新型氧化镁泡沫陶瓷材料的研制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫陶瓷是一种具有三维多孔结构的特殊材料,同时保持了陶瓷自身的优良特性,使其在过滤液态金属领域具有明显的优势。采用聚氨酯有机泡沫浸渍法制备的、用于过滤镁液的MgO泡沫陶瓷过滤器,具有制备工艺简单、操作方法简便、原料成本低廉的优势,因此拥有广阔的应用前景。
     镁合金具有高的比强度,比刚度和比弹性模量,以及阻尼抗震性好等优点,因此在交通运输、航空航天、电子通讯等领域应用广泛。然而,无论采用电解法还是采用还原法生产的纯镁中都含有多种夹杂物,这些夹杂物对材料的力学、耐腐蚀等性能有极大危害,需要进一步净化处理才能达到使用要求,因而阻碍了镁金属材料应用范围的拓展。同目前已系列化的Al_2O_3、ZrO_2、SiC、Si_3N_4等泡沫陶瓷相比,采用MgO泡沫陶瓷净化镁液具有除杂效率高、成本低、操作简便等优点,是一种很好的物理净化镁液的方法。它是利用机械过滤的方法,借助陶瓷网络自发吸附镁液中液态熔剂夹杂物和固态颗粒夹杂物,而其本身在镁液中保持化学性质稳定,不污染镁液,特别适合于镁液净化。但目前有关采用MgO泡沫陶瓷净化粗镁的系统性报导很少,因此,本课题旨在探寻适用于粗镁过滤净化的MgO泡沫陶瓷的制备方法及净化工艺,这对于提高镁金属的性能、拓展其应用领域显然具有重大的意义。我们围绕着上述目的,进行了一些探索工作,得出了以下结论:
     由于制备泡沫陶瓷的原料MgO极易与分散介质水发生水化反应,生成密度更小的Mg(OH)_2,将其加热到350℃以上又会分解生成MgO,这一过程变化会产生体积收缩,由此产生的裂纹会导致制品物理性能恶化。因此我们采用添加抗水剂的方法对MgO粉体进行抗水化处理。研究发现:经硅烷偶联剂KH-550处理的MgO粉体,在25℃下水化180min之后,粉体的水化率从未处理时的54.36%下降到17%,说明硅烷偶联剂KH-550达到了部分抑制MgO水化的目的。我们还根据Arrhenius方程log(k_1/k_2)=E_a/R(1/t_1-1/t_2)计算出经抗水剂磷酸铵(AP)和硅烷偶联剂KH-550处理获得的两种改性MgO粉体的水化反应活化能,计算结果分别是Ea(AP)=78.95kJ/mol,Ea(KH-550)=81.17kJ/mol,根据Bebson的活化能判据可知MgO的这两种水化过程都是由化学反应控制,而非扩散过程控制,结果表明经KH-550处理的MgO粉体更难水化。
     通过选用分散剂和进行颗粒级配的方法,我们获得了低粘度高固含量的MgO浆体。当聚羧酸盐型分散剂SN5040的添加量介于0.1-0.2%之间时,MgO浆料的厚化度和相对黏度分别介于1.024-1.034和1.058-1.083之间,MgO浆料的厚化度和相对黏度可以在该添加量范围内同时达到最佳值,这说明在相同固含量条件下,SN5040的分散性优于分散剂PAM和分散剂CMC-Na;采用双组分颗粒级配可以使MgO制品的抗弯强度和相对密度从未级配时的3.35MPa和0.42提高到5.12MPa和0.55,但采用三组分颗粒级配时抗弯强度和相对密度则又下降到4.78MPa和0.52。另外,有机泡沫前驱体经酚醛树脂乙醇溶液表面改性后,挂浆量更大且均匀,堵孔少,有机泡沫增重倍率从未处理之前的5倍提高到处理后的9倍;粉体颗粒在有机泡沫网络上粘附的更加牢固;处理后的有机泡沫耐高温性能更好,减少了素坯在烧结过程中的塌陷。我们还发现:通过向电熔MgO中添加烧结助剂MgF_2的方法可以使MgO的烧结温度从1500℃下降到1200℃左右,低温烧结而成的陶瓷制品尺寸稳定性更好。
     通过对比粗镁的不同过滤方式,发现MgO泡沫陶瓷可有效的清除镁液中的MgO等夹杂物,对精炼剂的吸附是一个自发的过程,减少了熔剂夹杂。MgO泡沫陶瓷的孔径越小,清除镁液中夹杂物和熔剂的能力越强,所得镁金属中所含的杂质越少,晶粒生长的就更加均匀和完善。根据粗镁过滤体系的自身特点,建立了MgO泡沫陶瓷过滤净化粗镁液中夹杂物的过滤效率判别式,随着过滤的不断进行,泡沫陶瓷网络表面拦截夹杂物将不断增多,泡沫陶瓷的孔隙率和流经泡沫陶瓷网络的熔体速度都将下降,导致过滤效率下降。我们还推导了泡沫陶瓷网络表面夹杂物厚度增长方程,为确保浇铸过程顺利进行提供了一定的理论依据,为MgO泡沫陶瓷过滤粗镁的工业应用奠定了初步的理论基础。
Foam ceramics (FC), a kind of special materials with the 3D porous structures andexcellent texture properties, have showed superiority in the field of molten metal filtration.The advantage of process of foam ceramics processed by impregnation of an open-cellpolyurethan(ePU)foam by immersion into a ceramic slurry have a promising prospect, dueto its simple process, low cost and prepared easily.
