B(N)掺杂单壁碳纳米管吸附性能第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着碳纳米管(CNTs)增强金属基复合材料(MMCs)研究的深入,利用掺杂、涂敷、电镀等方法对CNTs进行改性以改善复合材料界面的研究备受瞩目。在本论文中,采用基于密度泛函理论的第一性原理方法研究了掺杂硼(B)、氮(N)和硼氮(B,N)共掺杂对单壁开口的扶手椅型和锯齿型两种碳纳米管(CNTs)对金属镁(Mg)、铝(Al)的单原子和原子链的吸附的影响,分析了吸附位置、结合能、电子结构。此外把石墨烯片近似的看为大直径CNTs的外壁,模拟了其金属原子吸附和掺杂B(N)的效应。
     计算结果表明金属Mg原子在CNTs外壁表现为极弱吸附,结合能几乎为零;金属Al与CNTs之间有一定的结合能,但仍属于弱的化学吸附,这对CNTs增强轻金属Mg、Al复合材料不利。掺B、N后,与未掺杂单壁CNTs的金属原子吸附相比,CNTs的电子结构发生改变,其中掺B形成电子缺乏区,掺N形成电子聚集区。吸附体系中在Fermi能级附近的一部分电子由金属Mg,Al的外层电子所提供,金属与有缺陷的CNTs发生了突出的化学结合,掺杂提高了CNTs与金属的分波态密度在价带和导带上轨道杂化重合,尤其是掺B显著提高金属Mg、Al原子及其原子链的结合,掺N对提高金属原子的吸附结合也有一定作用,但在某些情况致使金属的吸附能下降。金属在未掺杂掺杂石墨烯上的吸附比在相应的小直径CNTs上的吸附更弱。此外,硼氮共掺未能显著提高金属原子在CNTs外壁的吸附。
     理论计算表明掺杂有望改善CNTs和金属Mg、Al基体的界面结合,对CNTs增强金属基材料的设计有指导作用,但以上模型只是初步研究和解释了金属原子及其原子链与CNTs结合的情况,需要对更真实的界面结合模型进行进一步研究。
Researches on carbon nanotubes (CNTs) reinforced metal matrix composites (MMCs) are booming in recent years. The use of doping, coating and electroplating etc. to improve the binding of interfaces has attracted much attention. In this paper, first principles calculations based on density functional theory (DFT) were carried out to evaluate the effect of B (N)-doping on adsorption of a metal (Mg, Al) atom (chain) on armchair and zigzag SWCNTs with opened-cap. The stable positions, the geometric structures and binding energies of metal atoms adsorbed on CNTs were investigated. The adsorption and the doping influences on graphene were also studied to simulate the SWCNT with a large diameter.
     The adsorption of Mg atom on both two kinds of CNTs is weak, with binding energies nearly zero. Although there is stronger interaction between Al atom and CNTs, it remains a weak physical adsorption, which could not construct an effective interfacial binding in Mg, Al based composites. Compared with undoped CNTs, the B (N)-dopant changes the electronic structures of the CNTs. The B-doping forms electron-rich states, while N-doping induces electron-deficient states. The interaction of Mg (Al) atom adsorbed on pristine SWCNTs which is normally very weak, can be enhanced upon functionalization by A-doped (A=boron, nitrogen) substituting. Especially B-doped increase the binding energy dramatically both in armchair and zigzag SWCNTs. The binding energies of metal atoms in the graphene models are lower than in the CNTs models with small diameter. In addition, codoping of B and N failed to signigicantly improve the adsorption of the Mg (Al) atom on CNTs.
     The theoretical calculations show that the doping is help to improve the interfacial binding between the CNTs and Al (Mg), which provide a potential guide for the designing of the CNTs reinforced MMCs. However, the modeling is just first step of design to explain and improve the reaction of interfaces between Metal atoms and CNTs, further study on the interfacial models should be carried out.
引文
[1] S Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354: 56-58
    [2]碳纳米管朱宏伟吴德海徐才录机械工业出版社2003. 1
    [3] R. C. Haddon, Chemistry of the Fullerenes: the manifestation of strain in a class of continuous aromatic molecules, Science, 1993, 261 (5128): 1545
    [4] O. Gülseren, T. Yildirim, S. Ciraci, Systematic ab initio study of curvature effects in carbon nanotubes, Phys. Rev. B, 2002, 65: 153405-1-4
    [5] X. Blase, L. X. Benedict, E. L. Shirley, S.G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett.,1994, 72: 1878-1881
    [6] N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett., 1992, 68: 1579-1581
    [7] H. Yorikawa, S. Muramatsu, Energy gaps of semiconducting nanotubules, Phys. Rev. B, 1995, 52: 2723-2727
    [8] R. Saito, M. S. Dresselhaus, Electronic structure of graphene tubules based on C60, Phys. Rev. B, 1992, 46: 1804-1811
    [9] C. T. White, D. H. Rorbertson, J. W. Mintmire, Helical and rotational symmetries of nanoscale graphitic tubules, Phys.Rev. B, 1993, 47: 5485
    [10] P. Calvert, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58
    [11] M. M. J. Treacy, T. W. Ebbessen, J. M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678-680
    [12] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik et al., Mechanical properties of carbon nanotubes, Appl. Phys. A, 1999, 69(3): 255-260
    [13] W. E. Wong, P. E. Sheehan, C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science,1997, 277: 1971
    [14] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Structural materials: properties, microstructure and processing, Mater. Sci. Eng. A, 2006, 419: 344
    [15] C. N. He, N. Q. Zhao, C. S. Shi, X. W. Du, et al., An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites, Adv. Mater, 2007, 19: 1128-1132
    [16] S. Yamanaka, A. Kawasaki, H. Sakamoto, et al., Fabrication and thermalproperties of carbon nanotube/nickel composite by spark plasma sintering method, Mater. Trans., 2007, 9: 2506-2512
    [17] C. S. Goh, J.Wei, L. C. Lee, et al., Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A 2006, 423:153-156
    [18] X. L. Shi , H. Yang, G. Q. Shao, et al., Fabrication and properties of W-Cu alloy reinforeced by multi-walled carbon nanotubes, Mater. Sci. Eng. A, 2007, 457: 18-23
    [19] E. V. Barrera, J. Sims, D. L. Callaban, Development of fuuerene-reinforced aluminum, J. Mater. Res., 1995, 10(2): 366-371
    [20] X. X. Zhang, C. F. Deng, D. Z. Wang, et al., Synthesis and thermal stability of multiwall carbon nanotubes reinforced aluminum metal matrix composites, Trans. Nonferrous Met. Soc. China 2005, 15: 240
    [21] N. Ferrer-Anglada, V. Gomis, Z. EI-Hachemi, U. D. Weglikovska, et al, Carbon nanotube based composites for electronic applications: CNTs-conducting pllymers, CNTs-Cu, Phys. Stat. sol. (a) 2006, 203 (6): 1082-1087
    [22]马仁志,朱艳秋,魏秉庆,等.铁-巴基管复合材料研究,复合材料学报, 1997, 14: 92-96
    [23] Y. Cho, G. Choi, D. Kim, A method to fabricate field emission tip arrays by electrocodeposition of single-wall carbon nanotubes and nickel, Electrochem. Solid-State Lett. 2006, 9(3): G101-G110
    [24]周晓华,碳纳米管增强金属基复合材料磨损特性研究,热处理, 2007, 22 (2): 44-48
    [25]孟飞,裴燕斌,果世驹,轧制对纳米CNTs弥散强化铜基复合材料微观组织的影响,粉末冶金材料科学与工程,2005,10(1):55
    [26]汤齐华,周晓华,碳纳米管、锌基复合材料摩擦性能研究,南方冶金学院学报,2004,25(5):14
    [27] J. Yang, and R. Schaller, Mechanical spectroscopy of Mg reinforced wih Al2O3 short fibers and C nanotubes, Mater. Sci. Eng. A, 2004, 370, 512-515
    [28] Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Fullerene/A5083 composites fabricated by material flow during friction stir processing, Mater. Sci. Eng. A, 2006, 419, 344-348
    [29] E. Carre?o-Morelli, J. Yang, E. Couteau, et al, Carbon-nanotube/magnesium composites, Phys. Stat. Sol., 2004, 201: R53-R55
    [30] M. Endo, T. Hayashi, I. Itoh, et al., An anticorrosive magmesium/carbon nanotube composite, Appl. Phys. Lett. 6, 063105 (2008).
    [31] C. F. Deng, D. Z. Wang, X. X. Zhang,et al., Damping characteristics of carbon nanotube reinforced aluminum composite, Mater. Lett., 2007, 14-15(61): 3229-3231
    [32] R. Pérez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, et al., Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes, J. Alloys Compd. 2008, 450: 323-326
    [33] L. J. Ci, Z. Y. Ryu, N. Y. Jin-Phillipp, et al., Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 2006, 54: 5367
    [34]刘政,赵素,碳纳米管增强复合材料研究进展,宇航材料工艺, 2005, 1: 1-5
    [35] B. Liu, Y. Huang, H. Jiang,et al., The atomic-scale finite element method, Comput. Methods Appl. Mech. Engrg., 2004, 193: 1849-1864
    [36] B. I. Yakobson, C. J. Brabec, J. Bernholc, Nanomechanics of carbon tubes:instabilities beyond linear response, Phys. Rev. Lett.1996, 76:2511-2514
    [37] L. Shen, J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 2004, 69: 045414
    [38] V. N. Popov, D. V. E. Van, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 61(4): 3078-3084
    [39] M. Meyyappan, Carbon Nanotubes: Science and Applications, CRC Press LLC,2005
    [40] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. ,1965, 140: A1133-A1138
    [41] J. Chen, H. Liu, Chirality dependence of the energetic stability of 4? carbon nanotubes, Appl. Phys. Lett., 2007, 91: 0901917
    [42] E. Durgun, S. Dag, V. M. Bagci, et al., Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B, 2003, 67: 201401-1-4
    [43] H. J. Dai, Carbon nanotubes: opportunities and challenges, Surface Science, 2002, 500: 218–241
    [44] Q. Ma, A. Rosenberg, Interaction of Ti with the (0001) surface of highly oriented pyrolytic graphite, Phys. Rev. B, 1999, 60: 2827-2832
    [45] M. Baumer, J. Libuda, H. Freund, The temperature dependent growth mode of nickel on the basal plane of graphite, Surf. Sci. 1995, 327: 321-329
    [46] P. Kruger, A. Rakotomahevitra, J. Parlebas, et al., Magnetism of epitaxial 3 d-transition-metal monolayer on graphite, Phys. Rev. B, 1998, 57: 5276–5280.
    [47] D. Tomanek, W. Zhong, Palladium-graphite interaction potentials based on first-principles calculations, Phys. Rev. B, 1991, 43: 12623-12625
    [48] Q. Ma, R. Rosenberg, Interaction of Al clusters with the (0001) surface of highly oriented pyrolytic graphite, Surf. Sci., 1997, 391: L1224-1229 [49 I. Moulett, Ab-initio molecular-dynamics study of the interaction of aluminum clusters on a graphite surface, Surf. Sci., 1995, 333: 697-702
    [50] E. Ganz, K. Sattler, J. Clarke, Scanning tunneling microscopy of Cu, Ag, Au and Al adatoms small clusters, and islands on graphite, Surf. Sci., 1989, 219: 33-67
    [51] J. Arthur, A. Cho, Adsorption and desorption kinetics of Cu and Au on (0001) graphite, Surf. Sci., 1973, 36: 641-660
    [52] T.R. Ohno, Y. Chen, S. Harvey, et al., C60 bonding and energy-level alignment on metal and semiconductor surfaces, Phys. Rev. B, 1991, 44: 13747-13755
    [53] V. Vijayakrishnan, A. Santra, R. Seshadri, et al., A comparative study of the interaction of nickel clusters with buckministerfullerene C60 and graphite, Surf. Sci., 1992, 262: L87-90
    [54] E. Parks, K. Kerns, S. R. B. Winter, Adsorption of C60 on nickel clusters at high temperatures, Phys. Rev. B, 1999, 59: 13431
    [55] M. Menon, A. Andriotis, G. Froudakis, Curvature dependence of metal catalyst atom interaction with carbon nanotubes walls, Chem. Phys. Lett., 2000, 320: 425-434
    [56] A. N. Andriotis, M. Menon, G. Froudakis, Catalytic Action of Ni Atoms in the Formation of Carbon Nanotubes: A Molecular Dynamics Study, Phys. Rev. Lett. 2000: 3193-3196
    [57] Y. Zhang, N. Franklin, R. Chen, et al., A metal coating study of suspended carbon nanotubes and its implications to metal-tube interactions, Chem. Phys. Lett., 2000, 331: 35-41
    [58] C. K. Yang, J. J. Zhao, J. P. Lu, Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes, Phys. Rev. B, 2002, 66: 041403-1-4
    [59] K. Kong, S. Han, Development of an energy barrier at the metal-chain-carbon- nanotube nanocontact, J. Ihm, Phys. Rev. B 1999 60: 6074-6079
    [60] P. Delaney, H. J. Choi, J. Ihm, et al., Broken symmetry and pseudogaps in ropesof carbon nanotubes, Phys. Rev. B, 1999, 60: 7899
    [61] S. Dag, E. Durgan, S. Ciraci, High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes, Phys. Rev. B, 2004, 69: 121407-1-4
    [62] S. Dag, S. Ciraci, Coverage and strain dependent magnetization of titanium- coated carbon nanotubes, Phys. Rev. B, 2005, 71: 165414-1-6
    [63] T. Yildirim, S. Ciraci, Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium , Phys. Rev. Lett., 2005, 94: 175501-1-4
    [64] S. B. Fagan, A. Fazzio, R. Mota, Titanium monomers and wires adsorbed on carbon nanotubes: a first principles study, Nanotechnology, 2006, 17: 1154-1159
    [65] T. Z. Meng, C. Y. Wang, S. Y. Wang, First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom, Chem. Phys. Lett. , 2007, 437: 224-228
    [66] Y. Sun, X. B. Yang, J. Ni, Bonding differences between single iron atoms versus iron chains with carbon nanotubes: First-principles calculations, Phys. Rev. B, 2007, 76: 035407
    [67] Y. Yagi, T. M. Briere, M. H. F. Sluiter, et al., Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study, Phys. Rev. B, 2004, 69: 075414
    [68] S. B. Fagan, R. Mota, A. J. R. Silva, et al., Electronic and magnetic properties of iron chains on carbon nanotubes, Microelectronics Journal, 2003, 34: 481-484
    [69] S. Okada, A. Oshiyama, Electronic Structure of Semiconducting Nanotubes Adsorbed on Metal Surfaces, Phys. ReV. Lett. 2005, 95: 206804
    [70] W. G. Zhu, E. Kaxiras, The Nature of Contact between Pd Leads and Semiconducting Carbon Nanotubes, Nano Lett., 2006, 6: 1415-1419
    [71] T. Z. Meng, C. Y. Wang, S. Y. Wang, First-principles study of contact between Ti surface and semiconducting carbon nanotube, J Appl. Phys., 2007,102: 013709-1-4
    [72] T. W. Ebbeses, H. Hiura, M. E. Biher, Decoration of carbon nanotubes, Adv. Mater., 1996, 8 (2): 155
    [73] Q. Q. Li, S. H. Fan, W. Q. Han. Coating of carbon nanotube with nickel by electroless plating method, J Appl. Phys.,1997, 236: L501-L503
    [74] X. H. Chen, J. T. Xia, J. C. Peng, et al., Carbon nanotube metal matrixcomposites prepared by electroless plating, Compos. Sci. Technol., 2000, 60: 301-306
    [75] L. M. Ang, T. S. Andy Hor, G. Q. Xu, et al., Electroless plating of metals on to carbon nanotubes activated by a single step activation method, Chem. Mater.,1999, 11: 2115-2118
    [76] L. M. Ang, T. S. Andy Hor, G. Q. Xu, Decoratio no factivated carbon nanotubes with copper and nickel, Carbon, 2000, 38: 363-372
    [77] N. Y. Jin-Phillipp, M. Rühle, Carbon nanotube/metal interface studied by cross-sectional transmission electron microscopy, Phys. Rev. B, 2004, 70: 245421
    [78] F. J. Owens, Mater. Lett., Properties of composites of fluorinated single walled carbon nanotubes and polyacrylonitrile, 2005, 59: 3720
    [79] P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, et al., Reversible sidewall functionalization of buckytubes, Chem. Phys. Lett. 1999, 3-4 (310):367-372
    [80] R. H. Xie, G. M. Bryant, J. J. Zhao, et al., Tailorable acceptor C60-nBn and donor C60-mNm pairs for molecular electronics, Phys. Rev. Lett. 2003, 90(20): 206602
    [81] W. Q. Han, Y Bando, K. Kurashima, et al., Boron-doped carbon nanotubes prepared through asubstitution reaction, Chem. Phys. Lett.,1999, 299: 368
    [82] B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, el a1., Boron-carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures, Chem. Phys. Lett., 1999, 300: 473-477
    [83] P. M. Ajayan, M. Terrones, A. de la Guardia, et a1. Nanotubes in a flash-Ignition and construction, Science, 2002, 296: 705
    [84] K. Suenaga, M. Yudasaka, C. Colliex, et a1., Radially modulated nitrogen distribution in CNx nanotubular nanostructures, Chem. Phys. Lett., 2000, 316: 365-372
    [85] R. Czerw, M. Terrones, J. C. Charlier., et al., Identification of Electron Donor States in N-Doped Carbon Nanotubes, Nano Lett., 2001, 1: 457-460.
    [86] R. Moradian, Boron and nitrogen-doped single-walled carbon nanotube, Phys. Rev. B, 2004, 89: 205425
    [87] Z. Zhou, X. P. Gao, J. Yan, et al., A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes, Carbon, 2004, 42: 2677
    [88]Z. Zhou, X. P. Gao, J. Yan, et al., Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations, Carbon, 2006,44: 939-947
    [89] V. Milman, B. Winkler, J. A. White, Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study, Int. J. Quant. Chem., 2000, 77: 895-910
    [90] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metal, Phys. Rev. B, 1993, 47: 558
    [91] G. Kresse, J. Hafner, Phys. Rev. B, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transiton in germanium, 1994, 49: 14251
    [92] G. Kresse, J. Furthmǚller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, 6: 15
    [93] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45: 13244-13249
    [94] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, 41: 7892-7985
    [95] H. J. Monkhorst, J. D. Pack,“Special points for Brillouin-zone integrations”–reply, Phys. Rev. B, 1976, 13: 5188
    [96] T. H. Fischer, J. Almlof, General methods for geometry and wave function optimization J. Phys. Chem., 1992, 96: 9768-9774
    [97] R. J. Baierle, S. B. Fagan, R. Mota, et al., Electronic and structural properties of silicon-doped carbon nanotubes,Phys. Rev. B, 2001, 64: 085413-1-4
    [98] E. Fiter, The future of carbon-carbon composites, Carbon, 1987, 25: 163-190.
    [99]石子源,石墨颗粒铝基复合材料的研制,热加工工艺, 1998, 2: 50-51.
    [100]祁庆琚.石墨-AZ91镁基复合材料及其没猜磨损性能的研究[J].特种铸造及有色合金, 2006,6,(26):353-355
    [101] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, 306 (5696 ): 666-669.
    [102] T. Sogabe, T. Matsuda, K. Kuroda, Preparation of B4C-mixed graphite by pressureless sintering and its air oxidation behavior, Carbon, 1995, 33: 1783-1788.
    [103] G. A. Jeffrey, V. Y. Wu, The structures of the aluminum carbonitrides, ActaCrystallographica, 1966, 20: 538-547
    [104] A. Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B, 1994, 49: 5081-5084
    [105] X. Blasé, A. Rubio, S. G. Louie, et al., Stability and band-gap constancy of boron-nitride nanotubes, Europhys. Lett., 1994, 28: 335-340
    [106] N, G, Chopra, A, Zettl, Measurement of the elastic modulus of a multi-wall born nitrice nanotube, solild state commun, 1998, 105: 297-300
    [107] Y. K. Kwon, D. Tomanek, Electronic and structural properties of multiwall carbon nanotubes, Phys. Rev. B, 1998, 58: R16001- R16004
    [108] Gao G H, Cagin T, Goddard W A, Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology, 1998, 9: 184
    [109] R, Czerw, M, Terrones, J. C. Charlier, et al., Identification of electron donor states in N-doped carbon nanotubes, Nano Lett. 2001, 9: 457
    [110] N. G. Chopra, A. Zettl. Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Commun, 1998, 105: 297-300
    [111] E. Hernández, C. Goze, P. Bernier, et al., Spectral analysis of correlated one-dimensional systems with impurities, Phys. Rev. Lett., 1998, 80: 4052-4055
    [112] D Golberg, Y Bando, C C Tang, C Y Zhi, Boron Nitride Nanotubes, Adv. Mater. 2007, 19: 2413-2432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700