系列过渡/稀土金属—有机配合材料的构筑及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能金属有机配合材料的设计合成与性能拓展研究是当前化学化工、材料等领域研究的前沿热点之一,这不仅仅是因为其美学价值,还因其在催化、光、磁、分子识别、吸附、离子交换、气体储存等方面展现出潜在的应用前景。目前,根据各种组装策略已设计合成了大量结构新颖的金属有机功能配合材料,但是对其光催化性能及其与结构构效关系的研究尚少。因此,在课题组原有工作的基础上,本论文工作选定有机侨联配体,用其组装连接过渡/稀土金属离子来设计合成具有特定结构和功能的金属有机配合材料,研究其组装规律、结构特点和理化性能,重点考察其光催化降解性能,总结其中规律,为该类材料深入研究提供有价值的信息。实验研究中利用水热和溶剂热合成法构筑出三个系列共15个金属有机配合材料,它们分别为:零维金属有机配合材料[Zn_2(2,5-pydc)_2(H_2O)_5]_n (1) ;一维链状金属有机配合材料{[Co_(0.5)(bitp)_(0.5)]·ClO_4}_n (6)、[Co_(0.5) (bitb)_(0.5)(H_2O)(HCOO)]_n (7);二维层状金属有机配合材料{[Co(3,5-pydc))(bimb)]·2H2_O}_n (2)、{[Ni(3,5-pydc)) (bimb)]·2H_2O}_n (3)、{[Co(3,4-pydc)) (bimb) (H2_O)_2]·H_2O}_n (4)、{[Cu_(0.5)(bimb)(H_2O)]·H_2O·NO_3}_n (8)、[Pr(H_2O)_2(C_4O_4)_(1.5)]_n (11);具有穿插的配位聚合材料[Cd_2(2,6-pydc)_2(bimh)(H_2O)]_n (5)、{[Co_(0.5) (bimb)_(0.5)]·ClO_4}_n (9)、{[Co_(0.5)(bitb)]·ClO_4}_n (10) ;三维配位聚合材料[Ln(C_4O_4)(ox)_(0.5)(H_2O)_2]_n (Ln =Nd(12) , Sm(13) , Eu(14) , Dy(15)) [2,5-pydc = Pyridine-2,5-dicarboxylic acid , 2,6-pydc = Pyridine-2,6-dicarboxylic acid , 3,5-pydc = Pyridine-3,5-dicarboxylic acid , 3,4-pydc = Pyridine-3,4-dicarboxylic acid ,bimb = 1,4-Bis(imidazol)butane,bitb = 1,4-Bis(triazol)butane, bitp = 1,3-Bis(triazol)propane, bimh = 1,6-Bis(imidazol)hexane, ox= oxalic acid]。通过X-射线单晶衍射、元素分析、红外光谱、热重分析等技术手段对它们进行表征。在此基础上,以罗丹明B为模型污染物,考察了所合成的金属有机配合材料的光催化降解性能,对其催化机理进行了初步的研究,获得了部分有意义的规律性结论。
The design and construction of new functional Coordination Polymer Materials have been one of the frontier and final goals in current crystal enginerring due to their intriguing topological structures and potential applications in many fields, such as catalytic, optical, molecular recognition, gas storage and so on. At present, according to various assembly strategy, large novel metal organic function materials has designed and synthesized, but the relationships of photocatalytic performance and structure are still less. Therefore, in the basis of our original work, we selected organic ligand and transition/rare earth metals to assemble specific structure and functional materials, research its assembly rule, structure features and physical and chemical properties, focuses on its potocatalytic degradation performance, summary of these materials of rule, for further research to provide valuable information. In the thesis, 15 Coordination Polymer Materials based on three series of organic ligands were designed and constructed by hydrothermal or solvthermal methods, 0D coordination polymers [Zn_2(2,5-pydc)_2(H_2O)5]_n (1) , 1D chain-like coordination polymers {[Co_(0.5) (bitp)_(0.5)]·ClO_4}_n (6)、[Co_(0.5) (bitb)_(0.5)(H_2O)(HCOO)]_n (7), interpenetrating coordination polymers [Cd2(2,6-pydc)2(bimh)(H_2O)]_n (5)、{[Co_(0.5) (bimb)_(0.5)]·ClO_4}_n (9)、{[Co_(0.5)(bitb)]·ClO_4}_n (10), 2D sheet-shape coordination polymers {[Co(3,5-pydc)) (bimb)]·2H_2O}_n (2)、{[Ni(3,5-pydc)) (bimb)]·2H_2O}_n (3)、{[Co(3,4-pydc)) (bimb) (H_2O)_2]·H_2O}_n (4)、{[Cu_(0.5)(bimb)(H_2O)]·H_2O·NO_3}_n (7)、[Pr(H_2O)_2(C_4O_4)_(1.5)]_n (11) and 3D coordination polymers [Ln(C_4O_4)(ox)0。