     Recently, Magnisium have been used widely in the field of transportation, aerospaceand communication for its properties of high specific strength, specific rigidity and specificelastic modulus, good damping resistance properties. However, the magnesium made fromboth electrolytic method and reduction method have a varity of inclusions which havenegative effects on products, such as worse mechanical and anticorrosion properties.Compared with some foam ceramic filter, such as Al_2O_3、ZrO_2、SiC、Si_3N_4, MagnesiumOxide(MgO) foam ceramic filter can absorb flux and clean up fine inclusions efficiently inmolten magnesium spontaneously as well as can not react with molten magnesium itself,so it is a better candidate to purify molten magnesium. But until now there are not reporton MgO foam ceramic filter to filter molten crude magnesium in detail. So our work is toexplore ways of making MgO foam ceramics and of purifying technologies of moltenmagnesium so as to improve the fineness of magnesium. We carry out a series ofexperiments for the purpose above, and draw some conclusions as following:
     Magnesia hydration is a key concern in refractory castable processing, the reasonabove can result in cracks or even explosion during the first heating-up,so we use differentadditives to inhibit MgO hydration. The hydration degree of MgO powder modified byKH-550 decrease from 54.36% to 17% compared with unmodified MgO powder whenMgO powders react with water in 25℃for 180min, that is to say, coupling agent KH-550have partial effect on inhibiting MgO hydration.
     We have studied the hydration kinetic equations of MgO powders treated byammonium phosphate(AP) and KH-550, respectively. According to the ArrheniusEquation,we obtained the datum of MgO hydration activation energy was Ea(AP)= 78.95kJ/mol and Ea(KH-550)=81.17kJ/mol,respectively. Hydrated rates of both of them arecontrolled by chemical reaction instead of diffusion. The results showed hydration reactionof MgO powder treated by KH-550 is more difficult to hydrate than that of MgO powdertreated by AP.
     When the dosage of SN5040, a kind of polyacrylic salt dispersants, is between 0.1%and 0.2%, the thick degree and relative viscosity of MgO slurry are 1.024-1.034 and1.058-1.083, respectively, the values of them are optimum simultaneously. Theexperimental results showed SN5040 is the optimum dispersant for dispersing MgOpowders in water than PAM and CMC-Na.Our experiment results prove that the design ofbicomponent composition is beneficial to improve the sample's compressive strength andrelative density, and the values of compressive strength and relative density of sampleincrease from 3.35MPa and 0.42 to 5.12MPa and 0.55, respectively. Nevertheless, thevalues of compressive strength and relative density of sample come down in the conditionof tricomponent composition.The volume of slurry coating of MgO on PU foams is largerand more uniform than that of those untreated when PU foams immersed in phenolicresin-ethanol solution. The slurry weight on PU foam after modified is 9 times than theweight of PU foam while the slurry weight on PU foam unmodified is only 5 times thanthe weight of PU foam; The powder is adhere to the surface of foam more firmly and thetemperature resistant of PU foam is improved and the shrinkage collapse probability ofgreen foam ceramics decrease.The sintering temperature of MgO foam ceramics candecrease from 1500℃to 1200℃or so on the condition of adding a capful of sinteringadditive MgF_2to MgO powders, and the sintered fused MgO ceramics on the condition oflower temperature have a stable 3D structure and the little defect in them.
