锡系固体超强酸在氧化反应中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体超强酸SO_4~(2-)/SnO_2(酸强度H_0<-16)已经广泛的应用于催化烷烃的异构化反应、酯化反应、氧化反应、芳构化、聚合反应等等,并显示出良好的催化活性。被认为是当今酸催化领域重要的催化剂,引起国内外研究者广泛关注。传统的催化剂一般使用Lewis酸(AlCl_3,FeCl_3等)和质子酸(HF),但这些催化剂存在许多弊端,如选择性较差、副反应多、收率低、催化剂无法回收、腐蚀性强、产物分离困难、环境污染严重等。而固体超强酸符合绿色催化的要求,具有广泛的应用前景。在现代化工行业中以空气为氧化剂辅以催化剂催化氧化碳氢化合物有着重大的经济效益。
     本文对固体超强酸的发展及种类进行了综述。并简单介绍了烷烃氧化的研究现况。基于固体超强酸自身特点和烷烃的氧化研究的基础上提出了本课题的研究内容:以锡系固体超强酸SO_4~(2-)/SnO_2和金属改性锡系固体超强酸SO_4~(2-)/SnO_2-M_XO_Y(M=Ce,Co,V,Mo,Ti)为催化剂,以空气中的氧气为氧化剂,在温和的实验条件下将正庚烷直接催化氧化生成聚合物、酯、芳烃化合物等。本论文的研究主要包括以下几个方面:
     (1)SO_4~(2-)/SnO_2和SO_4~(2-)/SnO_2-M_XO_Y(M=Ce,Co,V,Mo,Ti)固体超强酸由共沉淀法制备,并利用SEM、XRD、BET、FT-IR和XPS等手段对催化剂进行了表征;
     (2)通过催化氧化正庚烷反应考察催化剂SO_4~(2-)/SnO_2的活性。整个反应过程产物由GC-MS进行跟踪测定。在隔绝空气的条件下,主要产物为聚合的直链烷烃(碳链长度在14-22之间);在空气的氛围下,产物中又出现了含氧产物,例如:2-异丙基-环己醇、异丁基邻苯二甲酸酯和甲基环己烷基十三烷基草酸酯,可以应用于燃料、皮革、纺织品、化妆品等行业。这一在常温常压下以锡系超强酸为催化剂催化氧化碳氢化合物的反应还未见报道:
     (3)金属改性锡系固体超强酸SO_4~(2-)/SnO_2-M_XO_Y(M=Ce,Co,V,Mo,Ti)在催化氧化反应中表现出很好的催化活性,通过研究表明金属改性剂的加入提高了催化剂酸性,选择性和稳定性;
     (4)具有光催化活性金属Ti的引入极大的提高了催化剂SO_4~(2-)/SnO_2的比表面积。并且在紫外光的照射下催化剂SO_4~(2-)/SnO_2-TiO_2在氧化正庚烷的反应中表现出了良好的光催化活性。开启了固体超强酸应用的一个新的领域;
     (5)最后一部分简单介绍了可能的反应机理。
     相对于其它传统的催化氧化碳氢化合物的生产工艺,SO_4~(2-)/SnO_2-M_XO_Y在空气氛围下催化氧化这种方法的优点在于:操作简单、反应条件温和,反应时间短等等。通过这种方直接氧化有机物有望应用在烷烃氧化实际生产中。
Solid superacid SO_4~(2-)/SnO_2 (H_0 < -16) has been used in isomerization, alkylation, acylation, polymerization, oligomerization, esterification, oxidation, etc. It can be said that solid acids are the most important heterogeneous catalysts used today. The conventional catalysts are Lewis acid (AlCl_3, FeCl_3, TiCl_4, BF_3, etc) and proton acid (HF, H_2SO_4, HCl), but these catalysts have many disadvantages, such as bad selectivity, more side reaction, low yield, strong corrosion, difficulty in separation and recovery, serious environmental pollution etc. Solid acids are green industrial catalyst that is helpful to recycling and possesses wide prospect of application. Catalytic oxidations of hydrocarbons using oxygen or air as oxidants are significant and economical to the chemical industry.
     In this article, the basic knowledge of development and species of the solid superacid (especially SO_4~(2-)/SnO_2) and oxygenation of alkanes is introduced and reviewed. The content of this subject study is presented on the basis of studies on solid superacid and oxygenation of alkanes. The direct oxidation of n-heptane to ester using air as the oxidant under mild conditions assisted by solid superacid SO_4~(2-)/SnO_2 and metal-promoted sulfated tin oxide catalysts SO_4~(2-)/SnO_2-M_XO_Y (M= Ce, Co, V, Mo, Ti). The major aspects of the present study are as follows:
     (1) In the first part of this article, catalyst prepared by chemical co-precipitation method and characterized by means of SEM, XRD, BET, FT-IR and XPS techniques was studied.
     (2) Catalytic SO_4~(2-)/SnO_2 activity was tested for the directly oxidation of n-heptane. Products were analyzed with an on-line gas chromatograph-mass spectrometry. Under airtight conditions, main products are C-number of n-alkane from C_(14) to C_(22); under aeration conditions, oxygenate compounds presented. Some products such as: diisobutyl phthalate, cyclohexylmethyl tridecyl oxalate and 2-isopropylcyclohexanol that have not been reported in the directly oxidation of alkane by traditional method have been obtained, and all the products are used in fuel, leather, textiles, cosmetics and so on.
     (3) Metal-promoted superacids SO_4~(2-)/SnO_2-M_XO_Y (M= Ce, Co, V, Mo, Ti), which were highly active for this reactions, were investigated in order to improve its acid sites activity, selectivity and stability.
     (4) The introduction of Ti into SO_~(2-)/SnO_2 can increase its surface area greatly. SO_4~(2-)/SnO_2-TiO_2 shows a certain photocatalytic activities in n-heptane oxidation using air as the oxidant in the presence of UV light. This new application of solid superacid also sets light on its special characteristics and its application field.
     (5) Finally, the article discussed the possible mechanism of these reactions.
     Compared with catalytic oxidations of hydrocarbons by traditional methods, simple work up procedure, milder reaction conditions, and shorter reaction times are the advantages associated with the SO_4~(2-)/SnO_2-M_XO_Y catalyzed processes. The present study revealed that SO_4~(2-)//SnO_2/M_XO_Y as a heterogeneous catalysis might hold great promise in the development of oxygenation of alkanes.
引文
[1]田部浩三,御园生诚,小野嘉夫.新固体酸和碱及其催化作用[M].化学工业 出版社,1992,11:2.
    