5(H_2O)_2]_n (Ln =Nd(12),Sm(13),Eu(14),Dy(15)). [2,5-pydc = Pyridine-2,5-dicarboxylic acid , 2,6-pydc = Pyridine-2,6-dicarboxylic acid , 3,5-pydc = Pyridine-3,5-dicarboxylic acid , 3,4-pydc = Pyridine-3,4-dicarboxylic acid ,bimb = 1,4-Bis(imidazol)butane,bitb = 1,4-Bis(triazol)butane, bitp = 1,3-Bis(triazol)propane, bimh = 1,6-Bis(imidazol)hexane, ox= oxalic acid]. The totals of 15 Coordination Polymer Materials were characterized by elemental analyses, IR spectra, X-ray single crystal diffraction, and thermal gravimetric analyses. Then catalytic properties and mechanism have been researched by using the decomposition reaction of RhB, which is organic oxidant in industry. We gained some important conlusions.
引文
[1]Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M and Yaghi O M. Hydrogen Storage in Microporous Metal-Organic Frameworks[J]. Science, 2003, 300, 1127.
    [2]Chen B, Zhao X, Putkham A, Hong K, Lobkovsky E B, Hurtado E J, Fletcher A J and Thomas K M. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal-Organic Framework Material[J]. J. Am. Chem. Soc., 2008, 130, 6411.
    [3]Pan L, Parker B, Huang X, Olson D H, Lee J Y and Li J. Zn(tbip) (H2tbip= 5-tert-Butyl Isophthalic Acid): A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability[J]. J. Am. Chem. Soc., 2006, 128, 4180.
    [4]Chen B L, Wang L B, Zapata F, Qian G D and Lobkovsky E B. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions[J]. J. Am. Chem. Soc., 2008, 130, 6718.
    [5]Wu C, Hu A, Zhang L and Lin W. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J. Am. Chem. Soc., 2005, 127, 8940.
    [6]Cho S H, Ma B Q, Nguyen S T, Hupp J T and Albrecht-Schmitt T E. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation[J]. Chem. Commun., 2006, 2563.
    [7]Evans O R and Lin W. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J].Acc. Chem. Res., 2002, 35, 511.
    [8]Klontzas E, Tylianakis E and Froudakis G E. Hydrogen Storage in 3D Covalent Organic Frameworks. A Multiscale Theoretical Investigation[J]. J. Phys. Chem. C, 2008, 112, 9095.
    [9]Mavrandonakis A, Tylianakis E, Stubos A K and Froudakis G E. Why Li Doping in MOFs Enhances H2 Storage Capacity? A Multi-scale Theoretical Study[J]. J. Phys. Chem. C, 2008, 112, 7290.
    [10]Shin-ichiro Noro, Susumu Kitagawa, Masahiro Yamashita and Tatsuo Wada. Novel 2-dimensional coordination polymer constructed from a multi-functional metalloligand[J]. CrystEngComm., 2002, 4, 162.