     Compared with different filtration methods of molten magnesium, we can draw aconclusion that MgO foam ceramics can clean MgO inclusions and flux effectively. Theresearch result indicates that filtrating ability are raised, inclusions and flux are less andgrains are more uniform and perfect by decreasing hole dimension of MgO foamceramics.Based on the characteristic of filtration system of molten magnesium, a moltenmagnesium purifying efficiency equation relative to foam ceramics filtration wasestablished.The experiment result indicates that the purifying efficiency of the foamceramics could be reduced with the increase of the inclusions on the network surface offoam ceramics because of smaller 3D sizes of holes and slower flow velocity of molten magnesium in foam ceramics.We analyzed some influencing factors on equation toinclusion thickness on the network surface of foam ceramics, for it is helpful to guaranteethe cast process goes well, so this will be helpful for extending the industrial application ofMgO foam ceramics to filter molten magnesium.
引文
[1]徐河,刘静安,谢水生.镁合金制备与加工技术.北京:冶金工业出版社,2007.
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [3]GAO Feng, NIE Zuo ren, WANG Zhi hong, et al. Assessing environmental impact of magnesiumproduction using Pidgeon process in China.Trans. Nonferrous Met. Soc. China(English Edition),2008,18(3):749-754.
    [4]Eliezer E, Aghione E, Froes F H. Magnesium science technology and applications. AdvancedPerformance Materials,1998,5(3):201-212.
    [5]中国机械工程学会铸造专业学会.铸造手册:铸造非铁合金.北京:机械工业出版社,1993.
    [6]WU Guo hua, XIE Min, ZHAI Chun quan,et al. Purification technology of AZ91 magnesium alloywastes. Trans. Nonferrous Met. Soc. China, 2003,13(6):1260-1264.
    [7]徐日瑶.镁冶金学.北京:冶金工业出版社,1993.
    [8]陈振华,严红革,陈吉华.镁合金.北京:化学工业出版社,2004.
    [9]韩英芬.AZ91镁合金中非金属夹杂物的去除研究:(硕士学位论文).西安:西北工业大学,2006.
    [10]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景.航空工程与维修,2002(4):41-42.
    [11]左铁镛.中国镁及镁合金发展战略.科学中国人,2006(2):28-29.
    [12]Chino Y, Kobata M, Iwasaki H, et al. An investigation of compressive deformation behaviour forAZ91 Mg alloy containing a small volume of liquid. Acta Materialia, 2003,51(11):3309-3318.
    [13]康鸿跃,陈善华,马永平等.镁合金在军事装备中的应用.金属世界,2008(1):61-64.
    [14]Martin J, Dan P, Christofer L. Atmospheric corrosion of field-exposed magnesium alloy AZ91D.Corrosion Science, 2008(50):1406-1413.
    [15]朱昱,姚丽,徐秀茹.世界镁生产现状与展望.世界有色金属,2000(11):14-17.
    [16]朱祖武,曹黎华.国内皮江法炼镁技术的缺陷与改进途径.南昌高专学报,2007,69(2):92-94.
    [17]刘金平,杨雪春,徐河等.皮江法炼镁技术的缺陷及改进途径.冶金能源,2005,24(5):21-23.
    [18]Ramakrishnan S, Koltun P. Global warming impact of the magnesium produced in China using thePidgeon process. Resources, Conservation and Recycling,42(1):49-64.
    [19]Sivilotti O. Advances in electrolytic production of magnesium.Light Metals,1997:543-555.
    [20]Grjothein K, Kvande H, Li Qingfeng,et al. Metal production by molten salt eletrolysis. Beijing:China university of mining and technology press, 1998.
    [21]邱竹贤.冶金学(下卷).沈阳:东北大学出版社,2001.
    [22]X﹒斯特雷列茨.电解法制镁.北京:冶金工业出版社,1981.
    [23]Wilson C B. Modern production process for magnesium. Light Metals, 1996:1075-1079.
    [24]Sharma R A. An electrolytic process for magnesium and its alloys production. Light Metals,1996:1113-1122.
    [25]C﹒斯杰法纽克.镁冶金学.沈阳:东北工学院出版社,1989.
    [26]张永健.镁电解工艺学.长沙:中南大学出版社,2006.
    [27]于旭光,邱竹贤.镁工业生产及应用的现状和展望.材料与冶金学报, 2003( 9):189-192.
    [28]Cameron A M. Advances in thermal reduction technology. Light Metals,1997(8):579-602.
    [29]Zang J C. The Pidgen process in China and its future. Proceedings of the minerals, metals andmaterials society meeting 2001, New Louisiana, 2001.
    [30]师昌绪,李恒德,王淀佐等.加速我国金属镁工业发展的建议.材料导报,2001,15(4):5-6.
    [31]杨重愚.轻金属冶金学.北京:冶金工业出版社,1991.
