磁性X型沸石的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X型沸石具有独特的孔道结构和较大的比表面积,宏观上表现为具有优良的择形催化性能、分子筛分性能和离子交换性能,广泛应用于石油加工催化、气体分离、水处理等领域中。但不管其用作催化剂还是吸附剂,一般都存在一个共同的问题,即在催化和吸附各个操作单元中都需要进行快速的固液分离。本文在沸石合成过程中将磁性物质引进沸石结构中制备出较高稳定性和吸附性能的磁性沸石,分析了合成条件的影响及其对铅离子的吸附性能。
     采用在X型沸石合成体系中引入含Fe3O4的四乙基氢氧化铵前驱体的方法成功的对沸石进行磁化改性。结构分析表明,Fe3O4客体没有破坏沸石基体的晶体结构和孔道特性。铁元素没有进入沸石骨架,Fe3O4与沸石发生了化学键合作用。磁性X型沸石具有较高的热稳定性,最高耐受温度为500℃。该材料结合了沸石的吸附性能和Fe3O4的磁性,在实际应用中通过外加磁场使饱和磁性X型沸石粉体与作用体系分离,解决了X型沸石与母液分离困难的问题。
     为研究合成条件对产物的晶体结构和磁性能的影响,在不同的合成条件下合成了一系列的磁性沸石产物。结果表明,晶化温度越高或时间越长,产物结晶度越好,磁性能越差。但超过100℃,产物开始发生转晶,磁性也有所增强;加入磁性前驱体的量越多,产物结晶度越低,磁性能越好。另外,磁性液体分散剂的不同,也会影响产物的晶体生长和磁性能。以水为分散剂的产物其结晶度要好于以TEAOH为分散剂的产物,但磁性能要差。磁性能较佳的产物的饱和磁化强度为10.5 emu/g。综合性能较佳的样品的合成条件为:晶化温度80℃,晶化时间为8 h,加入14 mLFe3O4/TEAOH溶液。其饱和磁化强度为5.4 emu/g, Pb2+的单位质量吸附剂的单层饱和吸附容量为414.94 mg/g。
     本文还研究了磁性X型沸石对铅离子的吸附性能。结果表明,磁性X型沸石对铅离子具有较强的吸附力;单层Langmuir型吸附模型能较好的模拟磁性沸石对Pb2+的吸附。吸附条件对产物的吸附效果有重要的影响,在铅离子初始浓度为200 mg/L的条件下,固液比为0.2 g/L时的吸附容量最大;在吸附操作中较佳的吸附时间为2 h。
X zeolite behaves excellent properties of shape selective catalysis, molecular sieves and iron-exchange for its unique tunnel structure and large specific surface area. They have been wildly used in many areas such as catalyst in oil industries, gas separation and water treatment. However, there is a common problem no matter they used as catalysts or sorbents, that is, quick seperation of solids and liquids is required in many operations of catalyze and adsorption. In this paper magnetic core has been introduced into the zeolite structure and magnetic zeolite with high stability and adsorption properties have been prepared. Synthesis conditions and adsorption of Pb2+ also have been studied.
     Magnetization modification on X zeolite has been successfully done by adding precursor of magnetic Fe3O4 TEAOH solution in the zeolite synthesis system. The structure analyses show that Fe3O4 object doesn't damage the crystal structure and tunnel characteristic of zeolite base. Iron doesn't buildup zeolite framework. Fe3O4 have combined with zeolite by chemical bond. Magnetic X zeoite has high thermal stability, whose resistant temperature is about 500℃.This material combined adsorption of zeolite and magnetism of Fe3O4. They can be separated from action system by outer magnetic field, which solves the problem of separation from mother liquid as a result.
     Magnetic zeolites have been synthesized in different conditions to investigate the effect of preparation conditions on the structure and magnetism of products. It seems higher crystallization temperature or longer crystallization time can lead to better crystallnity while worse magnetic properties. But when the crystallization temperature is over 100℃, crystal transformation appears and the saturation magnetization will rebound. In addition, with the volume of magnetic precursor increasing, the crystallnity descend while the magnetic property rises. The higher value of saturation magnetization among those products is 10.5 emu/g. The product with the better comprehensive properties have been obtained in conditions of 80℃,8 h and 14 mL Fe3O4/TEAOH solution. its saturation magnetization is 5.4 emu/g and monolayer adsorption capacity of Pb2+ per mass sorbent is 414.94 mg/g.