    [2]田部浩三,野依良治.超强酸和超强碱[M].化学工业出版社,1986,106.
    
    [3]李德庆,米镇涛.固体超强酸催化剂的发展与应用[J].化工进展,1996,4:5-10.
    
    [4]毛东森,卢冠忠,陈庆龄.附载型氧化物固体超强酸催化剂的制备及应用[J]. 化学通报,2001,5:278-284.
    
    [5]T.Okuhara[J].Chem.Tech.,1993,23:11-13.
    
    [6]赵骥.催化剂[M].北京:中国物资出版社,2001.
    
    [7]黄仲涛.工业催化[M].北京:化学工业出版社,2000.
    
    [8] J. M. Miller, L. J. Lakshmi[J]. J Phys Chem B, 1998,102(34): 64-65.
    
    [9] D. A. Ward, E. I. Ko. One-step Synthesis and Characterization of Zirconia Sulfate Aerogels as Solid Superacids[J]. J Catal, 1994,150:18-33.
    
    [10]缪长喜,陈健民.SO_4~(2-)/ZrO_2超强酸制备方法的改进[J].高等学校化学学报, 1995.16(4):591-594.
    
    [11]张黎,王琳,陈健民.SO_4~(2-)/ZrO_2固体超强酸的研究[J].高等学校化学学报, 2000,21(1):116-119.
    
    [12]施磊,丁欣宇,张海军.固体超强酸SO_4~(2-)/TiO_2-SiO_2催化合成柠檬酸三酯[J]. 应用化工,2004,33(3):41-43.
    
    [13] G. D. Yadav, G. S. Pathre. Chemoselective Catalysis by Sulphated Zirconia inO-alkylation of Guaiacol with Cyclohexene[J]. J. Mol. Catal. A: Chem., 2006, 243:77-84.
    
    [14] H. L. Yin, Z. Y. Tan, Y. T. Liao. Application of SO_4~(2-)/TiO_2 Solid Superacid inDecontaminating Radioactive Pollutants [J]. J. Envi. Radi.., 2006, 87: 227-235.
    
    [15] B. M. Reddy, P. M. Sreekanth, P. Lakshmanan. Sulfated Zirconia as an EfficientCatalyst for Organic Synthesis and Transformation Reactions[J]. J. Mol. Catal. A:Chem., 2005, 237: 93-100.
    
    [16] S. Furuta, H. Matsuhashi, K. Arata.Catalytic Action of Sulfated Tin Oxide forEtherification and Esterification in Comparison with Sulfated Zirconia[J]. Appl.Catal., A, 2004, 269: 187-191.
    
    [17]王春华,曲荣君,纪春暖.稀土掺杂固体超强酸SO_4~(2-)/TiO_2催化合成二芳基乙??烷的研究[J].稀土,2005,26(2):8-14.
    
    [18]吕宝兰,童文龙,白爱民.稀土改性固体超强酸SO_4~(2-)/TiO_2-La_2O_3催化合成丙 酸系列酯[J].香料香精化妆品,2004,4:16-18.
    
    [19]孟宪昌,许建新.纳米固体超强酸SO_4~(2-)/Fe_2O_3催化合成乙酸异戊酯[J].湖南工 程学院学报,2001,11(3):62-64.
    
    [20]张小曼,崔永春.磁性固体超强酸催化合成丙酸异戊酯的研究[J].化学工程 师,2005,118(7):17-18.
    
    [21] A. Kazushi, N. Hideo, S. J. Miyuki. Friedel-Crafts Acylation of Toluene Catalyzed by Solid Superacids[J]. Appl. Catal., 2000,197: 213-215.
    
    [22]刘小军,于广琐,王亦飞.SO_4~(2-)/MxOy型无机固体超强酸研究进展[J].催化工 业,2001,9(6):36-40.
    
    [23]伍志鲤,伍先美,李菊仁.酯化反应中的SO_4~(2-)/MxOy型固体超强酸催化剂[J]. 常德师范学院学报.2000,12(3):48-50.
    
    [24]赫金库,傅翠荣,苏双全.陪烧温度对SO_4~(2-)/MxOy新固体超强酸算强度的影 响[J].天津师大学报(自然科学版),1998,18(2):20-23.
    
    [25]张萍,刘树彬.纳米级SO_4~(2-)/TiO_2固体超强酸的酸强度研究[J].石家庄学院学 报,2005,7(6):20-23.
    
    [26] Tsutomu, Yamaguehi. Recent Progress in Sold Superacid[J]. Appl. Catal., A, 1990,61:1-25.
    
    [27] A. Corma, V. Forties, R. M. I. Juanr. Influence of Preparation Conditions on theStructure and Catalytic Properties of SO_4~(2-)/ZrO_2 Supperacid Catalysts[J]. Appl.Catal., A, 1994,116:151-156.
    
    [28] T. Okuhara, T. Nishimura, H. Watanabe. Insoluble Heter Ropoly Compounds ashighly Active Catalysts for Liquid Phase Reactions[J]. J Mol Catal., 1992, 74(1-3):247-256.
    
    [29] K. Arata. Preparation of Super Acids by Metal Oxides for Reactions of Butanesand Pentanes[J]. Apply. Catal., 1996,146: 30-32.
    
    [30]高滋,陈健民,唐颐.用常温正丁烷异构化反应表征固体超强酸性[J].物理化 学学报,1994,10(8):698-703.
    
    [31] B. Umansky, J. Engelhardt, Hall W. K.. On the Strength of Solidacids[J]. J. Catal.,1991,127(1): 128-140.
    
    [32] B. S. Umansky, W. K. A. Hall. A Spectrophotometric Study of the Acidity ofSome Solid Acids[J]. J. Catal., 1990,124(1): 97-108.
    
    [33]于世涛,宋湛谦.SO_4~(2-)/MxOy固体超强酸的研究进展[J].化工科技,2000,8(4): 60-64.
    
    [34] H. Matsubashi, M. Hino, K. Arata. Solid Catalyst Treated with Anion. XIX.Synthesis of the Solid Superacid Catalyst of Tin OxideTreated with Sulfate Ion [J].Appl. Catal., 1990, 59: 205-212.
    