    [32]Zuo Tieyong,Du Wenbo.The developing strategy of Chinese magnesium and magnesium alloy.Journal of Guangdong Non-Ferrous Metals,2005,15(2):1-3.
    [33]唐祁峰,高家诚,陈小华.热法制镁工艺的发展概况.材料科学与工程学报,2011,29(1):149-154.
    [34]钟胜.氧化镁真空碳热还原研究:(博士学位论文).昆明:昆明理工大学,1999.
    [35]徐日瑶,刘宏专.皮江法炼镁与镁非金属功能材料生产的组合是节能、环保型先进工艺.世界有色金属,2006(1):16-19.
    [36]伍上元,周向阳,李劼等.原镁直接熔炼生成镁合金压铸件的工艺进展,材料导报,2003,17(3):20-23.
    [37]刘正,张奎,臧境淳等.粗镁精炼、合金化及连续铸造熔炼镁合金的方法.中国,CN1524973A.2004.9.
    [38]姜杰,李宏伟,高岩庆等.用电解镁制造汽车用镁合金.轻金属,2004(3):45-47.
    [39]徐日瑶,刘宏专.用粗镁或精镁熔炼镁基合金的方法.轻金属,1997(12):34-47.
    [40]Rohrig K., Compositional requirements for quality performance with high purity, 55thInternational Magnesium Conference, Coronado, USA, 1998:17-19.
    [41]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [42]翟春泉,丁文江,徐小平.新型无公害镁合金熔剂的研制.特种铸造及有色合金,1997(4):48-50.
    [43]Per Bakke, Ketil Pettersen, Sigrid Guldberg. The impact of metal cleanliness on mechanicalproperties of die cast magnesium AM50,Magnesium Alloys and Their Applications,2000:739-745.
    [44]徐日瑶.结晶镁精炼熔剂的研究(I).轻金属,1994(6):38-41.
    [45]张诗昌,段汉桥,蔡启舟.镁合金中的夹杂物及检测方法.铸造技术,2001(4):3-5.
    [46]疏达.电磁分离铝熔体中非金属夹杂物的理论研究:(博士学位论文).上海:上海交通大学,2000.
    [47]GAO Hongtao, WU Guohua, DING Wenjiang, et al. Purifying effect of new flux on magnesiumalloy, Trans. Nonferrous Met. Soc. China, 2004,14(3):530-536.
    [48]韩英芬,刘建睿,沈淑娟等.镁合金中的非金属夹杂物及其净化方法.铸造技术,2006,27(6):613-616.
    [49]Hong Tao Gao, Guo Hua Wu, et al. Effects of Purification Fluxes Containing Boride on AZ91Alloy. Materials Science Forum,2005(25-30):488-489.
    [50]陈振华.镁合金.北京:化学工业出版社,2004.
    [51]陈广告,靳玉春.镁合金无熔剂冶炼.铸造设备研究,2008(5):53-56.
    [52]董若憬.铸造合金熔炼原理.北京:机械工业出版社,1991.
    [53]Ni Hongjun, Sun Baode, Jiang Haiyan,et al.Effects of rotating impeller degassing on microstructureand mechanical properties of the A356 scraps. Materials Science and Engineering A,2003(352):294-299.
    [54]胡中潮,张二林,曾松岩.铸造镁合金旋转喷吹除气的试验研究.特种铸造及有色合金,2006,26(3):139-141.
    [55]Housh S E, Petrovich V. Magnesium refining:a fluxless alternative.Society of AutomotiveEngineers,1992:1-7.
    [56]黄伯杰,王薇薇,王耀臣.泡沫陶瓷过滤技术在高标准镁合金铸件生产中的应用研究.特种铸造及有色合金,1995(2:19-21.
    [57]卢晨,吴国华,蔡超.镁合金净化技术研究.金属成形工艺,2002,20(5):5-14.
    [58]Acosta G F A, Cattillejos E A H. Analysis of liquid flow through ceramic porous media used formolten metal filtration. Metallurgical and Materials Transactions B, 1995(36B):159-171.
    [59]Wu Guohua, Xie Min, Zhai Chunquan. Purification technology of AZ91 magnesium alloy wastes.Transactions of Nonferrous Metals Society of China. 2003,13(6):1260-1264.
    [60]Wu Guohua, Kang Seunghun, You Bongsun. Effects of non-flux purification on the microstructureand mechanical properties of AZ31+xCa Mg alloy.Material Science Forum,2007(546-549):217-220.
    [61]乐启炽,崔建忠,赵晓红.镁合金熔体过滤净化工艺研究.特种铸造及有色合金,2005,25(6):333-334.
    [62]王薇薇,徐介文,曹达富.用纯氧化镁泡沫陶瓷过滤器过滤铸造镁合金的研究.铸造技术,1991(6):15-18.
    [63]Li Fengzhang, Tiphaine Dupont. State of the Art in the Refining and Recycling of Magnesium.Materials Science Forum,2007(546-549):25-36.
    [64]李文霞,胡尧和,,果世驹.低温烧结MgO–PSZ泡沫陶瓷过滤器.耐火材料,1997,31(5):253-255.
    [65]周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1996.
    [66]Aubrey L A, Brockmeyer J W, Wieser P F.Cast steel quality improvement by filtration withceramic foam filters. AFS Trans.,1985(93):171-176.
    [67]Yang Haitao, Gao Ling, Yuan Runzhan.Crystallization of MgO during sintering of silicon nitridewith magnesia and ceria.Journal of Materials Science,1999(34):2875-2878.
    [68]Y.B.LEE,H.C.PARK, K.D.OH. Sintering and microstructure development in the system MgO-TiOJnal of Materials Science,1998(33):4321-4325.2.our[69]Paolo Colombo,John R.Hellmann.Ceramic foams from preceramic polymers.Mat Res Innovat,2002(6):260-272.
    [70]Paolo Colombo,Martina Griffoni,Michele Modesti.Ceramic Foams from a Preceramic Polymer andPolyurethanes:Preparation and Morphological Investigations. Journal of Sol-Gel Science andTechnology,1998(13):195-199.
    [71]L. Montanaro, Y. Jorand, G. Fantozzi, et al. Ceramic foams by powder processing.Journal of theEuropean Ceramic Society,1998,18(9):1339-1350.
    [72]T.Fukasawa,Z.Y.DENG,M.ANDO. Pore structure of porous ceramics synthesized from water-basedslurry by freeze-dry process. JOURNAL OF MATERIALS SCIENCE,2001(36):2523-2527.
    [73]Pilar S.Gelcasting foams for porous ceramic.The American Ceramic Society Bulletin,1997,76(10):61-64.
    [74]CtapobepobЮC.泡沫陶瓷过滤器在铸造和炼钢生产中的应用.国外耐火材料,1992,17(9):25-28.
    [75]高正亚,史旭莲.多孔陶瓷的制备工艺.佛山陶瓷,1999(4):19-20.
    [76]朱时珍,赵振波,刘庆国.多孔陶瓷材料的制备技术.材料科学与工程,1996,14(3):33-39.
    [77]朱新文,江东亮.有机泡沫浸渍工艺:一种经济实用的多孔陶瓷材料的制备工艺.硅酸盐通报,2000(3):45-51.
    [78]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展.材料导报,2002,16(3):26-29.
    [79]蒲锡鹏,邱发贵,刘建学等.两次离心挂浆工艺制备网眼多空陶瓷.无机材料学报,2005, 2(6):1431-1437.
    [80]Z. A. Nosova, T. M. Lyubina. MAGNESIA FOAMED CERAMICS. Research Institute of Ceramics.Translated from Ogneupory, 1968(2):50-53.
    [81]李立新.氧化铝泡沫陶瓷的制备及性能研究:(硕士学位论文).西安:长安大学,2009.
    [82]尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001.
    [83]任凤章,王哲,李锋军等.ZrO2对A12O3基泡沫陶瓷过滤器的性能影响.拖拉机与农用运输车,2007,34(3):29-33.
    [84]LI HP, Sekhar J A. Influences of the Reaction Size on the Micropyretic Synthesis of NiAlIntermetallic ComPound. MaterRes., 1995,10(10):375-385.
    [85]王一著.泡沫陶瓷材料的制备工艺研究:(博士学位论文).天津:南开大学,2000.
    [86]Z. CHEN, J. J, MECHOLSKY JR. Damage-tolerant laminated composites in thermal shock..JOURNAL OF MATERIALS SCIENCE,1993(28):6365-6370.
    [87]CHIU Chinchen.Influence of surface oxidation on thermal shock resistance and flexural strength ofSiC/Al2O3composites. JOURNAL OF MATERIALS SCIENCE,1994,29:2078-2082.
    [88]Lu T J, Fleck N A. The thermal shock resistance of solids. Acta Material,1998,46(13):4755-4768.
    [89]张巍.抗热震陶瓷制备技术及应用研究:(硕士学位论文).沈阳:沈阳工业大学,2008.
    [90]宋世学,艾兴,黄传真.结构陶瓷抗热震性能及其机理的研究进展.陶瓷学报,2002,23(4):233-237.
    [91]张清纯,林素贞,黎惠音.ZrO2-Al2O3复合陶瓷的强化增韧及其对抗震性的改善.无机材料学报,1987,2(1):61-69.
    [92]陈军超,任凤章,马战红等.泡沫陶瓷的制备方法及应用.中国陶瓷,2009,45 (1):8-12.
    [93]陈君超.浸渍法制备细孔径氧化铝基泡沫陶瓷过滤器:(硕士学位论文).洛阳:河南科技大学,2010.
    [94]马彦,马青松,陈朝辉等.先驱体转化法制备多孔陶瓷的发展现状.材料工程,2007(3):62-66.
    [95]袁序第.镁合金在汽车工业的应用前景.有色金属加工,2002,31(1):14-18.
    [96]潘玉敏,文华里.未来十年镁业展望与新增产能的预测.轻金属,2001(8):42-44.
    [97]吴秀铭.中国镁工业的现状与展望.有色金属加工,2002,31(2):l-3.
    [98]时永华,刘蜀怀.我国镁工业面临的挑战与机遇.轻金属,2002(4):48-50.
    [99]龚涛.产品科技含量与规模效益并重是我国镁工业的立身之本.轻金属,2000(12):40-44.
    [100]康殿春.谈熔融粗镁直接炼制镁合金.轻金属,1995(8):43-45.
    [101]季贵兰.粗镁直接炼制镁阳极合金的研究.贵州科学,1998,16(2):149-151.
    [102]尖晶石和镁砂的抗水化性.桂明玺编译自《耐火物》,2001(12):676-683,秦福平校.
    [103]L.F. Amaral, I.R. Oliveira, P. Bonadia,et al.Chelants to inhibit magnesia (MgO) hydration.Ceramics International,2011(37):1537-1542.
    [104]G. Huazhi, J. Ouyang, H. Wang, et al. The hydration resistance of CaO–MgO clinker treated byH2C2O4solution.in:Proceedings of UNITECR 2003, Technical Association of Refractories(TARJ),Osaka, Japan,2003.
    [105]S. Lu, G. Chen, J. Cheng. Improved hydration resistance of synthesized magnesia–calcia clinkerby surface modifcation, Journal of American Ceramic Society,2004,87(12):2164-2167.
    [106]R.Salomao, V.C.Pandolfelli. Microsilica addition as an antihydration technique for magnesiacontaining refractory castables. American Ceramic Society Bulletin,2007,86 (6):9301-9306.
    [107]R.Salomao, V.C.Pandolfelli. The role of hydraulic binders on magnesia containing refractorycastables: calcium aluminate cement and hydratable alumina.Ceramics International 2009,35(8):3124-3177.
    [108]L.F. Amaral, I.R. Oliveira, R. Salomao, et al. Temperature and common-ion effect on magnesiumoxide (MgO) hydration.Ceramics International, 2010(36):1047-1054.
    [109]李维翰,尚红霞.轻烧氧化镁粉活性测定的方法.硅酸盐通报,1987,6(6):45-51.
    [110]DUFFYT.The shock wave equation of state of brueite Mg(OH)19-14330.2. Journal of Geophysical Research,1991(96):143[111]Seehra S S, Saroj Gupta, Satander Kumar. Rapid setting magnesium phosphate cement for quickrepair of concrete pavements-characterization and durability aspects. Cement and ConcreteResearch,1993(23):254-266.
    [112]Rafael Salomao, L.R.M. Bittencourt, V.C. Pandolfelli. A novel approach for magnesia hydrationassessment in refractory castables. Ceramics International,2007(33):803-810.
    [113]A. Kitamura, K. Onizuka, K. Tanaka.Hydration characteristics of magnesia,Taikabutsu Overseas,1995,16 (3):3-11.
    [114]桂明玺.添加氧化镍对提高镁砂抗水化性所起的效果.国外耐火材料,2005,30(3):35-38.
    [115]徐慧娟.耐火原料的防水化处理.耐火材料,1997(1):44-47.
    [116]Karo Yukitaka, Nonmiehi Tamashita, Kei Kobayashi. Kinetic study of the hydration ofmagnesium oxide for a chemical heat pump.Applied Thermal Engineeing,1996,16(11):853-862.
    [117]Dimitrios Filippou, Nikolaos Katiforis, Nymphodora Papassiopi,et al.On the kinetics of magnesiahydration in magnesium acetate solution.Journal of Chemical Technology and Biotechnology,1999(74):322-328.
    [118]Birchal V.S.S., Rocha S.D.F.,Ciminelli V.S.T. The effect of magnesite calcinations conditions ofmagnesia hydration.Minerals Engineering,2000,13(14):1629-1633.