     Meanwhile, adsorption of magnetic X zeolite on Pb2+ is studied. It can be concluded that magnetic X zeolite have high adsorbability on Pb2+. The Langmuir monolayer adsorption model is better to simulate the adsorption of magnetic zeolite on Pb2+. Adsorption conditions greatly affect the results. When the initial concentration of Pb2+ is 200 mg/L and solid-liquid ratio is 0.2 g/L the adsorption capacity climb the top.The better adsorption time in adsorption process is 2 h.
引文
[1]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting physisorption data for gassolid systems with special reference to the determination of surface area and porosity[J]. Pure and applied chemistry,1985,57(4): 603-619.
    [2]G.J.d. A. A. Soler-lllia, C. Sanchez, B. Lebeau, J. Patarin. Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chemistry Reviews,2002,102(11):4093-4138.
    [3]杜静,徐云鹏,田志坚,马英冲,王少君,余加祐.离子液体在材料中的应用进展[J].应用化学,2008,37(10):1226-1234.
    [4]杨华明,邱冠周.分子筛的研究现状与发展前景[J].矿产综合利用,1996,(5):24-27.
    [5]R. M. Barrer.Zeolites and their synthesis[J]. Zeolites,1981,1(3):130-140.
    [6]熊晓云.一种硅源活化合成硅铝沸石的方法:[博士学位论文].长春:吉林大学,2007.
    [7]A. B.Bourlinos, R. Zboril, D. Petridis. A simple route towards magnetically modified zeolites[J]. Microporous and Mesoporous Materials,2003,58(2):155-162.
    [8]赵秀芳.13X分子筛的工艺研究:[硕士学位论文].长沙:中南大学,2005.
    [9]雷晓钧,胡可季,薛志元.自粘结低硅铝X型沸石的结构、吸附和N2/O2分离比[J].化学学报,1999,57(1):5-11.
    [10]E. N. Coker, A. G. Dixon, R. W. Thompson, A. Sacco. Zeolite synthesis in unstirred batch reactors Ⅱ. Effect of non-uniform pre-mixing on the crystallization of zeolites A and X[J]. Microporous Materials,1995,3(6):637-646.
    [11]袁明亮,谭美易,闫冠杰,陶加华.磁性X沸石的合成及其性能[J].过程工程学报,2009,19(6):1210-1215.
    [12]T. Becue, R. J. Davis, J. M. Garces. Effect of cationic promoters on the kinetics of ammonia synthesis catalyzed by ruthenium supported on zeolite X[J]. Journal of Catalysis, 1998,179(1):129-137.
    [13]B.C. McClaine, T. Becue, C. Lock, R. J. Davis. Kinetic analysis of ammonia synthesis catalyzed by barium-promoted ruthenium supported on zeolite X[J]. Journal of Molecular Catalysis A:Chemical,2000,163(1-2):105-116.
    [14]申少华,李爱玲.X型沸石粉体的水热制备与表征[J].硅酸盐学报,2004,32(8):997-1002.
    [15]F. G Colina, J. Llorens. Study of the dissolution of dealuminated kaolin in sodium-potassium hydroxide during the gel formation step in zeolite X synthesis[J]. Microporous and Mesoporous Materials,2007,100(1-3):302-311.
    [16]A. Derkowski, W. Franus, H. Waniak-Nowicka, A. Czimerovia. Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature[J]. International Journal of Mineral Processing,2007,82(2):57-68.
    [17]M. R. El-Naggar, A. M. El-Kamash, M. I. El-Dessouky, A. K. Ghonaim. Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions[J]. Journal of Hazardous Materials,2008,154(1-3):963-972.
    [18]N. R. C. Fernandes Machado, D. M. Malachini Miotto. Synthesis of Na-A and-X zeolites from oil shale ash[J]. Fuel,2005,84(18):2289-2294.
    [19]L. J. Garces, V. D. Makwana, B. Hincapie, A. Sacco, S. L. Suib. Selective N,N-methylation of aniline over cocrystallized zeolites RHO and zeolite X (FAU) and over Linde type L (Sr,K-LTL)[J]. Journal of Catalysis,2003,217(1):107-116.
    [20]H. Katsuki, S. Komarneni. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk[J]. Journal of Solid State Chemistry,2009,182(7): 1749-1753.
    [21]R. Khaleghian-Moghadam, F. Seyedeyn-Azad. A study on the thermal behavior of low silica X-type zeolite ion-exchanged with alkaline earth cations[J]. Microporous and Mesoporous Materials,2009,120(3):285-293.
    [22]S. Z. Liu, X. J. Cao, L. S. Li, C. J. Li, Y. Y. Ji, F. S. Xiao. Preformed zeolite precursor route for synthesis of mesoporous X zeolite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,318(1-3):269-274.
    [23]M. Asghari, T. Mohammadi, A. Samimi, M. Fouladi. Ion-exchanged zeolite X membranes:synthesis and characterisation[J]. Membrane Technology,2008,2008(3):9-11.
    [24]D. Novembre, B. Di Sabatino, D. Gimeno, M. Garcia-Valles, S. Martiez-Manent. Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitised rocks (Vico volcano, Italy)[J]. Microporous and Mesoporous Materials,2004, 75(1-2):1-11.
    [25]B. L. Su, M. Roussel, K. Vause, X. Y. Yang, F. Gilles, L. Shi, E. Leonova, M. Eden, X. Zou. Organic group-bridged hybrid materials with a Faujasite X zeolite structure (ZOF-X)[J]. Microporous and Mesoporous Materials,2007,105(1-2):49-57.
    [26]H. Tanaka, A. Fujii. Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and-X zeolites by two-step process [J]. Advanced Powder Technology, 2009,20(5):473-479.
    [27]R. Terzano, M. Spagnuolo, L. Medici, F. Tateo, B. Vekemans, K. Janssens, P. Ruggiero. Spectroscopic investigation on the chemical forms of Cu during the synthesis of zeolite X at low temperature[J]. Applied Geochemistry,2006,21(6):993-1005.
    [28]T. Wajima, Y. Ikegami. Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion[J]. Ceramics International,2009,35(7):2983-2986.
    [29]G. Xiong, Y. Yu, Z. C. Feng, Q. Xin, F. S. Xiao, C. Li. UV Raman spectroscopic study on the synthesis mechanism of zeolite X[J]. Microporous and Mesoporous Materials,2001, 42(2-3):317-323.
    [30]M. T. J. Lodge, P. P. Edwards, P. A. Anderson, M. O. Jones, I. Gameson. Synthesis of micro-crystals of transparent cobalt aluminate, shrouded in siliceous material, from Co(Ⅱ)-exchanged zeolite X[J]. Polyhedron,2006,25(2):568-574.
    [31]R. M. Milton. Molecular sieve adsorbents. United States, US Patent 2,882,243 and 2,882,244,1959-03-14.
    [32]D. W. Breck. Zeolite Molecular Sieves:Structure, Chemistry, and Use[M]. New York: John Wiley & Sons Publishing,1974.771.
    [33]S. Chandrasekhar, P. N. Pramada. investigation on the synthesis of zeolite NaX from Kerala kaolin[J]. Journal of Porous Material,1999,6(4):283-297.
    [34]A. De Lucas, M. A. Uguina, I. Covian, L. Rodriguez. Synthesis of 13X zeolite from calcined kaolins and sodium silicate for use in detergents[J]. Industrial & Engineering Chemistry Research,1992,31(9):2134-2140.
    [35]K. Abdmeziem-Hamoudi, B. Siffert. Synthesis of molecular sieve zeolites from a smectite-type clay material [J]. Applied Clay Science,1989,4(1):1-9.
    [36]J. Dufour, V. Gonzalez, A. La Iglesia. Synthesis of 13X zeolite from alkaline waste streams in the aluminum anodizing industry [J]. Industrial & Engineering Chemistry Research,2001,40(4):1140-1145.
    [37]M. D. Romero, J. M. Gomez, G. Ovejero, A. Rodriguez. Synthesis of LSX zeolite by microwave heating[J]. Materials Research Bulletin,2004,39(3):389-400.
    [38]M. D. Romero, G. Ovejero, M. A. Uguina, A. Rodriguez, J. M. Gomez. Fast tailoring of the acid-base properties in the NaX zeolite by cesium-exchange under microwave heating[J]. Microporous and Mesoporous Materials,2007,98(1-3):317-322.