    [35] T, Yamaguchi. Recent Progress in Solid Superacid application [J]. Appl Catal A:General, 1990, 6(1): 1-25.
    
    [36]姚胜.SO_4~(2-)/MxOy型固体超强酸催化剂[J].化学通报,1990,2:23-28.
    
    [37]王新平,唐新颖.沉淀剂对SO_4~(2-)/ZrO_2-NiO催化性能的影响[J].石油化工, 1996,25(1):20-27.
    
    [38] J. S. Lee, D. S. J. Park[J]. J. Catal. 1989,120(1): 53-61.
    
    [39] R. Perhuouse. The European Pine Chemicals Industry 1987-1997[C]. International Naval Stores Conference Proceedings, 1998. Spe. 12-14.
    
    [40]靳通收,李彦伟,孙广,李同双.SO_4~(2-)/MxOy型固体超强酸在有机合成中的应 用[J].有机化学,2003,23(3):243-248.
    
    [41]张萍,刘占荣,牛辉.SO_4~(2-)/MxOy固体超强酸的制备及其应用[J].河北化工, 2004,4:11-13.
    
    [42] G. Fitzsimons, J. K. A. Clarke, M. Smith R [J]. Catal. Lett., 1998, 52: 69-72.
    
    [43] G. Neri, G. Rizzo, S. Galvagno. Sol-gel Synthesis, Charaeterization and Catalytic Properties of Fe-Ti Mixed Oxides[J]. Appl. Catal., A, 2004, 274: 243-251.
    
    [44]刘桂荣,王洪章.固体超强酸催化剂的研究进展[J].江西化工,2005,3:25-26.
    
    [45]吴露玲.固体超强酸催化缩醛、酮化反应[J].科技通报,1995,11(5):289-291.
    
    [46] K. Satoh, H. Matsuhashi and K. Arata. Alklation to Form trimethylpentanes Form Isobutene and 1-butane Catalyzed by Solid Superacids of Sulfated Metal Oxides[J]. Appl. Catal., A, 1999,189: 35-43.
    
    [47]崔波,金青.无机固体超强酸的制备与再生[J].工业催化,2000,8(2):15-17.
    
    [48]蒋平平,卢冠忠.固体超强酸催化剂改性研究进展[J].现代化工,2002,22(7): 13-17.
    
    [49]高春波.固体超强酸催化剂SO_4~(2-)/MxOy[J].中国科技信息,2005,20:17.
    
    [50]成战胜,行春丽,田京城,杨林.固体超强酸催化剂的研究进展[J].应用化工, 2004,33(6):5-7.
    
    [51]张良辅,金鸿.甲烷C-H键的活化及其官能团化反应.分子催化[J].1988,2(3): 194-201.
    
    [52]孙喜龙.烷烃直接官能团化反应.张家口师范专科学校学报[J].2001,17(6): 16-18.
    
    [53]韩非,蒋福宏,唐忠.正构烷烃氧化制备仲醇的研究[J].精细石油化工进展, 2007,4(9):40-43.
    
    [54]叶常明.环境中的邻苯二甲酸酯[J].环境科学进展,1993,1(2):36-47.
    
    [55]曹艳平,王大威,张霞.气相色谱.质谱联用法测定饮用水中邻苯二甲酸酯类 物质[J].预防医学论坛,2007,13(5):441-442.
    
    [56]张艳宏,王森,张承明,赵吉寿.气相色谱法测定烟用胶中邻苯二甲酸酯类物 质[J].云南化工,2007,34(6):35-38.
    
    [57]王葆仁.有机合成反应[M].北京:科学出版社,1985:1798.
    
    [58]郭荣群.CO常压气相催化偶联法合成草酸酯新工艺[J].2004,14(2):3-6.
    
    [59] F. D. Meng, G. H. Xu, Q. R. Guo. J Mol Catal, 2003, 201: 283-288.
    
    [60]吕海芸,杨昭毅.不对称草酸酯香料的合成.北京师范学院学报[J],1989, 10(4):34-37.
    
