高温电加热过程模拟与优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新材料工业的发展,工业电加热设备应用越来越广泛。严格控制产品质量、降低生产能耗、保障生产安全是工业电加热设备技术进步的不懈追求。本文以过程系统工程理论为指导,采用有限元方法对高温电阻炉加热过程进行了较系统的数学模拟和工艺优化研究,以期为高温电加热过程的发展有所裨益。论文评述了过程系统工程、有限元法以及艾奇逊式电阻炉的特点及发展。介绍了开源有限元模拟分析软件FEPG;讨论了高温电阻炉的进展,重点分析了碳化硅合成炉和石墨化炉在炉型改进、工艺提高和模拟优化方面的国内外研究动态。在分析电阻炉加热过程中所存在问题的基础上,提出了本文的研究方向。
     通过对艾奇逊式电阻炉的炉型分析,应用虚功原理,建立了高温电阻炉在二维动态非线性传热有限元模型;同时,对反应过程产生气体的情况进行了分析,建立了二维传热-渗流耦合的有限元模型;结合炉体和部件的应力和形变情况,又建立了三维的传热-形变-应力耦合的有限元模型。因为炉料由多种颗粒组成,采用混合模型将其简化为分层拟均相模型,并采用修正的热逾渗理论模型进行描述。通过对直通电石墨化炉的有限元计算,并与现有文献比较,结果表明:本文所建立的传热有限元模型和多种颗粒组成炉料的有效导热系数的计算方法是有效的。
     采用建立的传热有限元模型,对一有效宽高为2.1m×1.9m、炉芯宽高为0.35m×0.6m、单位体积炉芯负荷8.5×10~5W/m~3的艾奇逊炉碳化硅生产过程进行了模拟和分析:
     (1)具体分析了炉内动态的温度场分布、不同时刻炉料水平线上温度梯度变化、热流密度变化情况,系统的考察了炉内产品产量和单位产品能耗随生产进行的变化趋势。结果表明产品产量随时间线性增长,单位产品能耗呈现从高到低,然后平稳,最后上升的变化趋势。考察炉芯表面温度可知其与产品能耗密切相关。能耗较低的平稳阶段对应于从炉芯表面温度上出现了2600℃温度点,到全部表面温度均超过2600℃。这意味着该阶段是炉芯热效率最高的阶段。炉芯表面完全达到碳化硅分解温度的时刻,正是能耗较低产量较高的时刻,因此也是生产停炉的最佳时刻。对温度梯度和热流密度进行分析,发现温度梯度最大的阶段出现在合成碳化硅的温度区域内,而且随着时间增长炉表面散热的热流密度也增长。
     (2)喷炉问题是碳化硅炉生产中迄今仍没有完全解决的问题。本文应用传热-渗流耦合的有限元模型,分别系统地考察了正常生产条件、增大炉芯功率和增加密度导致渗流系数变小三种条件下,炉底气体压力和炉表气体流量变化。发现了喷炉的具体原因:1)炉料配置不合理,导致气体渗流系数变小。2)功率过高,导致化学反应过快造成炉产生的气体不能及时渗透出去。
     (3)石墨电极在碳化硅或石墨化炉生产过程中,部分在炉体外部,部分与炉内高温物料接触,并且自身也会通电发热。为考察电极在这种情况下是否发生损坏,应用传热-形变-应力耦合的有限元模型进行过程分析。具体考察了电极内部和外部的温度分布、电极的整体形变和电极的主应力分布的情况。结果显示:凸出炉体外部电极表面温度不超过90℃,不会发生氧化反应导致的损耗;电极整体温差小于20℃,不会因为热应力和体积力作用导致电极发生形变。因此电极在正常生产条件下不会发生损坏现象。为进一步加强电极保护,根据计算结果提出了电极保护涂层的厚度的工艺方案。
     为解决现有艾奇逊碳化硅炉生产能耗高、有喷炉安全隐患的问题。本文以系统过程工程理论为指导,应用传热-渗流耦合有限元模型,对有效宽高2.3m×2.1m、炉芯宽高0.4m×0.6m、单位体积炉芯负荷8.8×10~5W/m~3的碳化硅炉型生产过程进行模拟。作者将生产过程分为三个阶段:1)生产前期,热能主要用于炉体预热、碳化硅合成尚未开始或反应微弱,该过程应尽快完成以减少散热损失。2)生产中期,炉料开始反应到炉芯表面局部达到2600℃,该阶段应尽快完成,但要注意避免发生喷炉。3)生产后期,从炉芯表面局部达到到全部超过2600℃的阶段,该阶段应在保证碳化硅继续生产的同时控制碳化硅的分解和炉表的散热。在对三个阶段分析基础上,以喷炉压力为主要限制条件,建立以能耗最小化为目标函数的优化模型和简化的优化策略,获得了优化的功率曲线。计算结果表明应用优化的功率曲线可避免喷炉发生;选择不同的停炉时间,可分别获得能耗降低约8%且产量增加3%和增产约12%且能耗降低约5%的两种较优的结果。
     现有文献表明,石墨化炉和碳化硅炉由于炉料预热和炉表散热,单炉热效率仅为50%左右,热损失巨大。在对两炉有限元分析的基础上,提出了直通电石墨化炉联产碳化的新工艺,以上述单位体积炉芯负荷为8.5×10~5W/m~3的炉型为例。研究表明:扣除石墨生产耗能后,生产碳化硅的能耗为原碳化硅炉的50%,产量为54-68%;此外联产炉还减少了总的废气排放;为解决现有炉型保温效果不佳、通气性差容易发生喷炉、产品品质不高、能耗高和粉尘污染等问题,本文提出了一种增强保温的并联式、全透气的生产碳化硅的新炉型。对该炉型不仅增强了保温效果,而且还彻底解决了喷炉问题,使生产中产生的气体不仅及时的排放出去而且还为炉体的保温做了贡献,新炉型还可配合气体收集装置将气体汇总处理减少了环境污染,该炉型可以由现有炉型经简单改造而成,改造后能耗降低达15-17%,节能效果显著。
With the development of new material industry, the industrial electric heating equipment is widely applied. Controlling product quality, decreasing energy consumption, keeping production safety are the goals for the development of industrial electric heating equipment. This paper treated the Process System Engineering (PSE) Theory as guide, applied the Finite Element Method (FEM) to analyze the heating process of high-temperature resistance furnace for benefiting the high-temperature electric heating process research.
     This thesis reviewed the feature and development of PSE, FEM and Acheson resistance furnace. The open source FEM software-FEPG was introduced; this work discussed the development of high-temperature resistance furnace, analyzed the research trends of furnace type improvement, process improvement and simulation optimization of silicon carbide (SiC) furnace and graphitizing furnace at domestic and overseas. Based on the analysis of question of resistance furnace heating process, this work presented the research directions.
     Through the analysis of Acheson resistance furnace, the 2D nonlinear dynamic heat transfer FEM model was built by principle of virtual work. Through the analysis of process of reaction release the gas, the 2D thermal-seepage coupled FEM model was built. Considering the deformation and stress of furnace and equipment component, the 3D thermal-deformation-stress coupled FEM model was built. Because the charge material is built by a variety of particle, the mixed model was simplified to stratified homogeneous model and was described by modified heat percolation model. Based on the FEM calculation and comparison with existing literature, the results showed that the FEM model built by this work and the calculation method of effective heat conductivity of charge material are effective.
     By the FEM model, the production process was analyzed for Acheson SiC furnace (effective width and highness is 2.1m×1.9m, furnace core profile width and highness is 0.35m×0.6m, the unit volume load of furnace core is 8.5×10~5W/m~3):
     (1)The dynamic temperature field distributions, temperature gradient on one horizontal line at different moment, the heat flux change were analyzed. The yield and unit product energy consumption were investigated with the process of production trend. The results showed the yield linear increase dependence the time, and the unit product energy consumption have the trend from high to low, then steady, at last rising. The temperature of furnace core surface has the closely relation with energy consumption. the steady low energy consumption phase corresponds to the process of form some point of core surface reaching 2600℃to total over 2600℃.it is means the phase is the highest stage of thermal efficiency. it is the best moment for production shutdown when the temperature of core total over 2600℃. Through analysis the temperature gradient and heat flux, the maximum temperature gradient occur the zone synthesis SiC, and the heat flux of furnace surface is increasing dependence time.
     (2) The spouting of Acheson SiC furnace still is the problem not resolved. This thesis applied thermal-seepage coupled FEM, investigated the pressure and gas flux with normal production condition, increasing load of core, increasing charge material density with seepage coefficient become smaller. The spouting reasons were discovered: 1) Unsuitable charging mixture ratio lead to gas seepage coefficient become smaller. 2) The higher load causes the reaction too fast to release the gas.
     (3) The graphite electrode part in furnace and part out of furnace, and connect with high temperature charging and itself product heat with the production process. For investigating if the electrode will be damage, the thermal-deformation-stress coupled FEM was applied. The temperature distribution, deformation and main stress of electrode were acquired. The results showed that the outer electrode temperature blow 90℃and no oxidation reaction damage, the total temperature difference less than 20 and no deformation. So the electrode will be safe in normal production condition. For enforcing the electrode safety, the programs of thickness of electrode protective coating was put forward basing the calculation results.
     For solving the problem of high energy consumption and spouting of Acheson SiC furnace, this work applied thermal-seepage coupled FEM with PSE theory to simulate production process of SiC furnace(effective width and highness is 2.3m×2.1m, furnace core profile width and highness is 0.35m×0.6m, the unit volume load of furnace core is 8.8×10~5W/m~3). Author divided the production process into three phases: 1) The Pre-production, the heat is used to heat the charge material and the SiC synthesis reaction not yet start, this phase should be finished as soon as possible for saving energy. 2) The mid-production, it is the phase that form reaction start to temperature of core surface over 2600℃, this phase should be finished as soon as possible but spouting must be controlled. 3) The latter-production, the phase is form some points reach 2600℃to all the surface reach 2600℃of furnace core, the reaction should be controlled to keep product increasing and decrease SiC decomposition and heat loss of furnace surface. Based on analysis of three phases, this work built minimum energy consumption as objective function and simplified optimization strategy with spouting as main limiting condition, acquired optimized power curve. The calculation results showed that applying optimal power curve will avoid spouting, the optimal results can be got that are energy consumption decreasing 8% and output increasing 3%, output increasing 12% and energy consumption decreasing 5% by choosing different shutdown time.
     According to the references, the thermal efficiency of SiC furnace and graphitizing furnace is about 50% because of great heat loss. based on FEM analysis of two type furnace, the LWG graphitizing furnace vice-product SiC process was put forward and the example (above mentioned unit volume load of furnace core is 8.8×10~5W/m~3 ) was simulated. The results showed that the SiC energy consumption is half of Acheson SiC furnace and output is 54-68% of Acheson SiC furnace after deduction the graphite manufacture energy, and the new process reduce the total waste gas emission; For solving the Acheson furnace’s problem of poor insulation, spouting, low product quality, high energy consumption and dust pollution, this paper put forward a new type SiC furnace with enforcing insulation, parallel, good ventilation. The new type furnace not only enforces the insulation but also avoid spouting, and the gas released as the insulation layer. The new type furnace also easy transports the gas to waste gas gathering unit. The new type furnace can be got by reform exiting Acheson SiC furnace and have 15-17% energy consumption saving after reform.
引文
[1]成思危,杨友麒.过程系统工程的昨天、今天和明天.天津大学学报. 2007,40(3):321-327.
    [2] D.F.Rudd, C.C.Watson. strategy of process engineering. new york: John Wiley and Sons, 1968.
    [3]华贲,周章玉,杨少华等. 21世纪流程工业的综合集成.制造业自动化. 1999,21(12):299-304.
    [4]杨友麒.实用化工系统工程.北京:化学工业出版社, 1989.
    [5]姚平经.全过程系统能量优化综合.大连:大连理工大学出版社, 1995.
    [6] Thomas F. Edgar. Control and operations: when does controllability equal profitability? . Computers & Chemical Engineering. 2004,29(1):41-49.
    [7] Nakaiwa M, Huang K, Endo A. Internally heat-tegrated distillation columns: a review. Trans Inst Chem Eng. 2003,81:162-176.
    [8] Daniel R. Lewin. A generalized method for HEN synthesis using stochastic optimization—II: The synthesis of cost-optimal networks. Computers & Chemical Engineering. 1998,22(10):1387-1405
    [9] A. Howell, K. Hanson, V. Dhole, W. Sim. Optimizing asset utilization through process engineering. Chemical Engineering Progress. 2002, 89(9): 54-63.
    [10]许志宏,王大光,夏永年等.冶金过程模拟.金属学报. 1982,18(3):361-370.
    [11] G. J. Schoenau, E. A. Arinze, S. Sokhansanj. Simulation and optimization of energy systems for in-bin drying of canola grain (rapeseed). Energy Conversion and Management. 1995,36(1):41-59.
    [12] M.M. Salah El-Din. optimization of totally irreversible refrigerators and heat pumps. Energy Conversion & Management. 1999,40(4):423-436.
    [13] Ali Kodal, Bahri Sahin, Tamer Yilmaz. Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Conversion & Managent. 2000,41(6):607-619
    [14]李静.高温热风炉预热系统设计与研究[硕士学位论文].西安:西安建筑科技大学. 2009.
    [15] Robert Pitz-Paal, Nicolas Bayer Botero, Aldo Steinfeld. Heliostat field layout optimization for high-temperature solar thermochemical processing. Solar Energy. 2011,85(2):334-343
    [16]姚平经.过程系统分析与综合.大连:大连理工出版社, 2004.
    [17]洪伟荣,王彦,谭鹏程.基于原-对偶内点法的化工过程优化算法.化工学报. 2010,61(8):1978-1982.
    [18]杨世铭,陶文铨.传热学.北京:高等教育出版社, 2006.
    [19] R.J. Goldstein, E.R.G. Eckert, W.E. Ibele. Heat trandfer-a review of 2002 literarure. International Journal of Heat and Mass Transfer. 2005,48:819-927.
    [20] R Courant. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of American Mathematical Society. 1943(49):1-23.
    [21] R W Clough. Thoughts about the origin of the finite element method. Computers & Structures. 2001,79:2029-2030.
    [22] R W Clough. Early history of the finite element method from the view point of a pioneer. International Journal for Numerical Methods in Engineering. 2004,60(1):283-287.
    [23]曾攀.有限元基础教程.北京:高等教育出版社, 2009.
    [24]胡海昌.论弹性体力学与受范性体力学中的一般变分原理.物理学报. 1954,10(3):259.
    [25]胡海昌.弹性力学广义变分原理在求近似解中的正确应用.中国科学(A辑). 1989(11):1159-1166.
    [26]钱伟长.变分法及有限元.北京:科学出版社, 1980.
    [27]温树文, P.Hartley, I.pillinger.材料导报.一个用高温压力加工过程有限元分析的热力学模型. 1996,A00:114-120.
    [28] P. Carter, M. Dedekind, H. Sieburg. Non-linear finite element analysis and high temperature defect assessment International Journal of Pressure Vessels and Piping. 1992,50(1-3):81-96.
    [29] X.N. Wang, X.C. Wang. Simplified analysis for creep stress redistribution of high temperature structures using some finite element results. International Journal of Pressure Vessels and Piping. 1994, 58(3):295-302.
    [30] T. Jin, D.J. Stephenson. Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding. CIRP Annals - Manufacturing Technology. 2004,53(1):259-262.
    [31] S. Serajzadeh, Y. Mahmoodkhani. A combined upper bound and finite element model for prediction of velocity and temperature fields during hot rolling process. International Journal of Mechanical Sciences. 2008,50(9):1423-1431.
    [32] I.A. Roberts, C.J. Wang, R. Esterlein et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. International Journal of Machine Tools and Manufacture. 2009,49(12-13):916-923.
    [33] Han GuoMing, Zhao Jian, Li JianQang. Dynamic simulation of the temperature field of stainless steel laser welding. Materials & Design,. 2007, 28(1):240-245.
    [34]张芸,秦俊荣,程自力.我国CAE产业发展综述.中国科技信息. 2010(15):115-116.
    [35]孟超,宋芳.有限元分析软件的比较和展望.焦作大学学报. 2008,22(1):85-86.
    [36]王勖成.有限单元法.北京:清华大学出版社, 2003.
    [37]梁国平.有限元语言.北京:科学出版社, 2009.
    [38]北京飞箭软件有限公司. FEPG6.0用户手册2006.
    [39]张承良,王京印,方国印.基于FEPG的多场耦合渗流数值模拟方法.钻井液与完井液. 2010,27(3):69-71.
    [40]丁继辉,李凤莲,王维玉.有限变形下固-液耦合渗透固结问题的数值分析.工程力学. 2008,25(A01).
    [41]于建国,叶庆泰,陈超.热冲击下机械结构非线性热力耦合模型的建立.应用力学学报. 2004,21(4):43-46.
    [42]赵增辉,王育平,陈波,袁义坤.基于FEPG的压电复合结构动态问题求解.山东科技大学学报:自然科学版. 2008,27(5):66-70.
    [43] WANShui, HUHong, CHENJian-pin. Finite Element Program Generator and Its Application in Engineering.船舶力学. 2004,8(3):107-115.
    [44]罗扬施旭赵永红.巴姆地震变形场和应力场:Ⅱ.用FEPG有限元方法求解.岩石学报. 2006,22(9):2375-2380.
    [45]娄一青,陈睿,金永强. FEPG软件在渗流分析中的应用.河海大学学报:自然科学版. 2008,36(2):203-208.
    [46]任国彪,杨永琴.以FEPG为主体的多媒体教学在《有限元方法》中的应用.中州大学学报. 2010,27(2):123-125.
    [47]北京飞箭软件有限公司. http://www.fegensoft.com/.
    [48]江尧忠.工业电炉.北京:清华大学出版社, 1993.
    [49]刘美慧.高温电加热过程模拟分析.青岛:中国海洋大学; 2008.
    [50] St. Boschert, P. Dold, K. W. Benz. Modelling of the temperature distribution in a three-zone resistance furnace: influence of furnace configuration and ampoule position. Journal of Crystal Growth. 1998,187(1):140-149.
    [51] Isabel Pérez-Grande, Damián Rivas, Valentín de Pablo. A global thermal analysis of multizone resistance furnaces with specular and diffuse samples. Journal of Crystal Growth. 2002,246(1-2):37-54.
    [52] Damian Rivas, Valentin de Pablo, Isabel Pérez-Grande. Analysis of the temperature field in compound samples heated in multizone resistance furnaces. Advances in Space Research. 2003,32(2):251-257.
    [53] Jurgen Geiser, Olaf Klein, Peter Philip. Influence of Anisotropic Thermal Conductivity in the apparatus insulation for sublimation growth SiC: Numerical Investigation of heat transfer. crystal growth &design. 2006,6(9):2021-2028.
    [54] S. Ritchie, J.J. Eksteen. Investigating the effect of slag bath conditions on the existence of multiphase emulsion zones in PGM smelting furnaces using computation fluid dynamics. Minerals Engineering. 2010,In Press.
    [55] Tei-Chen Chena, Chang-Hsien Hoa, Jia-Ching Linb, Li-Wen Wub. 3-D temperature and stress distributions of strip in preheating furnace of continuous annealing line. Applied Thermal Engineering. 2010,30(8-9):1047-1057
    [56] Ouafa Tadrari, Marcel Lacroix. Prediction of protective banks in high temperature smelting furnaces by inverse heat transfer. International Journal of Heat and Mass Transfer. 2006,49(13-14):2180-2189.
    [57]康海燕,高靖花,单爱军.电加热管式回火炉的研究.农机化研究. 2001,3(8):140-141.
    [58] F. Janabi-Sharifi, G. Jorjani. An adaptive system for modelling and simulation of electrical arc furnaces. Control Engineering Practice. 2009,17(10): 1202-1219.
    [59]石晓瑛.基于神经网络PID炉温控制系统设计.武汉工业学院学报. 2008,27(1).
    [60]石晓瑛,许智榜.基于PLC的烧结炉温度控制.华东交通大学学报. 2010,27(2).
    [61]毛一心,鲁亿方,王顺.电阻炉的计算机优化控制.工业加热. 2003,4:49-52.
    [62]高金梅,夏玉波,王建平,陈海龙.真空电阻炉主要参数的测定级检验.应用能源技术. 2010,145(1):40-42.
    [63]刘美慧,胡仰栋.高温电加热下电阻率与导热系数随温度变化的传热过程模拟.工业加热. 2008,37(3):24-26.
    [64]卢娇,董元.电阻炉炉衬结构的改进.工业加热. 2010,39(2).
    [65]杜辉.高温电阻炉的改造.热处理技术与装备. 2009,30(2).
    [66] E.G. Acheson, production of artificial crystalline carbonaceous materials. U.S. patent 492767. 1893 12.28.
    [67] Andreas Korsten, Theodor Benecke; furnace installation operated by direct electrical heating according to the resistance principle in particular for preparation of silicon carbide. US3950602,1976 4.13.
    [68] Gunter Wiebke, furnace installation operated by direct electrical heating according to the resistance principle,in particular for the preparation of silicon carbide. US3989883,1976.11.2.
    [69] Gunther Kratel, process for preparing hydrophobic silicon dioxide. US3953487,1976.4.27.
    [70] Gunter Wiebke, Andreas Korsten; collector apparatus for gaseous reaction products. US 39768291976 8.24.
    [71]陈杰.多热源合成SiC传热传质规律的数值模拟及实验研究:[硕士学位论文].天津:天津大学; 2004.
    [72] Sintered, Areekattuthazhayilk; Silicon Carbide production and Furnace. US4419336,1983.12.6.
    [73] I.J.Macolm. In forming,shaping,and working of high-performance ceramics. NewYork: Chapman and Hall, 1988.
    [74]乔冠军.碳化硅粉体制备技术.硅酸盐通报. 1993,12(2):34~39.
    [75]王晓刚,李晓池;冶炼碳化硅的多炉芯炉及其生产碳化硅的方法. CN1364996,2002.
    [76]师昌绪,李恒德,周廉.材料科学与工程手册(下卷).北京:化学工业出版设, 2003.12.
    [77]彭伟良.碳化硅冶炼工艺平衡技术讨论(Ⅰ).金刚石与磨料磨具工程. 1995,89(5):44-45.
    [78]彭伟良.碳化硅冶炼工艺平衡技术讨论(Ⅱ).金刚石与磨料磨具工程. 1995,89(5):44-45.
    [79]赵燚.碳化硅冶炼炉送电方式的研究.金刚石与磨料磨具工程. 1997,98(2):31-33.
    [80]周强.炉体表面温度对单位电耗的影响──对碳化硅冶炼炉送电量选择的研究.工业炉. 1998,20(4):16-19.
    [81]周强.艾奇逊电阻炉在中国-碳化硅冶炼炉的发展方向.工业炉. 1999,21(4):4-5.
    [82]周强.碳化硅冶炼炉透气炉底的设计.工业炉. 2000,22(3):24-25.
    [83]姜艳,王庆贤.碳化硅冶炼炉的节能改造技术.科技创新导报. 2009,1.
    [84]沈颂茂,黑色碳化硅冶炼降低单位耗料的工艺. CN1569627A,2005.
    [85]陈杰,郭继华,王晓刚.工业合成SiC的节能提质技术及CO收集.金刚石与磨料磨具工程. 2005,145(1):49-52.
    [86]王爱民,白妮,王晓刚.多热源SiC合成炉温度场分布规律及影响因素研究.榆林学院学报. 2008,18(2):57-60.
    [87]王爱民,白妮,王晓刚.碳化硅冶炼炉逸出气体的组成及理化性质研究.洁净煤技术. 2009,15(5):62-65.
    [88]王晓刚, SiC合成炉气体收集系统及气体收集方法. CN101251339,2008.
    [89]戴长虹,杨静漪;,蔺玉胜.微波法合成SiC纳米微粉.青岛化工学院学报. 1999,1(20):25-28.
    [90]戴长虹,水丽.碳化硅超细粉的制备新法.中国粉体技术. 2001,7(1):10-11.
    [91]戴长虹,赵茹,水丽.电场电炉合成碳化硅晶须的研究.无机材料学报. 2003,18(3).
    [92]叶鑫南,赵中玲,兰琳,黄金秋.一步法合成高纯度碳化硅粉体的研究.无机材料学报. 2008,23(2):243-246.
    [93]卢翠英,成来飞,张立同,徐永东.化学气相沉积碳化硅的热力学分析.无机材料学报. 2008,23(6):1189-1192.
    [94]卢翠英,成来飞,赵春年,张立同.温度对化学气相沉积碳化硅涂层的影响.材料科学与工艺. 2010,18(4):575-578.
    [95]王晓刚,李晓池;一种碳化硅晶须和微粉的工业制备方法. CN1449994,2003 10.
    [96]陈荣辉,利用碳化稻壳制造碳化硅的方法. CN1704332A,2005.
    [97]李志宏,肖俊明,王爱珍,刘红林,宋玉悟.碳化硅冶炼炉的改进.金刚石与磨料磨具工程. 1995,88(4):34-36.
    [98]李志宏,张念东,刘红林,肖俊明.碳化硅冶炼优化控制的试验研究.金刚石与磨料磨具工程. 2000,115(1).
    [99]刘永胜,王晓刚,李强. SiC冶炼炉温度场有限元分析.陶瓷工程. 2001(10):6-10.
    [100]王晓刚,刘永胜,李小池,李强.碳化硅冶炼炉温度场的ANSYS模拟研究.山东陶瓷. 2001,24(3):7-11.
    [101]王晓刚,李晓池,郭晓滨,刘永胜.多热源工业合成SiC技术.硅酸盐学报. 2002(30(supplement)):101-104.