    [39]Y. S. Li, J. Liu, W. S. Yang. Formation mechanism of microwave synthesized LTA zeolite membranes[J]. Journal of Membrane Science,2006,281(1-2):646-657.
    [40]I. W. Nah, K. Y. Hwang, Y. G. Shul. A simple synthesis of magnetically modified zeolite[J]. Powder Technology,2007,177(2):99-101.
    [41]闫冠杰.可循环磁性天然沸石的制备及其吸附性能研究:[硕士学位论文].长沙: 中南大学,2009.
    [42]曹吉林,陈学青,刘秀伍.磁性膨润土净水剂制备及其应用[J].天津大学学报,2007,40(4):457-462.
    [43]L. C.A. Oliveira, D. I. Petkowicz, A. Smaniotto, S. B. C. Pergher. Magnetic zeolites:a new adsorbent for removal of metallic contaminants from water[J]. Water Research,2004, 38(17):3699-3704.
    [44]R. Han, W. Zou, H. Li, Y. Li, J. Shi. Copper(Ⅱ) and lead(Ⅱ) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite[J]. Journal of Hazardous Materials,2006,137(2):934-942.
    [45]M. K. Doula. Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity [J]. Chemosphere,2007,67(4):731-740.
    [46]Y. B. Zhao, Z. M. Qiu, J. Y. Huang. Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers[J]. Chinese Journal of Chemical Engineering, 2008,16(3):451-455.
    [47]M. R. Lukatskaya, A. S. Vyacheslavov, A. V. Lukashin, Y. D. Tretyakov, O. M. Zhigalina, A. A. Eliseev. Cobalt-containing nanocomposites based on zeolites of MFI framework type[J]. Journal of Magnetism and Magnetic Materials,2009,321(23): 3866-3869.
    [48]P. G. Bercoff, H. R. Bertorello, C. Saux, L. B. Pierella, P. M. Botta, T. Kanazawa, Y. Zhang. Magnetic properties of Co-impregnated zeolites[J]. Journal of Magnetism and Magnetic Materials,2009,321(22):3813-3820.
    [49]P. P. Pescarmona, B. C. Gagea, P. Van der Aa, P. A. Jacobs, J. A. Martens. Ferromagnetically modified zeolite catalysts for liquid-phase High-Throughput Experimentation [J]. Catalysis Today,2010, In Press, Corrected Proof.
    [50]L. B. Pierella, C. Saux, S. C. Caglieri, H. R. Bertorello, P. G. Bercoff. Catalytic activity and magnetic properties of Co-ZSM-5 zeolites prepared by different methods[J]. Applied Catalysis A:General,2008,347(1):55-61.
    [51]袁明亮,闫冠杰.磁性天然沸石的制备及其对Pb2+和Cu2+的吸附性能[J].过程工程学报,2008,8(6):1213-1217.
    [52]K. Barquist, S. C. Larsen. Chromate adsorption on bifunctional, magnetic zeolite composites[J]. Microporous and Mesoporous Materials,2010,130(1-3):197-202.
    [53]曹吉林,闫栋梁,刘秀伍,谭朝阳.磁性4A沸石制备及其对水中氯乙酸吸附[J].离子交换与吸附,2008,24(5):400-407.
    [54]J. L. Cao, X. W. Liu, R. Fu, Z. Y. Tan. Magnetic P zeolites:Synthesis, characterization and the behavior in potassium extraction from seawater[J]. Separation and Purification Technology,2008,63(1):92-100.
    [55]J. L. Jiang, J. F. Yao, C. F. Zeng, L. X. Zhang, N. P. Xu. Preparation of magnetic hollow ZSM-5/Ni composite spheres[J]. Microporous and Mesoporous Materials,2008, 112(1-3):450-457.
    [56]D. Thi Hanh, T. Nakano, Y. Nozue. Strong dependence of ferrimagnetic properties on Na concentration in Na-K alloy clusters incorporated in low-silica X zeolite[J]. Journal of Physics and Chemistry of Solids,2010,71(4):677-680.
    [57]P. H. Kasai. Electron spin resonance studies of γ-and X-Ray-Irradiated zeolites[J]. Journal of Chemistry and Physics,1965,43:3322.