    [119]翟学良,杨永社.活性氧化镁水化动力学研究.无盐工业,2000,3(24):16-19.
    [120]《化工百科全书》编辑委员会.化工百科全书(第11卷).北京:化学工业出版社,1996.
    [121]Bratton R J, Brindley G W. Kinetics of vapour phase hydration of magnesium oxide. Transactionsof the Faraday Society,1965,61(3):1017-1025.
    [122]Kasselouris V, Ftikos C. On the hydration of MgO in cement pastes hydrated up to eight years.Cement and Concrete Research,1985,15(5):758-764.
    [123]吴学权.矿渣水泥水化动力学研究.硅酸盐学报,1988,16(5):423-429.
    [124]罗建国,姚吉升,孙建鄂.MgO-MgSO4-H2O胶凝体系水化动力学的研究.硅酸盐学报,1998,26(2):157-163.
    [125]Salomao R, Bittencourt L R M, Pandolfelli V C. A novel approach for magnesia hydrationassessment in refractory castables.Ceramics International,2007(33):803-810.
    [126]Benson S W. The Foundation of Chemical Kinetics. McGraw-Hill,Toronto,Canada,1960.
    [127]Derjaguin B V, Laudao L. Acta Physicochim.USSR.1941(14):633-662.
    [128]Verwey E J W, Overbeek.J.Th.G. Theory of Stability of Lyophobic Collioids. Elsevier.Amsterdam,1948:43-44.
    [129]王瑞刚.陶瓷料浆稳定分散进展.陶瓷学报,1999,17(2):66-70.
    [130]周祖康.胶体化学基础.北京:北京大学出版社,1987.
    [131]张云龙,张宇民,赵晓静等.湿法成形陶瓷料浆研究进展.兵器材料科学与工程,2007,30(1):66-71.
    [132]F.Shojai,A.B.A.Pettersson,T.Mantyla,et al. Electrostatic and electrosteric stabilization ofaqueous silps of 3Y-ZrO2Powder. Eur Ceram Soc.,2000,20(3):277-283.
    [133]周彩楼,马建丽,李云新.紫砂土对电解质的选择性.天津城市建设学院学报,1997,3(2):22-24.
    [134]魏红.粉体接触角方法研究固体的表面性质:(硕士研究生论文).上海:华东师范大学,2005.
    [135]Mario Chiesa, Elio Giamello,Sabine Van Doorslaer.Ammoniated Electrons Stabilized at theSurface of MgO. J. AM. CHEM. SOC.2009(131):12664-12670.
    [136]沈钟,赵振国,王果庭.胶体与表面化学.北京:化学工业出版社,2004.
    [137]张智宏,沈钟,邵长生.表面活性剂对粉体的有机化改性.表面活性剂工业.1999(1):29-33.
    [138]赵哲勋.无机氧化物等电点与吸附阴阳离子性能的研究.天津商学院学报,1992,12(2):19-23.
    [139]梅红,杨鸿剑,张克勤.膨润土的Zeta电位及其电性转变.钻井液和完井液.2010,27(5):1-4,87.
    [140]R.M.Spriggs. Strengthening Mechanisms in Metals and Ceramics. AM. Ceram. Bull.,1967,46 (4):455-459.
    [141]黄辉.颗粒级配技术及其在含能材料中的应用.含能材料,2001,9(4):161-164.
    [142]侯永改,张国锋,李文凤.SiC耐磨材料制备的研究进展.耐火材料,2010,6(44):223-227.
    [143]侯永改,李文凤,郭会师等. SiC耐磨材料颗粒级配的设计与研究.中国陶瓷,2010,46(12):54-57.
    [144]Hong J D, Hon M H, Davis R F. Self diffusion in alpha and beta silicon carbide.CeramurgiaInter, 1979(5):155-161.
    [145]乔龄山.水泥颗粒分布和石膏匹配与用水量及凝结特性的关系(二).水泥,2004(7):1-8.
    [146]胡多闻.混凝土连续级配规律性探讨和间断级配的若干问题.混凝土工艺学汇编.北京:建筑工程出版社,1958.
    [147]肖克.硅溶胶在熔模精密铸造中的应用.铸造技术,2001(1):8-10.
    [148]Brockmeyer W J . Ceramic Foam Filter for Molter Metals. WO8807403,1988.
    [149]房文斌,耿耀宏,叶荣茂.泡沫陶瓷过滤器过滤净化液态金属的机制.铸造,2000,50(8):482-484.
    [150]Stamper J M.The filtration of steel castings with ceramic foam filters,AFS Transactions,1985(93):867-870.