    [102]何恩广,王晓刚,陈寿田.多炉芯法工业生产SiC材料研究.金刚石与磨料磨具工程. 2002,129(3):50-52.
    [103]庄飞.多热源“熔透”法合成碳化硅的实验研究:[硕士学位论文].西安:西安科技大学; 2006.
    [104]李小池,王晓刚,郭晓滨.不同热源合成SiC冶炼炉温度场的有限元分析及其计算机模拟.无机材料学报. 2003,18(3):667-672.
    [105]王晓刚,郭继华,李成峰.多热源SiC合成炉温度场变化规律的模拟与计算.无机材料学报. 2005,20(1):199-204.
    [106]陈杰,王晓刚,郭继华.多热源合成SiC传热规律.北京科技大学学报. 2005,27(5):536-539.
    [107]陈杰,王晓刚,郭继花.多热源合成SiC冶炼炉温度场的动态数值模拟.金刚石与磨料磨具工程. 2006,154(4):55-57.
    [108]陈杰,王晓刚.碳热还原法合成SiC供电参数的研究.硅酸盐通报. 2010,38(9):1792-1796.
    [109]陈杰,王晓刚.多热源合成SiC供电时间的选择研究.煤炭学报. 2005,30(2):233-236.
    [110]E.G. Acheson, Manufacture of Graphite. US568323,1896.
    [111]郭茂先,刘广林.石墨化炉电阻料电热规律的研究.炭素技术. 1988(4):27-30.
    [112]曲丽萍,曲永印,谢树林.石墨化炉控制策略的新探讨.吉林化工学院学报. 1999,16 (3):53-56.
    [113]闫锋,路忠胜,王晓霞.优化石墨化炉送电曲线对石墨电极产量和电耗影响的研究.轻金属. 1999(6):49-51.
    [114]何永康,饶永生.石墨化电炉炉阻的研究.炭素技术. 2004 23(4).
    [115]王文东.艾奇逊炉热平衡分析:[硕士学位论文].大连:大连理工大学; 2007.
    [116]Hamilton Young Castner, Anode for Electrolytic Processes. Great Britain Patent, No19089,1893.
    [117]Hamilton Young Castner, Anode for Electrolytic Processes. Us patent, No 572472,1896.
    [118]李圣华.串接石墨化技术.炭素技术. 2005,24(2):46-51.
    [119]隋庆武,赵明才,耿奎久.发展内热串接石墨化工艺的必要性.炭素技术. 1999,102(4):39-41.
    [120]严华.串接石墨化炉中产品出现“麻面”的原因和解决方法.炭素技术. 2010,29(2):55-57.
    [121]徐文章.关于内串石墨化送电工艺经验数学模型的探讨.炭素技术. 2006,25(6):35-38.
    [122]李祥晟.石墨化电炉电热特性及炉芯温度场的研究:[硕士学位论文].沈阳:东北大学; 2000.
    [123]林传兴,李祥晟.石墨化电炉炉芯温度分布.工业炉. 2001,23(4):39-41.
    [124]许海飞,刘朝东,王玉彬.内热串接石墨化炉加热过程热场数值模拟.炭素技术. 2009,28(1):1-3.
    [125]陈斌,姜敏,王新华.高碱度高Al_2O_3炉渣下合金钢液中非金属夹杂物的行为.特殊钢. 2008,29(2):7-9.
    [126]胥锴,刘徽平,刘政,刘萍.非枝晶A356合金半固态重熔加热时的组织演变.热加工工艺. 2006,35(1):19-22.
    [127]李树茂,任志峰,李巍.组装式电阻炉的发展和应用.金属热处理. 2008,33(11):17-21.
    [128]张韵声.引进先进技术重在消化吸收--埋弧电炉引进技术的启示.科学中国人. 1997(Z1).
    [129]亚洲金属网. 2008年碳化硅市场年度报告2009.
    [130]王晓刚,刘永胜,李晓池,李强. SiC材料的工业制备方法及其进展.西安科技学院学报. 2001,21(4):347-351.
    [131]K.H.Mehrwald. History and economic aspects of industrial SiC manufacture. Ceramics Forum International (Germany). 1992,69(3):72-81.
    [132]胡娟,寇自力.高温高压下通过石墨直接转化合成的纯聚晶金刚石.超硬材料工程. 2006,18(6):48-52.
    [133]彭久云,曾照强.锂离子蓄电池负极材料Li4Ti5O12的研究进展.电源技术. 2002,26(6):452-456.