    [61]陈为善.一氧化碳偶联生产草酸新工艺[J].江苏化工,1989,3:40-46。
    
    [62] A. Kazushi, H. Nakamura, S. Miyuki. Friedel-Crafts Acylation of Toluene Catalyzed by Solid Superacids[J]. Appl. Catal., A, 2000,197: 213-219.
    
    [63]王新一,王晓梅.SO_4~(2-)/MxOy型固体超强酸的制备与应用[J].天津化工, 2000,1:5-7.
    
    [64]罗天元.扫描电镜在环境试验中的应用[J].环境技术,2001,5:24-28.
    
    [65]李忠全摘译.ISO927-1995气体吸附BET法测定固态物质的比表面积[J].粉末 冶金工业,1996,6(2):38-41.
    
    [66]孙利杰.热分析方法综述[J].工业技术,2007,9:17-20.
    
    [67]于伯龄,姜胶东.实用热分析[M].纺织工业出版社,1990,3.
    
    [68]蔡正千.热分析[M].高等教育出版社,1993,8.
    
    [69]梁世强.SO_4~(2-)/SnO_2固体超强酸对二甘醇二苯甲酸酯合成的催化作用[J].仲恺 农业技术学院学报,2001,14(1):22-25.
    
    [70] H. Matsuhashi, H. Miyazaki. Preparation of a Solid Superacid of Sulfated Tin Oxide with Acidity Higher Than That of Sulfated Zirconia and Its Applications to Aldol Condensation and Benzoylation[J]. Chem. Mater., 2001, 13, 3 038-3 042.
    
    [71] P. Salas, J. G. Hernhndez, J. A. Effect of Tin Content on Silica Mixed Oxides: Sulfated and Unsulfated Catalysts[J]. J. Mol. Catal. A: Chem., 1997, 123: 149-154.
    
    [72] M. S. Xue. Abedel hamid Sayari[J]. Catalysis Review, 1996, 38(3): 329-412.
    
    [73]范康年.谱学导论[M].北京:高等教育出版社,2001:53.
    
    [74] M. A. Ecormier, K. Wilson, A. F. Lee. Structure-reactivity correlations inSulphated-zirconia Catalysts for the Isomerisation of a-pinene[J]. J. Catal., 2003,215: 57-65.
    
    [75] J. R. Sohn, S. H. Lee, J. S. Lim. New Solid Superacid Catalyst prepared by dopingZrO_2 with Ce and modifying with Sulfate and its Catalytic activity for AcidCatalysis[J]. Catalysis Today, 2006,116:143-150.
    
    [76]陆维敏,陈芳.谱学基础与结构分析[M].北京:高等教育出版社,2005:237- 244.
    
    [77] B. M. Reddya, P. M. Sreekanth, Yusuke Yamadab, Qiang Xub, Tetsuhiko Kobayashi. Surface Characterization of Sulfate, Molybdate, Tungstate Promoted TiO_2-ZrO_2 Solid Acid Catalysts by XPS and other Techniques[J]. Appl. Catal., A, 2002, 228: 269-278.
    
    [78] B. M. Reddya, P. M. Sreekantha, Y. Yamada, T. Kobayashib. Surface Characterization and Satalytic Activity of Sulfate-, Molybdate- and Tungstate-promoted Al_2O_3-ZrO_2 Solid Acid Catalysts[J]. J. Mol. Catal. A: Chem., 2005, 227: 81-89.
    
    [79]王建祺,吴文辉,冯大明.光电子能谱学[M].国防工业出版社,1992.
    
    [80] A. G. Giumanini, G. Verardo.Identification of Mononitro and Dinitro Isomers ofDiphenylmethane by GC-FT-IR and GC-MS Techniques [J]. Ind. Eng. Chem.Res., 2001, 40:1449-1453.
    
    [81] M. Kaminski, E. Gilgenast, A. Przyjazny, G. Romanik. Procedure for and Resultsof Simultaneous Determination of Aromatic Hydrocarbons and Fatty Acid MethylEsters in Diesel Fuels by High Performance Liquid Chromatography[J]. J.Chromatogr. A, 2006,1122:153-160.
    
    [82] T. Nakato, M. Kimura, S. Nakata, T. Okuhar. Changes of Surface Properties andWater-Tolerant Catalytic Activity of Solid Acid CS_(2.5)H_(0.5)PW_(12)O_(40) in Water[J].Langmuir, 1998,14: 319-325.
    
    [83]孔健.相转移催化剂的类型与应用[J].廊坊学院学报,2004,4(6):20-23.
    
    [84]崔波,金青.无机固体超强酸的制备与再生[J].工业催化,2000,8(2):15-17.
    
    [85]蒋平平,卢冠忠.固体超强酸催化剂改性研究进展[J].现代化工,2002,22(7):
    
    [86]王绪绪,陈旬.固体超强酸光催化剂的研制及其工业应用[J].工业催化,2004, 12:355。
    
    [87]付贤智,丁正新.二氧化钛基固体超强酸的结构及其光催化氧化性能[J].催 化学报,1999,20(3):35-39.
    
    [88]沈俊,罗妮.介孔TiO_2-SO_4~(2-)的合成及表征[J].催化学报,2007,28(3):264-265.
    
    [89]王嘉瑞.过渡金属参与的需氧氧化反应的研究[D].中国科学技术大学, 2007.
    
    [90]田鹏,许磊.含钴、锰杂原子分子筛上烷烃低温分子氧氧化[J].高等学校化学 学报,2002,4:656-660.
    
    [91]李灵香,马香娟.羟基自由基(·OH)的特性及其在光化学氧化中的反应机理[J]. 化工技术与开发,2006,35(8):27-29.
    
    [92] L. Lunar, D. Sicilia, S. Rubio. Degradation of Photographic developers byFenton's Reagent: Condition Optimization and Kinetics for Metol Oxidation[J].Water Res., 2000, 34 (6): 1 791-1 802.
    
    [93] E. Fockedey, L. A Van. Coupling of Anodic and Cathodic Reactions for PhenolElectro-oxidation Using Three-dimensional Electrodes[J]. Water Res., 2002, 36: 4169-4 175.
    
    [94]刘芬.镀锡马口铁表面污染的XPS分析[J].现代仪器,2000,3:28-29.
    
    [95]吴正龙,刘洁.现代X光电子能谱(XPS)分析技术[J].现代仪器,2006,1:50-53.
    
    [96]任立国,高文艺.SO_4~(2-)/TiO_2固体超强酸催化剂的表面化学研究[J].抚顺石油 学院学,2003,23(2):31-35.
    
    [97]傅惠.金属和氧化物催化剂表面的吸附和反应机理的理论研究[D].复旦大学, 2006.
    
    [98] R. A. Sheldon, I. W.C. E. Arends, H. E. B. Liquid Phase Oxidation at Metal Ions and Complexes in Constrained Environments[J]. Catalysis Today, 1998, 41:387-407.
    
    [99] F. Gugumus. Thermolysis of Polyethylene Hydroperoxides in the Melt 5. Mechanisms and Formal Kinetics of Product formation[J]. Polym. Degrad. Stab.,2002, 76: 381-391.
    
    [100] Mis Aelafrancisco-M arquez, J. Raul A lvarez -I daboy, A Possible Mechanismfor Furan Formation in the Tropospheric Oxidation of Dienes[J]. Environ. Sci.Technol., 2005, 39: 8 797-8 802.
    
    [101] K. Arata, H. Matsuhashi, M. Hino, H. Nakamura. Synthesis of Solid Superacids??and their Activities for Reactions of Alkanes[J].Catal.Today,2003,81:17-30.
    
    [102]常文贵,张胜义.高级氧化技术中羟基自由基产生的机理[J].安庆师范学院 学报(自然科学版),2004,10(4):24-26.
    
    [103]彭少洪,张渊明.TiO_2基固体超强酸研究[J].无机化学,2006,(22)12:2 258-2 262.
    
    [104]高远,徐安武.固体超强酸催化剂SO_4~(2-)/TiO_2的制备及其光催化性能[J].广 东有色金属化学报,2002,12(2):90-94.
    
    [105] O. Carp, C. L. Huisman, A. Reller. Photoinduced Reactivity of Titaniumdioxide[J]. Prog. Solid State Chem., 2004, 32: 33-177.
    
    [106] Y. G. Ko, D. H. Shin, K. T. Park, C. S. Lee. An Analysis of the Strain HardeningBehavior of Ultra-fine Grain Pure Titanium[J]. Scripta Mater., 2006, 54: 1 785-1789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700