    [11]Biradha K, Sarkar M and Rajput L. Hydrogen generation: catalytic acceleration and control by light[J]. Chem. Commun., 2006, 40, 4169.
    [12]Robin A Y and Fromm K M. Coordination polymer networks with O- and N-donors: What they are, why and how they are made[J]. Coord. Chem. Rev., 2006, 250, 2127.
    [13]Zaworotko M J. Molecules to Crystals, Crystals to Molecules ... and Back Again?[J]. Cryst. Growth Des., 2007, 7, 4.
    [14]Robson R. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers: a personal view[J].Dalton Trans., 2008, 38, 5113.
    [15]Wells A F. in Three dimensional Nets and Polyhedra, Wiley, New York, 1977.
    [16]Wells A F. in Structural Inorganic Chemistry, Oxford University. Press, London, 5th edn, 1984.
    [17]Hanack M, Gul A, Subramanian L R. Synthesis and semiconducting properties of bridged (phthalocyaninato) osmium compounds with bidendate N-donor ligands[J]. Inorg. Chem, 1992, 31, 1542.
    [18]Villarroya B E, Tejel C, Rohmer M. M, et al. Discrete Iridium Pyridonate Chains with Variable Metal Valence: Nature and Energetics of the Ir-Ir Bonding from DFT Calculations[J]. Inorg. Chem. 2005, 44, 6536.
    [19]Wang J, Zhang Y H, Li H X, et al. Construction of Pyridinethiolate-Bridged 2D and 3D Coordination Networks of d10 Metal Halides via Solvothermal in Situ Disulfide Cleavage Reactions[J]. Crystal Growth & Design. 2007, 7, 2352.
    [20]Pascu G I, Hotze A C G, Sanchez C C, et al. Dinuclear Ruthenium(II) Triple-Stranded Helicates: Luminescent Supramolecular Cylinders That Bind and Coil DNA and Exhibit Activity against Cancer Cell Lines[J]. Angew. Chem. Int. Ed. 2007, 46, 4374.
    [21]Pan L, Woodlock E B, Wang X, Lam K C, Rheingold A L. Novel silver(I)-organic coordination polymers: conversion of extended structures in the solid state as driven by argentophilic interactions[J]. Chem. Commun., 2001, 1762.
    [22]Khlobystov A N, Champness N R, Roberts C J, Tendler S J B, Thompson C, SchrTder M. Anion exchange in co-ordination polymers: a solid-state or a solvent-mediated process?[J]. CrystEngComm., 2002, 4, 426.
    [23]Jung O S, Kim Y J, Lee Y A, Park J K, Chae H K. Smart Molecular Helical Springs as Tunable Receptors[J]. J. Am. Chem. Soc., 2000, 122, 9921.
    [24]Farid Nouar, Juergen Eckert, Jarrod F. Eubank, Paul Forster and Mohamed Eddaoudi. Zeolite-likeMetal-Organic Frameworks as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF) Interaction Studies[J]. J. Am. Chem. Soc., 2007, 122, 9921.
    [25]Xu G C, Ding Y J, Okamura T, Huang Y Q, Bai Z S, Hua Q, Liu G X, Sun W Y and Ueyama N. Coordination Polymers with Varied Metal Centers and Flexible Tripodal Ligand 1,3,5-Tris(imidazol-1-ylmethyl)benzene: Synthesis, Structure, and Reversible Anion Exchange Property[J]. Crystal Growth & Design. 2009, 9, 395.
    [26]Chen B, Liang C, Yang J, Contreras D S, Clancy Y L, Lobkovsky E B, Yaghi O M and Dai S. A Microporous Metal-Organic Framework for Gas-Chomatographic Separation of Alkanes[J]. Angew. Chem., Int. Ed., 2006, 45, 1390.
    [27]Hyungphil Chun and Jinwoo Seo. Discrimination of Small Gas Molecules through Adsorption: Reverse Selectivity for Hydrogen in a Flexible Metal-Organic Framework[J]. