展进行了概述。先概述了光催化制氢的基本原理以及基本过程,再简要回顾了一些重要的具有紫外光响应的光催化剂。接下来侧重介绍了几种半导体光催化剂能带调控的方法,如金属、非金属掺杂以及共掺。最后介绍了几种促进光生电荷有效分离的方法,如助催化剂和半导体耦合体系。
     第三章,锐钛矿Ti02体系的n-p等价共掺杂研究。所谓n-p等价共掺杂,即n型掺杂原子贡献的电子数等于p型掺杂原子贡献的空穴数,当它们在宿主半导体中配对时相互补偿。现有的n-p共掺杂研究大都集中在过渡金属-非金属掺杂对,对贵金属-非金属共掺杂机理研究尚不多见。本章分为两个部分。第一部分对锐钛矿Ti02体相的(Rh+F)共掺杂进行了研究。理论计算结果表明,(Rh+F)共掺杂在Ti02禁带中产生中间能带,有效减小带隙并且明显提高光学吸收性质。更重要的是,Ti02的带边位置受(Rh+F)共掺杂影响很小,强的氧化还原能力被继续保持,使得此体系表现出性能优异的可见光响应活性。第二部分研究了锐钛矿TiO2(101)表面的(Rh+F)共掺杂。研究表明,单个Rh原子通过(Rh+F)共掺杂能够稳定地掺杂在Ti02表面,可作为产氢活性位,提高光催化效率。有趣的是,我们还发现(Rh+F)共掺杂TiO2表面的电子结构,光学性质跟体相掺杂结果类似,这意味着在实验上更容易验证这些理论预测的结果。
     第四章,锐钛矿TiO2体系的双空穴共掺杂研究。现有的双空穴能带调控研究大都集中在非金属元素掺杂,对金属-非金属共掺引入双空穴掺杂关注不够。为此,我们拓展了双空穴型共掺杂的能带调控思路。理论研究表明,P掺杂原子在受主金属(Sc或者In)的协助下能够与次近邻氧原子成键,导致TiO2禁带中产生满占据且离域的中间带。这种金属协助的P-O耦合机制不仅能够阻止光生电子-空穴对的复合,而且能够有效减小TiO2的带隙。我们还发现(Sc+P)和(In+P)共掺杂TiO2体系的价带和导带位置满足发生光解水反应的氧化还原电化学势的要求。显然,这种受主金属原子协助的P-O耦合方式成为一种新的Ti02能带工程的调制方法。
     第五章,g-C3N4/MoS2复合体系的光响应机理研究。基于半导体光催化剂之间的耦合是一种提高光生载流子分离效率、稳定光催化剂且扩展可见光光谱响应范围的有效手段。因此,目前半导体复合型光催化材料正引起了广大实验和理论科研工作者的研究兴趣。例如,基于g-C3N4的复合型光催化剂成为热点研究体系。本章我们侧重于g-C3N4/MoS2复合体系的光催化机理。理论研究表明,单层g-C3N4与MoS2复合体系具有type-H的能带结构,能使体系的光生电子获得有效利用。另外,由于界面处发生电子转移,使得体系在界面处形成一个电极化内电场,进一步增加电子和空穴分离效率。此外,MoS2作为助催化剂能够提高单层g-C3N4/MoS2的可见光吸收性质。最后我们还发现MoS2负载到双层g-C3N4上也表现出类似的性质。显然,这些理论研究结果和发现将有益于将来设计和开发新型半导体复合型光催化剂。
     第六章,单层Ⅱ-Ⅵ金属硫化物光催化剂的理论研究。实现太阳能光催化制氢的关键就是能否找到稳定、廉价的且具有可见光活性的光催化材料。本章主要对单层Ⅱ-Ⅵ金属硫化物(MX, M=Cd和Zn, X=S, Se和Te)进行了系统地研究。理论计算结果表明,单层II-VI金属硫化物的形成能较低,带隙范围分布较广(从2.20eV到4.08eV)。进一步对比H20的氧化还原势后,我们发现其价带和导带带边位置满足光解水要求。此外,我们还发现通过应力的调制,可以有效调节单层Ⅱ-Ⅵ金属硫化物的带隙及其价带顶和导带底相对于H20的氧化还原势的位置。更重要的是,在拉伸应力条件下,单层Ⅱ-Ⅵ金属硫化物的吸收带边发生明显红移,有效吸收可见光。
Energy and environmental issues at a global level are important topics. To solve the issues, converting sunlight to usable electricity or fuel is the most viable way for producing environmentally, friendly, renewable, and clean energy. Over the past sev-eral decades, as a next-generation energy carrier, hydrogen production obtained by photocatalytic overall water splitting using solar energy has attracted much research attention. On the other hand, with the rapid development of computer hardware and sci-entific software, first-principles calculations based on density functional theory (DFT) have been widely and successfully used in various fields (i.e. condensed matter, quan-tum chemistry, and materials science). Of course, DFT also is a powerful theoretical tool to study the solar photocatalysts and their photocatalytic mechanism of water split-ting. In this dissertation for Ph. D degree, we focus on semiconductor photocatalysts and layered nanocomposite by performing extensive first-principles calculations. This dissertation contains the following chapters.
     In Chapter1, theoretical knowledge related to this thesis is briefly introduced, including Born-Oppenheimer approximation, one-electron approximation, Hohenberg-Kohn theorem, Kohn-Sham equation, as well as various functionals for exchange and correlation. Finally, we also introduce several DFT-based computational packages.
     In Chapter2, we briefly review the research progress in photocatalytic H2pro-duction. Firstly, we summarize fundamental mechanism and main processes of photo-catalytic H2generation, and introduce some UV-active photocatalysts for water split-ting. Then, some approaches to tune the band structures for visible light harvesting are introduced in details. Finally, we review several effective approaches for efficient photogenerated carrier separation.
     In Chapter3, we examine the charge-compensated n-p codoped anatase TiO2sys-tems. Compensated n-p codoping means that the number of electrons from the n-type dopants equal to the number of holes contributed by the p-type dopants. Previous investigations of n-p codoping focus on the transition metal-based codoping, and lit- tle attention has been paid to the noble metal-based codoping. This chapter includes two parts. In the first part, we explore the (Rh+F) codoping effect on electronic structures and photocatalytic activities of anatase TiO2. We find that the stable charge-compensated donor-acceptor pair (Rh+F) codoping in TiO2can effectively reduce the band gap by forming delocalized and filled intermediate bands within the band gap. Interestingly, the band edge alignment in the (Rh+F) codoped TiO2is desirable for water splitting. Moreover, the calculated optical absorption curve of (Rh+F) codoped TiO2verifies that it has significantly improved visible light absorption. In the second part, we explore the (Rh+F) codoping effect on electronic structures and photocat-alytic activities of anatase TiO2(101) surface. Our calculated results clearly reveal that single noble metal (Rh) dopant can be stably doped at the upmost layer in this surface with the aid of the codoped F atom. In addition, we find that the (Rh+F) codoping effect on the electronic structures and optical properties of anatase TiO2(101) surface is similar to the results of this codoped bulk case, which indicates that it is easy to realize in experiments according to these theoretical findings.
     In Chapter4, we explore the double hole doped anatase TiO2systems. In the previous works, the dopants mainly include the non-metal elements, such as C, N, P, and S. Only few studies have addressed the double-hole-mediated coupling in metal and non-metal codoped anatase TiO2. Here, we extend the concept of of double-hole-mediated coupling of dopants, and examine the (Sc+P) and (In+P) codoping effects on electronic structures and photocatalytic activities of anatase TiO2. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO2, which is driven by the P-O antibonding states. This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO2. Moreover, the band edge alignments in (Sc+P) and (In+P) codoped anatase TiO2are desirable for water splitting. The calculated optical absorption curves indicate that (Sc+P) and (In+P) codoping in anatase TiO2can also effectively enhance the visible light absorption. These findings indicate that band structure engineering of anatase TiO2by the metal-assisted P-O coupling, namely, the double-hole-mediated coupling of acceptor metal and acceptor non-metal, is a promising method for enhanced photoelectrochemical water splitting.
     In Chapter5, we explore the photocatalytic mechanism of the hybrid g-C3N4/MoS2nanocomposite. The coupling betweewn semiconductors has been shown to be an ef-fective method for enhancing the efficiency of photogenerated carrier separation, im-proving the stability of photocatalyst and extend the extent of visible-light absorp-tion. Currently, semiconducting nanocomposite photocatalysts have attracted a lot of attention, especially, g-C3N4-based nanocomposites. Here, we explore the enhanced photocatalytic mechanism of the hybrid g-C3N4/MoS2nanocomposite. The calculated results show that it is a type-II band alignment between g-C3N4monolayer and MoS2sheet. Interestingly, the charge transfer between MoS2and g-C3N4results in a polar-ized field within the interface region, which will benefit the separation of photogenerat-ed carriers. In addition, this proposed layered nanocomposite is a good light-harvesting semiconductor. In addition, we find that a g-C3N4bilayer covering a MoS2sheet also displays desirable properties. These results and findings provides useful information for designing new semiconductor nanocomposite photocatalyst.
     In Chapter6, we explore the single-layer II-VI metal chalcogenide photocatalysts. It is essential to develop stable, low-cost and high efficient photocatalysts under vis-ible light for practical and mass hydrogen production. Here, using a first-principles design approach, we explore the single-layer II-VI metal chalcogenide photocatalyst-s(MX, M=Cd and Zn, X=S, Se and Te). Firstly, we find that the single-layer II-VI metal chalcogenides exhibit low formation energies and large range of band gaps from2.20to4.08eV. Next, calculations using a PBE and HSE06functional determine the conduction and valence band edge positions. Comparing the band edge positions with the redox potentials of H2O shows that single-layer II-VI metal chalcogenides are po-tential photocatalysts for water splitting. Moreover, the bandgaps, band edge positions, and optical absorption of the single-layer II-VI metal chalcogenides can be tuned by biaxial strain to increase the efficiency of solar energy conversion.
引文
[1]D. R. Hartree, Proc. Cam. Phil. Soc.24,89 (1928).
    [2]J. C. Slater, Phys. Rev.35,210 (1930).
    [3]A. Szabo and N. S. Ostlund, in Modern Quantum Chemistry. MacMillan:New York (1982).
    [4]R. B. McWeeny and T. Sutcliffe, in Methods of Molecular Quantum Mechanics. Academic:London (1969).
    [5]R. M. Dreizler, E. K. U. Gross, Density Functional Theory:An Approach to the Quantum Many-Body Problem, Springer-Verlag:Berlin (1990); R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford:New York (1989).
    [6]L. H. Thomas, Proc. Cambridge Philos. Soc.23,542 (1927).
    [7]E. Rend. Fermi, Accad. Naz. Lincei,6,602 (1927).
    [8]P. A. M. Dirac, Rend. Ohil. Roy. Soc.26,376 (1930).
    [9]P. Hohenberg and W. Kohn, Phys. Rev.136, B864 (1964).
    [10]W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    [11]J. P. Perdew, K. Burke, and M. Ernzerho, Phys. Rev. Lett.77,73865 (1996).
    [12]T. Asada and K. Terakura, Phys. Rev. B 46,13599 (1992).
    [13]L. F. Yuan, J. L. Yang, Q. X. Li and Q. S. Zhu, Phys. Rev. B 65,035415 (2002).
    [14]L. F. Yuan, J. L. Yang, K. Deng and Q. S. Zhu, J. Phys. Chem. A 104,6666 (2000).
    [15]J. P. Perdew and Y. Wang, Phys. Rev. B 45,13244 (1992).
    [16]A. D. Becke, Phys. Rev. A 38,3098 (1988).
    [17]P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem. 98,11623(1994).
    [18]J. Heyd and G. E. Scuseria, J. Chem. Phys.118,8207 (2003).
    [19]J. Heyd and G. E. Scuseria, J. Chem. Phys.124,219906-1 (2006).
    [20]V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.:Condens. Matter 4,767 (1997).
    [21]S. Grimme, J. Comput. Chem.,25,1463 (2004).
    [22]S. Grimme, J. Comput. Chem.,27,1787 (2006).
    [23]M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett.92,246401 (2004).
    [1]A. Ziittel, A. Borgschulte and L. Schlapbach, Hydrogen as a Future Energy Car-rier, (Wiley-VCH:Weinheim, Germany,2008).
    [2]N. Z. Muradov and T. N. Veziroglu, Int. J. Hydrogen Energy 33,6804 (2008).
    [3]X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev.110,6503 (2010).
    [4]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [5]J. Nozik, Annu. Rev. Phys. Chem.29,189 (1978).
    [6]M. Gratzel, Acc. Chem. Res.14,376 (1981).
    [7]Energy Resources through Photochemistry and Catalysis, (Academic Press, New York,1983)
    [8]M. A. Fox and M. T. Dulay, Chem. Rev.93,341 (1993).
    [9]M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev.95, 69 (1995).
    [10]A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev.95,735 (1995).
    [11]A. J. Bard and A. M. Fox, Acc. Chem. Res.28,141 (1995).
    [12]A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. and Photobiol. C:Pho- tochem. Rev.1,1 (2000).
    [13]M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi and M. Matsuoka, Annu. Rev. Mater. Res.35,1 (2005).
    [14]T. L. Thompson and J. T. Yates, Chem. Rev.106,4428 (2006).
    [15]A. Fujishima, X. Zhang and D. A. Tryk, Int. J. Hydrogen Energy 32,2664 (2007).
    [16]K. Maeda and K. Domen, J. Phys. Chem. C 111,7851 (2007).
    [17]A. Kudo, Int. J. Hydrogen Energy 32,2673 (2007).
    [18]M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo and J. M. Thomas, Catal. Today 122,51 (2007).
    [19]F. E. Osterloh, Chem. Mater.20,35 (2008).
    [20]Y. Inoue, Energy Environ. Sci.2,364 (2009).
    [21]R. M. N. Yerga, M. C. Alvarez-Galvan, F. del Valle, J. A. V. de la Mano and J. L. G. Fierro, ChemSusChem 2,471 (2009).
    [22]A. Kudo and Y. Miseki, Chem. Soc. Rev.38,253 (2009).
    [23]R. M. Navarro, M. C. Sanchez-Sanchez, M. C. Alvarez-Galvan, F. del Valle and J. L. G. Fierro, Energy Environ. Sci.2,35 (2009).
    [24]Y. Gai, J. Li, S.-S. Li, J.-B. Xia and S.-H. Wei, Phys. Rev. Lett.102,036402 (2009).
    [25]W. Zhu, X. Qiu, V. Iancu, X.-Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres and Z. Zhang, Phys. Rev. Lett.103,226401 (2009).
    [26]W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner and Y. Yan, Phys. Rev. B 82,045106 (2010).
    [27]X. Chen and S. S. Mao, Chem. Rev.107,2891 (2007).
    [28]P. F. Ji, M. Takeuchi, T. M. Cuong, J. L. Zhang, M. Matsuoka and M. Anpo, Res. Chem. Intermed.36,327 (2010).
    [29]D. Y. C. Leung, X. L. Fu, C. F. Wang, M. Ni, M. K. H. Leung, X. X. Wang and X. Z. Fu, ChemSusChem 3,681 (2010).
    [30]H. Kato and A. Kudo, J. Phys. Chem. B 106,5029 (2002).
    [31]J. Liu, G. Chen, Z. Lia and Z. Zhang, J. Solid State Chem.179,3704 (2006).
    [32]D. W. Hwang, H. G. Kim, J. S. Lee, W. Li and S. H. Oh, J. Phys. Chem. B 109, 2093 (2005).
    [33]A. Kudo and M. Sekizawa, Catal. Lett.58,241 (1999).
    [34]A. Kudo and M. Sekizawa, Chem. Commun.15,1371 (2000).
    [35]E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti and M. Visca, J. Am. Chem. Soc. 104,2996 (1982).
    [36]Z. Luo and Q. Gao, J. Photochem. Photobiol., A 63,367 (1992).
    [37]B. Tian, C. Li, F. Gu, H. Jiang, Y. Hu and J. Zhang, Chem. Eng. J.151,220 (2009).
    [38]L. G. Devi, S. G. Kumar, B. N. Murthy and N. Kottam, Catal. Commun.10,794 (2009).
    [39]G. H. Takaoka, T. Nose and M. Kawashita, Vacuum 83,679 (2008).
    [40]D. H. Kim, D. K. Choi, S. J. Kim and K. S. Lee, Catal. Commun.9,654 (2008).
    [41]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, J. Phys. Chem. Solids 63,1909 (2002).
    [42]T. Nishikawa, Y. Shinohara, T. Nakajima, M. Fujita and S. Mishima, Chem. Lett. 28,1133(1999).
    [43]Y. Cao, W. Yang, W. Zhang, G. Liu and P. Yue, New J. Chem.28,218 (2004).
    [44]S. Klosek and D. Raftery, J. Phys. Chem. B 105,2815 (2001).
    [45]M. A. Khan, S. I. Woo and O. B. Yang, Int. J. Hydrogen Energy 33,5345 (2008).
    [46]R. Dholam, N. Patel, M. Adami and A. Miotello, Int. J. Hydrogen Energy 34, 5337 (2009).
    [47]D. Eder, M. Motta and A. H. Windle, Nanotechnology 20,055602 (2009).
    [48]W. Y. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem.98,13669 (1994).
    [49]M. Gratzel and R. F. Howe, J. Phys. Chem.94,2566 (1990).
    [50]T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C. G. Granqvist and S. E. Lindquist, J. Phys. Chem. B 107,5709 (2003).
    [51]X. Chen and C. Burda, J. Phys. Chem. B 108,15446 (2004).
    [52]J. L. Gole, J. D. Stout, C. Burda, Y. Lou and X. Chen, J. Phys. Chem. B 108,1230 (2004).
    [53]A. Zaleska, E. Grabowska, J. W. Sobczak, M. Gazda and J. Hupka, Appl. Catal., B 89,469 (2009).
    [54]J. Wang, S. Yin, M. Komatsu and T. Sato, J. Eur. Ceram. Soc.25,3207 (2005).
    [55]T. Ohno, T. Tsubota, Y. Nakamura and K. Sayama, Appl. Catal., A 288,74 (2005).
    [56]C. L. Paven-Thivet, A. Ishikawa, A. Ziani, L. L. Gendre, M. Yoshida, J. Kubota, F. Tessier and K. Domen, J. Phys. Chem. C 113,6156 (2009).
    [57]J. H. Yan, Y. R. Zhu, Y. G. Tang and S. Q. Zheng, J. Alloys Compd.472,429 (2009).
    [58]S. Ito, K. R. Thampi, P. Comte, P. Liska and M. Gratzel, Chem. Commun.2,268 (2005).
    [59]D. Lu, G. Hitoki, E. Katou, J. N. Kondo, M. Hara and K. Domen, Chem. Mater. 16,1063 (2004).
    [60]M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi and K. Domen, Catal. Today 78,555 (2003).
    [61]G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, Elec-trochem.70,463 (2002).
    [62]M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen and C. Li, Chem. Commun.19,2192 (2004).
    [63]M. Liu, W. You, Z. Lei, T. Takata, K. Domen and C. Li, Chin. J. Catal.27,556 (2006).
    [64]M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Chem. Phys. Lett.452,120 (2008).
    [65]T. Mishima, M. Matsuda and M. Miyake, Appl. Catal., A 324,77 (2007).
    [66]X. Qiu, Y. Zhao and C. Burda, Adv. Mater.19,3995 (2007).
    [67]K. G. Kanade, J. O. Baeg, B. B. Kale, S. M. Lee, S. J. Moon and K. Kong, Int. J. Hydrogen Energy 32,4678 (2007).
    [68]S. M. Ji, P. H. Borse, H. G. Kim, D. W. Hwang, J. S. Jang, S. W. Bae and J. S. Lee, Phys. Chem. Chem. Phys.7,1315 (2005).
    [69]X. Li, N. Kikugawa and J. Ye, Adv. Mater.20,3816 (2008).
    [70]H. Shi, X. Li, H. Iwai, Z. Zou and J. Ye, J. Phys. Chem. Solids 70,931 (2009).
    [71]Y. Matsumoto, M. Koinuma, Y. Iwanaga, T. Sato and S. Ida, J. Am. Chem. Soc. 131,6644 (2009).
    [72]C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Lett.3, 1049 (2003).
    [73]Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J. N. Kon-do, M. Hara and K. Domen, J. Mater. Res.19,2100 (2004).
    [74]Y. Choi, T. Umebayashi and M. Yoshikawa, J. Mater. Sci.39,1837 (2004).
    [75]M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou and P. Yang, Mater. Lett.60,693 (2006).
    [76]T. Ohno, T. Mitsui and M. Matsumura, Chem. Lett.32,364 (2003).
    [77]T. Tesfamichael, G. Will and J. Bell, Appl. Surf. Sci.245,172 (2005).
    [78]Y. Zhao, X. Qiu and C. Burda, Chem. Mater.20,2629 (2008).
    [79]G. Zhang, X. Ding, Y. Hu, B. Huang, X. Zhang, X. Qin, J. Zhou and J. Xie, J. Phys. Chem. C 112,17994 (2008).
    [80]J. Fang, F. Wang, K. Qian, H. Bao, Z. Jiang and W. Huang, J. Phys. Chem. C 112, 18150 (2008).
    [81]D. Gu, Y. Lu, B. Yang and Y. Hu, Chem. Commun.21,2453 (2008).
    [82]X. Chen, Y. Lou, A. C. S. Samia, C. Burda and J. L. Gole, Adv. Funct. Mater.15, 41 (2005).
    [83]G. Liu, C. Sun, X. Yan, L. Cheng, Z. Chen, X. Wang, L. Wang, S. C. Smith, G. Q. Lu and H. M. Cheng, J. Mater. Chem.19,2822 (2009).
    [84]X. Chen, P. A. Glans, X. Qiu, S. Dayal, W. D. Jennings, K. E. Smith, C. Burda and J. Guo, J. Electron Spectrosc. Relat. Phenom.162,67 (2008).
    [85]X. Chen and C. Burda, J. Am. Chem. Soc.130,5018 (2008).
    [86]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293,269 (2001).
    [87]M. C. Yang, T. S. Yang and M. S. Wong, Thin Solid Films 469-470,1 (2004).
    [88]Y. Suda, H. I. Kawasak, T. I. Ueda and T. Ohshima, Thin Solid Films 453-454, 162 (2004).
    [89]K. Kobayakawa, K. Murakami and Y. Sato, J. Photochem. Photobiol., A 170,177 (2004).
    [90]S. Z. Chen, P. Y. Zhang, D. M. Zhuang and W. P. Zhu, Catal. Commun.5,677 (2004).
    [91]G. R. Torres, T. Lindgren, J. Lu, C. G. Granqvist and S. E. Lindquist, J. Phys. Chem. B 108,5995 (2004).
    [92]Z. Jiang, F. Yang, N. Luo, B. T. T. Chu, D. Sun, H. Shi, T. Xiao and P. P. Edwards, Chem. Commun.47,6372 (2008).
    [93]D. Huang, S. Liao, S. Quan, L. Liu, Z. He, J. Wan and W. Zhou, J. Non-Cryst. Solids 354,3965 (2008).
    [94]M. Mrowetz, W. Balcerski, A. J. Colussi and M. R. Hoffmann, J. Phys. Chem. B 108,17269 (2004).
    [95]L. Mi, P. Xu and P. N. Wang, Appl. Surf. Sci.255,2574 (2008).
    [96]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett.81,454 (2002).
    [97]T. Umebayashi, T. Yamaki, S. Tanala and K. Asai, Chem. Lett.32,330 (2003).
    [98]J. C. Yu, W. K. Ho, J. G. Yu, H. Y. Yip, P. K. Wong and J. C. Zhao, Environ. Sci. Technol.39,1175(2005).
    [99]W. Ho, J. C. Yu and S. Lee, J. Solid State Chem.179,1171 (2006).
    [100]K. Takeshita, A. Yamakata, T. A. Ishibashi, H. Onishi, K. Nishijima and T. Ohno, J. Photochem. Photobiol., A 177,269 (2006).
    [101]K. Nishijima, T. Kamai, N. Murakami, T. Tsubota and T. Ohno, Int. J. Photoen-ergy,173943 (2008).
    [102]S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Science 297,2243 (2002).
    [103]C. Xu, Y. A. Shaban, W. B. Ingler and S. U. M. Khan, Sol. Energy Mater. Sol. Cells 91,938 (2007).
    [104]J. Xu, Y. Ao and D. Fu, Appl. Surf. Sci.256,884 (2009).
    [105]S. Song, J. Tu, L. Xu, X. Xu, Z. He, J. Qiu, J. Ni and J. Chen, Chemosphere 73, 1401 (2008).
    [106]C. Liu, X. Tang, C. Mo and Z. Qiang, J. Solid State Chem.181,913 (2008).
    [107]C. Wei, X. Tang, J. Liang and S. Tan, J. Environ. Sci.19,90 (2007).
    [108]B. Tryba, Int. J. Photoenergy,721824 (2008).
    [109]X. Z. Shen, J. Guo, Z. C. Liu and S. M. Xie, Appl. Surf. Sci.254,4726 (2008).
    [110]K. Lv, H. Zuo, J. Sun, K. Deng, S. Liu, X. Li and D. Wang, J. Hazard. Mater. 161,396 (2009).
    [111]Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao and X. Tang, J. Phys. Chem. C 112,6620 (2008).
    [112]Y. Huang, W. Ho, Z. Ai, X. Song, L. Zhang and S. Lee, Appl. Catal., B 89,398 (2009).
    [113]X. Zhang and Q. Liu, Appl. Surf. Sci.254,4780 (2008).
    [114]H. Xia, H. Zhuang, D. Xiao and T. Zhang, J. Alloys Compd.465,328 (2008).
    [115]Z. He, X. Xu, S. Song, L. Xie, J. Tu, J. Chen and B. Yan, J. Phys. Chem. C 112, 16431 (2008).
    [116]Z. Liu, Y. Zhou, Z. Li, Y. Wang and C. Ge, Rare Met.26,263 (2007).
    [117]J. Xu, Y. Ao, D. Fu and C. Yuan, J. Colloid Interface Sci.328,447 (2008).
    [118]R. Long and N. J. English, Chem. Phys. Lett.478,175 (2009).
    [119]J. Li, J. Xu, W. L. Dai, H. Li and K. Fan, Appl. Catal., B 82,233 (2008).
    [120]Y. Shen, T. Xiong, H. Du, H. Jin, J. Shang and K. Yang, J. Sol-Gel Sci. Technol. 50,98 (2009).
    [121]L. H. Huang, C. Sun and Y. L. Liu, Appl. Surf. Sci.253,7029 (2007).
    [122]K. Zhang, D. Jing, C. Xing and L. J. Guo, Int. J. Hydrogen Energy 32,4685 (2007).
    [123]I. Tsuji, H. Kato, H. Kobayashi and A. Kudo, J. Am. Chem. Soc.126,13406 (2004).
    [124]A. Kudo and I. Mikami, J. Chem. Soc., Faraday Trans.94,2929 (1998).
    [125]D. Wang, T. Kako and J. Ye, J. Am. Chem. Soc.130,2724 (2008).
    [126]D. Wang, T. Kako and J. Ye, J. Phys. Chem. C 113,3785 (2009).
    [127]F. Chevire, F. Tessier and R. Marchand, Eur. J. Inorg. Chem.6,1223 (2006).
    [128]W. Luo, Z. Li, X. Jiang, T. Yu, L. Liu, X. Chen, J. Ye and Z. Zou, Phys. Chem. Chem. Phys.10,6717 (2008).
    [129]K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc.127,8286 (2005).
    [130]K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen, Nature 440,295 (2006).
    [131]K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. B 110,13107 (2006).
    [132]T. Hirai, K. Maeda, M. Yoshida, J. Kubota, S. Ikeda, M. Matsumura and K. Domen, J. Phys. Chem. C 111,18853 (2007).
    [133]K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem. B 109,20504 (2005).
    [134]K. Maeda, H. Hashiguchi, H. Masuda, R. Abe and K. Domen, J. Phys. Chem. C 112,3447 (2008).
    [135]X. Sun, K. Maeda, M. L. Faucheur, K. Teramura and K. Domen, Appl. Catal., A 327,114(2007).
    [136]K. Maeda and K. Domen, Chem. Mater.22,612 (2010).
    [137]H. J. Gerischer, J. Electroanal. Chem.82,133 (1977).
    [138]S. Anderson, E. C. Constable, M. P. Dareedwards, J. B. Goodenough, A. Ham-nett, K. R. Seddon and R. D. Wright, Nature 280,571 (1979).
    [139]K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama and H. Arakawa, Langmuir 17,5992 (2001).
    [140]S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Phys. Chem. B 109,3480 (2005).
    [141]P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Gratzel, J. Am. Chem. Soc.126,13590 (2004).
    [142]C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, Adv. Mater. 19,3888 (2007).
    [143]D. Kuang, C. Klein, Z. Zhang, S. Ito, J. E. Moser, S. M. Zakeeruddin and M. Gratzel, Small 3,2094 (2007).
    [144]N. Robertson, Angew. Chem., Int. Ed.47,1012 (2008).
    [145]E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Gratzel, J. Am. Chem. Soc.103,6324 (1981).
    [146]F. Chen, Z. Deng, X. Li, J. Zhang and J. Zhao, Chem. Phys. Lett.415,85 (2005).
    [147]T. V. Nguyen, J. C. S. Wu and C. H. Chiou, Catal. Commun.9,2073 (2008).
    [148]B. O'Regan and M. Gratzel, Nature 353,737 (1991).
    [149]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Gratzel, J. Am. Chem. Soc.127,16835 (2005).
    [150]Z. S. Wang, T. Yamaguchi, H. Sugihara and H. Arakawa, Langmuir 21,4272 (2005).
    [151]Y. Chiba, A. Islam, R. Komiya, N. Koide and L. Han, Appl. Phys. Lett.88, 223505 (2006).
    [152]M. K. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. D. Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai and M. Gratzel, J. Photochem. Photobiol., A 185,331(2007).
    [153]J. H. Yum, P. Chen, M. Gratzel and M. K. Nazeeruddin, ChemSusChem 1,699 (2008).
    [154]M. Gratzel, Chem. Lett.34,8 (2005).
    [155]K. Maeda, M. Eguchi, W. J. Youngblood and T. E. Mallouk, Chem. Mater.20, 6770 (2008).
    [156]Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, Nat. Mater.9,559 (2010).
    [157]P. Ritterskamp, A. Kuklya, M. A. Wustkamp, K. Kerpen and C. Weidenthaler, M. Demuth, Angew. Chem., Int. Ed.46,7770 (2007).
    [158]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nat. Mater.8,76 (2008).
    [159]G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang and J. R. Gong, Adv. Mater.25,3820 (2013).
    [160]Q. Xiang, J. Yu and M. Jaroniec, Chem. Soc. Rev.41,782 (2012).
    [161]Y. Zhang, A. Thomas, M. Antonietti and X. Wang, J. Am. Chem. Soc.131,50 (2008).
    [162]X. Chen, J. Zhang, X. Fu, M. Antonietti and X. Wang, J. Am. Chem. Soc.131, 11658(2009).
    [163]G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu and H.-M. Cheng, J. Am. Chem. Soc.132,11642 (2010).
    [164]Y. Zhang, T. Mori, J. Ye and M. Antonietti, J. Am. Chem. Soc.132,6294 (2010).
    [165]Y. Wang, J. Zhang, X. Wang, M. Antonietti and H. Li, Angew. Chem. Int. Ed. 49,3356 (2010).
    [166]J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti and X. Wang, Angew. Chem. Int. Ed.49,441 (2010).
    [167]G. Dong, K. Zhao and L. Zhang, Chem. Commun.48,6178 (2012).
    [168]Y. Cui, Z. Ding, X. Fu and X. Wang, Angew. Chem. Int. Ed.51,11814 (2012).
    [169]J. Zhang, M. Zhang, R.-Q. Sun and X. Wang, Angew. Chem. Int. Ed.51,10145 (2012).
    [170]Y.-S. Jun, J. Park, S. U. Lee, A. Thomas, W. H. Hong and G. D. Stucky, Angew. Chem. Int. Ed.52,11083 (2013).
    [171]K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker and B. V. Lotsch, Angew. Chem. Int. Ed.52, 2435 (2013).
    [172]K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker and B. V. Lotsch, J. Am. Chem. Soc.136,1730 (2014).
    [173]Z. Tang, X. Chen, H. Chen, L. Wu and X. Yu, Angew. Chem. Int. Ed.52,5832 (2013).
    [174]Y.-Y. Cai, X.-H. Li, Y.-N. Zhang, X. Wei, K.-X. Wang and J.-S. Chen, Angew. Chem. Int. Ed.52,11822 (2013).
    [175]Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed.51,68 (2012).
    [176]M. Shalom, S. Inal, C. Fettkenhauer, D. Neher and M. Antonietti, J. Am. Chem. Soc.135,7118(2013).
    [177]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, J. Am. Chem. Soc. 135,18(2013).
    [178]T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater.20, 2255 (2010).
    [179]X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc. 130,7176(2008).
    [180]X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang and C. Li, J. Phys. Chem. C 114,1963 (2010).
    [181]F. A. Frame and F. E. Osterloh, J. Phys. Chem. C 114,10628 (2010).
    [182]Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc.134,6575 (2012).
    [183]M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata and K. Domen, J. Phys. Chem. C 114,11215 (2010).
    [184]J. S. Jang, D. J. Ham, N. Lakshminarasimhan, W. Choi and J. S. Lee, Appl. Catal., A 346,149 (2008).
    [185]T. Peng, K. Dai, H. Yi, D. Ke, P. Cai and L. Zan, Chem. Phys. Lett.460,216 (2008).
    [186]J. S. Jang, W. Li, S. H. Oh and J. S. Lee, Chem. Phys. Lett.425,278 (2006).
    [187]J. Nayak, S. N. Sahu, J. Kasuya and S. Nozaki, Appl. Surf. Sci.254,7215 (2008).
    [188]X. Wang, G. Liu, Z. Chen, F. Li, L. Wang, G. Lu and H. Cheng, Chem. Commun. 23,3452 (2009).
    [189]X. Wang, G. Liu, G. Lu and H. Cheng, Int. J. Hydrogen Energy 35,8199 (2010).
    [190]T. Kida, G. Guan and A. Yoshida, Chem. Phys. Lett.371,563 (2003).
    [191]S. Y. Ryu, J. Choi, W. Balcerski, T. K. Lee and M. R. Hoffmann, Ind. Eng. Chem. Res.46,7476 (2007).
    [192]J. Choi, S. Y. Ryu, W. Balcerski, T. K. Lee and M. R. Hoffmann, J. Mater. Chem. 18,2371 (2008).
    [193]J. S. Jang, H. G. Kim, P. H. Borse and J. S. Lee, Int. J. Hydrogen Energy 32, 4786 (2007).
    [194]J. S. Jang, H. G. Kim, U. A. Joshi, J. W. Jang and J. S. Lee, Int. J. Hydrogen Energy 33,5975 (2008).
    [195]J. C. Yu, L. Wu, J. Lin, P. Lia and Q. Li, Chem. Commun.13,1552 (2003).
    [196]D. R. Baker and P. V. Kamat, Adv. Funct. Mater.19,805 (2009).
    [1]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [2]M. A. Fox and M. T. Dulay, Chem. Rev.93,341 (1993).
    [3]M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev.95, 69 (1995).
    [4]A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev.95,735 (1995).
    [5]A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. and Photobiol. C:Pho-tochem. Rev.1,1 (2000).
    [6]M. Gratzel, Nature 414,338 (2001).
    [7]T. L. Thompson and J. T. Yates, Chem. Rev.106,4428 (2006).
    [8]A. Fujishima, X. Zhang and D. A. Tryk, Int. J. Hydrogen Energy 32,2664 (2007).
    [9]X. Chen and S. S. Mao, Chem. Rev.107,2891 (2007).
    [10]X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev.110,6503 (2010).
    [11]A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep.63,515 (2008).
    [12]A. Kudo and Y. Miseki, Chem. Soc. Rev.38,253 (2009).
    [13]H. Tang, F. Levy, H. Berger and P. E. Schmid, Phys. Rev. B 52,7771 (1995).
    [14]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293,269 (2001).
    [15]S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Jr., Science 297,2243 (2002).
    [16]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett.81,454 (2002).
    [17]W. Y. Choi, A. Terrain, and M. R. Hoffmann, J. Phys. Chem.98,13669 (1994).
    [18]M. I. Litter, Appl. Catal., B 23,89 (1999).
    [19]J. Tang, J. R. Durrant and D. R. Klug, J. Am. Chem. Soc.130,13885 (2008).
    [20]J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari and S. Sajjad, Energy Environ. Sci. 3,715(2010).
    [21]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, J. Phys. Chem. Solids 63,1909 (2002).
    [22]Y. Gai, J. Li, S.-S. Li, J.-B. Xia and S.-H. Wei, Phys. Rev. Lett.102,036402 (2009).
    [23]W. Zhu, X. Qiu, V. Iancu, X.-Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres and Z. Zhang, Phys. Rev. Lett.103,226401 (2009).
    [24]W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner and Y. Yan, Phys. Rev. B 82,045106 (2010).
    [25]H. Pan, B. Gu, G. Eres and Z. Zhang, J. Chem. Phys.132,104501 (2010).
    [26]K. Maeda and K. Domen, J. Phys. Chem. C 111,7851 (2007).
    [27]J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res.46,1900 (2013).
    [28]K. Domen, S. Naito, T. Onishi, K. Tamaru and M. Soma, J. Phys. Chem.86,3657 (1982).
    [29]A. Kudo, A. Tanaka, K. Domen, K.-i. Maruya, K.-i. Aika and T. Onishi, J. Catal. 111,67 (1988).
    [30]K. Iwashina and A. Kudo, J. Am. Chem. Soc.133,13272 (2011).
    [31]S. Kitano, N. Murakami, T. Ohno, Y. Mitani, Y. Nosaka, H. Asakura, K. Tera-mura, T. Tanaka, H. Tada, K. Hashimoto, H. Kominami, J. Phys. Chem. C 117, 11008(2013).
    [32]G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    [33]G. Kresse and J. Furthmuller, J. Comput. Mater. Sci.6,15 (1996).
    [34]P. E. Blochl, Phys. Rev. B 50,17953 (1994)
    [35]J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    [36]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.118,8207 (2003).
    [37]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.124,219906 (2006).
    [38]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [39]M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller and F. Bechstedt, Phys. Rev. B 73,045112(2006).
    [40]J. K. Burdett, T. Hughbanks, G. J. Miller and J. W. Richardson, J. V. Smith, J. Am. Chem. Soc.109,3639 (1987).
    [41]M. Lazzeri, A.Vittadini and A. Selloni, Phys. Rev. B 63,155409 (2001).
    [42]X. Du, Q. Li, H. Su and J. Yang, Phys. Rev. B 74,233201 (2006).
    [43]Y. Qu and X. Duan, Chem. Soc. Rev.42,2568 (2013).
    [44]P. Liao and E. A. Carter, Chem. Soc. Rev.42,2401 (2013).
    [45]B. Ohtani, Phys. Chem. Chem. Phys.16,1788 (2014).
    [46]Y. Xu and M. A. A. Schoonen, Am. Mineral.85,543 (2000)
    [47]L. Jia, C. Wu, Y. Li, S. Han, Z. Li, B. Chi, J. Pu and L. Jian, Appl. Phys. Lett.98, 211903(2011).
    [48]M. Harb, J. Phys. Chem. C 117,25229 (2013).
    [49]Y. Lin, Z. Jiang, X. Hu, X. Zhang and J. Fan, Appl. Phys. Lett.100,102105 (2012).
    [50]B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, Nature Chem.3,634 (2011).
    [51]Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara and T. Ishihara, J. Am. Chem. Soc. 133,18034(2011).
    [52]J. Xing, J. F. Chen, Y. H. Li, W. T. Yuan, Y. Zhou, L. R. Zheng, H. F. Wang, P. Hu, Y. Wang, H. J. Zhao, Y. Wang and H. G. Yang, Chem. Eur. J.20,2138 (2014).
    [53]K. K Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys.44,8269 (2005).
    [54]J. Pan, G. Liu, G. Q. Lu and H.-M. Cheng, Angew. Chem. Int. Ed.50,2133 (2011).
    [1]W.-J. Yin, S.-H. Wei, M. M. Al-Jassim and Y. Yan, Phys. Rev. Lett.106,066801 (2011).
    [2]J. Nisar, B. Pathak, B. Wang, T. Won Kang and R. Ahuja, Phys. Chem. Chem. Phys.14,4891 (2012).
    [3]B. C. Wang, J. Nisar, B. Pathak, T. W. Kang and R. Ahuja, Appl. Phys. Lett.100, 182102 (2012).
    [4]P. Liu, J. Nisar, B. Pathak and R. Ahuja, Int. J. Hydrogen Energy 37,11611 (2012).
    [5]J. Nisar, B. Wang, C. M. Araujo, A. Ferreira da Silva, T. W. Kang and R. Ahuja, Int. J. Hydrogen Energy 37,3014 (2012).
    [6]P. Liu, J. Nisar, B. Sa, B. Pathak and R. Ahuja, J. Phys. Chem. C 117,13845 (2013).
    [7]B. Wang, P. D. Kanhere, Z. Chen, J. Nisar, B. Pathak and R. Ahuja, J. Phys. Chem.C 117,22518 (2013).
    [8]G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    [9]G. Kresse and J. Furthmuller, J. Comput. Mater. Sci.6,15 (1996).
    [10]P. E. Blochl, Phys. Rev. B 50,17953 (1994)
    [11]J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    [12]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.118,8207 (2003).
    [13]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.124,219906 (2006).
    [14]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [15]M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller and F. Bechstedt, Phys. Rev. B 73,045112(2006).
    [16]J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson and J. V. Smith, J. Am. Chem. Soc.109,3639 (1987).
    [17]M. Lazzeri, A.Vittadini and A. Selloni, Phys. Rev. B 63,155409 (2001).
    [18]X. Du, Q. Li, H. Su and J. Yang, Phys. Rev. B 74,233201 (2006).
    [19]H. Tang, F. Levy, H. Berger and P. E. Schmid, Phys. Rev. B,52,7771 (1995).
    [20]M. Niu, D. Cheng and D. Cao, J. Phys. Chem. C 117,15911 (2013).
    [21]M. Niu, D. Cheng and D. Cao, Int. J. Hydrogen Energy 38,1251 (2013).
    [22]L. Jia, C. Wu, Y. Li, S. Han, Z. Li, B. Chi, J. Pu and L. Jian, Appl. Phys. Lett.98, 211903(2011).
    [23]M. Harb, J. Phys. Chem. C 117,25229 (2013).
    [24]Y. Lin, Z. Jiang, X. Hu, X. Zhang and J. Fan, Appl. Phys. Lett.100,102105 (2012).
    [25]Y. Gai, J. Li, S.-S. Li, J.-B. Xia and S.-H. Wei, Phys. Rev. Lett.102,036402 (2009).
    [26]W. Zhu, X. Qiu, V. Iancu, X.-Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres and Z. Zhang, Phys. Rev. Lett.103,226401 (2009).
    [27]H. Pan, B. Gu, G. Eres and Z. Zhang, J. Chem. Phys.132,104501 (2010).
    [28]W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner and Y. Yan, Phys. Rev. B 82,045106 (2010).
    [29]Y. Qu and X. Duan, Chem. Soc. Rev.42,2568 (2013).
    [30]P. Liao and E. A. Carter, Chem. Soc. Rev.42,2401 (2013).
    [31]A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev.95,735 (1995).
    [32]B. Ohtani, Phys. Chem. Chem. Phys.16,1788 (2014).
    [1]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nat. Mater.8,76 (2009).
    [2]Y. Zhang, A. Thomas, M. Antonietti and X. Wang, J. Am. Chem. Soc.131,50 (2008).
    [3]X. Chen, J. Zhang, X. Fu, M. Antonietti and X. Wang, J. Am. Chem. Soc.131, 11658(2009).
    [4]G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu and H.-M. Cheng, J. Am. Chem. Soc.132,11642 (2010).
    [5]Y. Zhang, T. Mori, J. Ye and M. Antonietti, J. Am. Chem. Soc.132,6294 (2010).
    [6]Y. Wang, J. Zhang, X. Wang, M. Antonietti and H. Li, Angew. Chem. Int. Ed.49, 3356 (2010).
    [7]J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti and X. Wang, Angew. Chem. Int. Ed.49,441 (2010).
    [8]G. Dong, K. Zhao and L. Zhang, Chem. Commun.48,6178 (2012).
    [9]Y. Cui, Z. Ding, X. Fu and X. Wang, Angew. Chem. Int. Ed.51,11814 (2012).
    [10]J. Zhang, M. Zhang, R.-Q. Sun and X. Wang, Angew. Chem. Int. Ed.51,10145 (2012).
    [11]Y.-S. Jun, J. Park, S. U. Lee, A. Thomas, W. H. Hong and G. D. Stucky, Angew. Chem. Int. Ed.52,11083 (2013).
    [12]K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker and B. V. Lotsch, Angew. Chem. Int. Ed.52, 2435 (2013).
    [13]K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker and B. V. Lotsch, J. Am. Chem. Soc.136,1730 (2014).
    [14]Z. Tang, X. Chen, H. Chen, L. Wu and X. Yu, Angew. Chem. Int. Ed.52,5832 (2013).
    [15]Y.-Y. Cai, X.-H. Li, Y.-N. Zhang, X. Wei, K.-X. Wang and J.-S. Chen, Angew. Chem. Int. Ed.52,11822 (2013).
    [16]Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed.51,68 (2012).
    [17]M. Shalom, S. Inal, C. Fettkenhauer, D. Neher and M. Antonietti, J. Am. Chem. Soc.135,7118(2013).
    [18]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, J. Am. Chem. Soc.135, 18 (2013).
    [19]K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti and K. Domen, J. Phys. Chem. C 113,4940 (2009).
    [20]Y. Di, X. Wang, A. Thomas and M. Antonietti, ChemCatChem 2,834 (2010).
    [21]J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res.46,1900 (2013).
    [22]P. C. K. Vesborg and T. F. Jaramillo, RSC Adv.2,7933 (2012).
    [23]T. F. Jaramillo, K. P. J(?)rgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chork-endorff, Science 317,100 (2007).
    [24]D. Merki and X. Hu, Energy Environ. Sci.4,3878 (2011).
    [25]H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long and C. J. Chang, Science 335,698 (2012).
    [26]A. B. Laursen, S. Kegnaes, S. Dahl and I. Chorkendorff, Energy Environ. Sci.5, 5577 (2012).
    [27]H. Vrubel, D. Merki and X. Hu, Energy Environ. Sci.5,6136 (2012).
    [28]T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu and M. Li, Energy Environ. Sci.6,625 (2013).
    [29]Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc.133, 7296(2011).
    [30]Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara and T. F. Jaramil-lo, Nano Lett.11,4168 (2011).
    [31]X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc. 130,7176(2008).
    [32]Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc.134,6575 (2012).
    [33]M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, Nature Chem.5,263 (2013).
    [34]Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl and I. Chorkendorff, Angew. Chem. Int. Ed.52,3621 (2013).
    [35]G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    [36]G. Kresse and J. Furthmuller, J. Comput. Mater. Sci.6,15 (1996).
    [37]P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    [38]J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    [39]S. Grimme, J. Comput. Chem.25,1463 (2004).
    [40]S. Grimme, J. Comput. Chem.27,1787 (2006).
    [41]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [42]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.118,8207 (2003).
    [43]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.124,219906 (2006).
    [44]M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller and F. Bechstedt, Phys. Rev. B 73,045112(2006).
    [45]M. Xu, T. Liang, M. Shi and H. Chen, Chem. Rev.113,3766 (2013).
    [46]C. Ataca, M. Topsakal, E. Aktiirk and S. Ciraci, J. Phys. Chem. C 115,16354 (2011).
    [47]C. Ataca, H. hin and S. Ciraci, J. Phys. Chem. C 116,8983 (2012).
    [48]C. Ataca and S. Ciraci, Phys. Rev. B 85,195410 (2012).
    [49]Y. Ma, Y. Dai, M. Guo, C. Niu and B. Huang, Nanoscale 3,3883 (2011).
    [50]N. Singh, G. Jabbour and U. Schwingenschlogl, Eur. Phys. J. B 85,1 (2012).
    [51]A. Du, S. Sanvito and S. C. Smith, Phys. Rev. Lett.108,197207 (2012).
    [52]A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal and S. C. Smith, J. Am. Chem. Soc.134,4393 (2012).
    [53]L. Sun, X. Zhao, C.-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu and W. Fan, J. Mater. Chem.22,23428 (2012).
    [54]Z. Alferov, Semiconductors 32,1 (1988).
    [55]J. Tersoff, Phys. Rev. B 30,4874 (1984).
    [56]Y. Zhu, Y. Dai, K. Lai, Z. Li and B. Huang, J. Phys. Chem. C 117,5593 (2013).
    [57]F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang and E. Kan, J. Phys. Chem. Lett.3,3330 (2012).
    [58]A. Kudo and Y. Miseki, Chem. Soc. Rev.38,253 (2009).
    [59]T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, Science 313,951 (2006).
    [60]E. Kan, H. Ren, F. Wu, Z. Li, R. Lu, C. Xiao, K. Deng and J. Yang, J. Phys. Chem. C 116,3142 (2012).
    [1]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [2]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nat. Mater.8,76 (2009).
    [3]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov,. Science 306,666 (2004).
    [4]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Moro-zov and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A.102,10451 (2005).
    [5]D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, ACS Nano 4,2979 (2010).
    [6]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat Nano 7,699(2012).
    [7]P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan and K. Xiao, Nano Lett 13,1649 (2013).
    [8]H. L. Zhuang and R. G. Hennig, J. Phys. Chem. C 117,20440 (2013).
    [9]H. L. Zhuang and R. G. Hennig, Chem. Mater.25,3232 (2013).
    [10]H. L. Zhuang and R. G. Hennig, Appl. Phys. Lett.103,212102 (2013).
    [11]H. L. Zhuang and R. G. Hennig, Physic. Rev. B 88,115314 (2013).
    [12]H. L. Zhuang, M. D. Johannes, M. N. Blonsky and R. G. Hennig, Appl. Phys. Lett.104,022116(2014).
    [13]X. Jiang, J. Nisar, B. Pathak, J. Zhao and R. Ahuja, J. Catal.299,204 (2013).
    [14]H. Sun, X. Zhao, L. Zhang and W. Fan, J. Phys. Chem. C 115,2218 (2011).
    [15]A. Kudo and Y. Miseki, Chem. Soc. Rev.38,253 (2009).
    [16]S. Yang, D. Prendergast and J. B. Neaton, Nano Lett 12,383 (2011).
    [17]J. S. Son, X.-D. Wen, J. Joo, J. Chae, S.-i. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S.-H. Choi, Z. Wang, Y.-W. Kim, Y. Kuk, R. Hoffmann and T. Hyeon, Angew. Chem. Int. Ed.48,6861 (2009).
    [18]Z. Wang, X.-D. Wen, R. Hoffmann, J. S. Son, R. Li, C.-C. Fang, D.-M. Smilgies and T. Hyeon, Proc. Natl. Acad. Sci. U.S.A.107,17119 (2010).
    [19]C. Li, L. Han, R. Liu, H. Li, S. Zhang and G. Zhang, J. Mater. Chem.22,23815 (2012).
    [20]G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    [21]G. Kresse and J. Furthmuller, J. Comput. Mater. Sci.6,15 (1996).
    [22]P. E. Blochl, Phys. Rev. B 50,17953 (1994)
    [23]J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    [24]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.118,8207 (2003).
    [25]J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.124,219906 (2006).
    [26]H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    [27]M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao and E. A. Carter, Phys. Chem. Chem. Phys.13,16644 (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700