    [151]沈一丁,李小瑞.陶瓷添加剂.北京:化学工业出版社,2004.
    [152]J.Saggio-Woyansky, C.E.Scott. Am.Ceram.Soe.Bull.,1971(11):1674-1682.
    [153]房文斌,耿耀宏,叶荣茂.泡沫陶瓷过滤器的研究进展.铸造,1996,45(9):45-49.
    [154]Paolo Colombo. Mechanical Properties of silicon oxycarbide ceramic foams. Ultrahigh-Temperature Ceramics.2001,84(10):224-551.
    [155]赵德仁,张慰盛.高聚物合成工艺学.北京:化学工业出版社,2003.
    [156]Ravault F E G. Production of porous ceramic materials.USP,4,004,933,1977.
    [157]Hargus P M,Mula J A,Redden M K. Process for forming a ceramic foam. USP,4,866,011,1989.
    [158]江润峰.泡沫陶瓷的制备工艺技术研究:(硕士学位论文).苏州:苏州大学,2007.
    [159]刘岩.金属过滤器用高性能碳化硅泡沫陶瓷的制备.硅酸盐学报.2004,32(2):107-112.
    [160]Anton Schranner, Stephan Knappe.酚醛树脂的固化与分解研究(热分析联用技术和气体分析),NETZSCH-Ger tebau GmbH, Selb (Germany).张红,曾智强编译,耐驰仪器(上海)有限公司.
    [161]熊兆贤.无机材料研究方法.厦门:厦门大学出版社,2001.
    [162]关振铎,张中太.无机材料及物理性能.北京:清华大学出版社,1992.
    [163]林衡,饶平根,吕明.日用陶瓷低温快烧技术的发展现状.佛山陶瓷,2008(9):39-42.
    [164]张淑云.高纯度高密度氧化镁烧结体.无机盐工业,1994(4):19-23.
    [165]饶东生,林彬荫,朱伯铨.降低高纯氧化镁烧结温度的研究.硅酸盐学报,1989(1):75-81.
    [166]李晓东,柏立飞,赵恒和等.氯离子对氧化镁纳米粉体合成及烧结性能的影响研究.功能材料,2009(7):1215-1218.
    [167]Petri N,王元化.氧化镁烧结过程的研究.国外耐火材料,1989,14(2):66-69.
    [168]Sugarman A C, Blachere J R. Control of grain growth in MgO by a fine dispersion of carbon.Journal of The American Ceramic Society-Discussions and Notes ,1974,57(9):414.
    [169]Sugarman A C, Blachere J R. Creep of MgO containing a dispersion of carbon. Journal of theAmerican Ceramic Society,1979,62(7-8):386-389.
    [170]Lee Y B, Park H C,OH K D,et al. Sintering and microstructure development in the systemMgO-TiO2.Journal of Materials Science,1998(33):4321-4325.
    [171]B.L.Mordike,T.Ebert.Magnesium properties-applications-potential.Materials science andEngineering,2001(A302):37-45.
    [172]Wu Guohua, Ding Wenjiang. Non-flux Purification Behavior of AZ91 Magnesium Alloy.Transactions of Nonferrous Metals Society of China,2010,20(11):2037-2045.
    [173]王玮,吴国华,王渠东等.镁合金非熔剂净化研究进展.铸造设备研究,2007(4):42-46.
    [174]卢晨,吴国华,蔡超等.镁合金净化技术研究.金属成形工艺,2002,20 (5):5-7.
    [175]Ni Hongjun, Sun Baode, Jiang Haiyan,et al. Effects of rotating impeller degassing onmicrostructure and mechanical properties of the A356 scraps.Materials Science and Engineering A,2003(352):294-299.
    [176]高洪涛.镁合金熔剂净化行为及理论研究:(博士学位论文).上海:上海交通大学,2006.
    [177]王玮.Mg10Gd3Y0.5Zr合金复合净化行为研究:(博士学位论文).上海:上海交通大学,2006.
    [178]Li J G, Shang B L.An investigation of absorption thermodynamics of molten slag of magnesiumalloys by filters, Foundry Technology,1987(6):42-45.
    [179]Mills T.J, McCollum J.M. Water model filtration efficiency studies of ceramic foam filters, LightMetals,1994:1001-1005.
    [180]克莱德·奥尔.过滤理论与实践.邵启祥译.北京:国防工业出版社,1983.
    [181]杨泽志,奚旦立,毛艳梅.错流过滤中由颗粒沉积模型对滤饼厚度的分析.东华大学学报,2008,34(6):736-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700