    [58]Y. Nozue, T. Kodaira, S. Ohwashi, O. Terasaki, H. Takeo. Magnetic properties of alkali metal clusters in zeolite cages[J]. Materials Science and Engineering A,1996,217-218: 123-128.
    [59]A. Z. Chowdhury, K. Nasu. Tlu Hubbard model for ferromagnetic and optical properties of potassium-doped zeolite[J]. Journal of Physics and Chemistry of Solids,1995, 56(9):1193-1199.
    [60]Y. Ikemoto, T. Nakano, M. Kuno, Y. Nozue. Magnetic and optical properties of K and Na clusters arrayed in a diamond structure in zeolite FAU[J]. Physica B:Condensed Matter, 2000,281-282:691-693.
    [61]T. Ikeda, T. Kodaira, F. Izumi, T. Kamiyama, K. Ohshima. Neutron powder diffraction study of potassium clusters in zeolite K-LTA[J]. Chemical Physics Letters,2000,318(1-3): 93-101.
    [62]N. H. Nam, S. Araki, H. Shiraga, S. Kawasaki, Y. Nozue. Magnetic property of potassium clusters in pressure-doped zeolite A[J]. Journal of Magnetism and Magnetic Materials,2007,310(2, Part 2):1016-1018.
    [63]T. Nakano, D. Kiniwa, A. Matsuo, K. Kindo, Y. Nozue. Anomalous magnetization of potassium clusters incorporated into zeolite A at high magnetic field[J]. Journal of Magnetism and Magnetic Materials,2007,310(2, Part 2):e295-e297.
    [64]T. C. Duan, T. Nakano, Y. Nozue. Evidence for ferromagnetism in rubidium clusters incorporated into zeolite A[J]. Journal of Magnetism and Magnetic Materials,2007,310(2, Part 2):1013-1015.
    [65]T. C. Duan, T. Nakano, J. Matsumoto, R. Suehiro, I. Watanabe, T. Suzuki, T. Kawamata, A. Amato, F. L. Pratt, Y. Nozue. μSR study on ferromagnetic properties of Rb clusters incorporated into zeolite A[J]. Physica B:Condensed Matter,2009,404(5-7): 634-637.
    [66]孙强,叶令.碱金属在沸石β-笼子中的构型及电子结构和磁性的研究[J].物理学 报,1999,48(2):332-341.
    [67]E. M. Flanigen, H. Khatami. Infrared structural studies of zeolite frameworks[J]. Molecular Sieve Zeolites,1971,16(16):201-204.
    [68]马守涛,田然,戴宝琴,孙发民,秦丽红.介微孔HY/MCM-41复合分子筛的合成及应用[J].工业催化,2009,17(6):22-26.
    [69]S. Si, C. Li, X. Wang, D. Yu, Q. Peng, Y. Li. Magnetic monodisperse Fe3O4 nanoparticles[J]. communications,2005,5(2):391-393.
    [70]S. W. Cao, Y. J. Zhu, M. Y. Ma, L. Li, L. Zhang. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3:Preparation and potential application in drug delivery[J]. The Journal of Physical Chemistry C,2008,112(6):1851-1856.
    [71]Z. Y. Ma, X. Q. Liu, Y. P. Guan, H. Z. Liu. Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,275(1-3):87-91.
    [72]D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B.Bjelke, M. Muhammed. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain[J]. Journal of Magnetism and Magnetic Materials,2001,225(1-2):256-261.
    [73]R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles[J]. Materials Science and Engineering A,2000,286(1):101-105.
    [74]T. Fried, G Shemer, G. Markovich. Ordered two-dimensional arrays of ferrite nanoparticles[J]. Advanced Materials,2001,13(15):2001.
    [75]J. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding [J]. Nano Letters, 2004,4(4):719-723.
    [76]S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G Li. Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles[J]. Journal of the American Chemical Society,2003,126(1):273-279.
    [77]L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harburn, T. G. St. Pierre, M. Saunders. Magnetite nanoparticle dispersions stabilized with triblock copolymers[J]. Chemistry of Materials,2003,15(6):1367-1377.
    [78]Y. Li, H. Liao, Y. Qian. Hydrothermal synthesis of ultrafine a-Fe2O3 and Fe3O4 powders[J]. Materials Research Bulletin,1998,33(6):841-844.
    [79]L. An-Hui, E. L. Salabas, S. Ferdi, Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application. In 2007; Vol.46, pp 1222-1244.