    [134]北京飞箭软件有限公司.基于FEPG的有限元方法. 2003.
    [135]陈敏恒,丛德滋,放图南.化工原理(下册).北京:化学工业出版社, 2006.
    [136]F.P.Beer, E.R. Johnston. Mechanics of Materials (3rd edition). New yoke: McGraw-Hill, 2001.
    [137]徐萃薇,孙绳武.计算方法引论.北京:高等教育出版社, 2001.
    [138]林瑞泰.多孔介质传热传质引论.北京:科学出版社, 1995.
    [139]Leith J.R., Haji-Sheikh A. A Transient Technique for Finding Effective Thermal Conductivity of Fluid-Saturated Porous Media.In“Heat Transfer in Porous Media”(eds.Beck J.V.and Yao L.S.). New York1982.
    [140]Sabau A.S., Tao Y.X., et al Liu G. Effective Thermal Conductivity for Anisotropic Granular Porous Media Using Fractal Concepts.Proc.of National Heat Transfer Conference,. 1997:121-128.
    [141]Luikov A.V. Heat and Mass Transfer. Moscow: Mir Publishers, 1980.
    [142]B.O.Aduda. Effective Thermal Conductivity of Loose Particulate Systems. Journal of Materials Science. 1996(31):6441-6448.
    [143]M.G.Kaganer. Heat Transfer Insulation in the Low-Temperature Engineering. Moscow: Mashinostroenie, 1968.
    [144]D. A. Zumbrunnen, R. Viskanta, F. P. Incropera. Heat Transfer Through Porous Solids with Complex Internal Geometries. IntJHeat Mass Transfer. 1986,92(2):275-284.
    [145]P.Furmanski. Int.J.Heat Mass Transfer1992.
    [146]张海林.提高散体有效导热系数模型准确度的理论与实验研究:[博士论文].北京:华北电力大学; 2004.
    [147]S.R.Yang, H.L.Zhang, Z.M.Xu. Thermal Conductivity of Ash Layer Including Radiative Heat Transfer.3rd International Symposium on Heat Transfer Enhancement and Energy Conservation,Guangzhou,. 2004:992-998.
    [148]杨展如.分形物理学.上海:上海科技教育出版社, 1996.
    [149]王教方,岳贤军,宋淑珍等.多层复合材料导热系数测定方法的研究.山东建材学院学报. 2000,14(3):258-260.
    [150]张念东.碳化硅磨料工艺学.北京:机械工业出版社, 1982.
    [151]Edwoard B.Magrab, Shapour Azarm, Balakumar Balachandran. An engineer’s guide to Matlab :with applications from mechanical ,aerospace,electrical,and civil engineering(second edition). Bergen County: Prentice Hall, 2005.
    [152]中国石油化工股份有限公司.延迟石油焦标准SH0527-921992.
    [153]戚斯珍.译自苏联有色金属,1979,(2),46-47. 1991,(4):31-32.
    [154]D.F. Varfolomeev, E.V. Artamonova, G. S. Degtyarev. Determination of heat capacity of petroleum cokes at elevated temperatures. Chemistry and Technology of Fuels and Oils. 1986,22(6):318-310.
    [155]刘光启,马连湘,刘杰等.化学化工物性数据手册.北京:化学工业出版社, 2004.
    [156]巴伦主编.纯物质热化学数据手册,呈乃良等译.北京:科学出版社, 2003.
    [157]童芳森,许斌,李哲浩.炭素材料生产问答.北京:冶金工业出版社, 2003.
    [158]蔡启春.真空炉石墨电极损耗的原因分析及减损措施.湖南有色金属. 2010,26(1).
    [159]蒋文忠.炭素工艺学.北京:冶金出版社, 2009.
    [160]Akito K., M. Takeaki, O.Yoichi. Measurement of Effective Thermal Conductivity
    [161]B. Ihsan. Thermochemical Data of Pure Substances. Wenham: Wiley-VCH, 2004.
    [162]D.L.Jing. Handbook of Inorganic Non-metallic Materials. Beijing: Chemical Industry Press, 2009.
    [163]F. Edgar Thomas, David M. Himmelblau. Optimization of Chemical Processes, second edition New York: McGraw-Hill Publishing, 2001.
    [164]陈建华,粟贵浩,梅其文.利用石墨化炉余热生产碳化硅.南方钢铁. 1999,106(2):25-26.
    [165]蔡永恩.热弹性问题的有限元方法及程序设计.北京:北京大学出版社, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700