    [80]王刚Fe3O4/SiO2复合粒子的制备及其在DNA提取中的应用:[博士学位论文].长 春:吉林大学,2005.
    [81]H. P. Klug, L. E. Alexander. X-ray diffraction procedures for polycrystalline and amorphous materials [J]. Acta Crystallographica,1955,8(6):366-366.
    [82]P. T. T. Hong R Y, Li H Z.. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids[J]. Jounal of Magnetism Magnetic Materials,2006,303(1):60-68.
    [83]A. Zhu, L. Yuan, T. Liao. Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan[J]. International Journal of Pharmaceutics,2008,350(1-2): 361-368.
    [84]A. Miiller. Oxides [M]. New York:Baden-Wurttemberg Arzeinrnilled Forsch,1967. 17-921.
    [85]G. Y. Li, Y. R. Jiang, K. L. Huang, P. Ding, J. Chen. Preparation and properties of magnetic Fe3O4-chitosan nanoparticles [J]. Journal of Alloys and Compounds,2008, 466(1-2):451-456.
    [86]J. Yan, S. Mo, J. Nie, W. Chen, X. Shen, J. Hu, G. Hao, H. Tong. Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,340(1-3): 109-114.
    [87]R. Y. Hong, J. H. Li, S. Z. Zhang, H. Z. Li, Y. Zheng, J. M. Ding, D. G. Wei. Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids[J]. Applied Surface Science,2009,255(6):3485-3492.
    [88]尤陈霞.超分子化学组装-铁系纳米磁性复合材料的研究:[硕士学位论文].上海:上海大学,2008.
    [89]Z. H. Jing, S. H. Wu. Synthesis, characterization and magnetic properties of γ-Fe2O3 nanoparticles via a non-aqueous medium[J]. Journal of Solid State Chemistry,2004, 177(4-5):1213-1218.
    [90]J. Jiang, J. Yao, C. Zeng, L. Zhang, N. Xu. Preparation of magnetic hollow ZSM-5/Ni composite spheres[J]. Microporous and Mesoporous Materials,2008,112(1-3):450-457.
    [91]S. X. Liu, C. L. Sun. Research on magnetic coconut activated carbon[J]. New Carbon Materials,2002,17(1):45-48.
    [92]曹吉林,刘振路,刘秀伍.铁掺杂方沸石的合成及其磁化[J].物理化学学报,2009,25(4):707-712.
    [93]D. Yonghui, D. Chunhui, Q. Dawei, L. Chong, L. Jia, Z. Xiangmin, Z. Dongyuan. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin[J]. Advanced Materials,2009,21(13):1377-1382.
    [94]Y. Horikawa, N. Ohnishi, K. Hiraga. Structures and magnetic susceptibility of Ni-ion-introduced zeolite A and X[J]. Materials Science and Engineering A,1996,217-218: 139-141.
    [95]T. Nakano, K. Goto, I. Watanabe, F. L. Pratt, Y. Ikemoto, Y. Nozue. μSR study on ferrimagnetic properties of potassium clusters incorporated into low silica X zeolite [J]. Physica B:Condensed Matter,2006,374-375:21-25.
    [96]W. Shan, T. Yu, B. Wang, J. K. Hu, Y. H. Zhang, X. Y. Wang, Y. Tang. Magnetically separable nanozeolites:Promising candidates for bio-applications [J]. Chemistry of Materials,2006,18(14):3169-3172.
    [97]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [98]马广伟,葛学贵,黄少云.预置晶种合成MCM-41/ZSM-3复合分子筛[J].燃料化学学报,203,31(5):453-456.
    [99]J. Li, E. Wu. Adsorption of hydrogen on porous materials of activated carbon and zeolite NaX crossover critical temperature[J]. The Journal of Supercritical Fluids,2009, 49(2):196-202.
    [100]近藤精一,石传达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2007.32-70,115-136.
    [101]马登月.碳纳米管负载二氧化锰材料的制各及吸附铅离子的机制研究:[硕士学位论文].济南:山东大学,2007.
    [102]相波,李义久.吸附等温式在重金属吸附性能研究中的应用[J].有色金属,2007,59(1):77-80.
    [103]王宜辰.Freundlich吸附等温式的理论推导[J].烟台师范学院学报(自然科学版),1993,9(4):76-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700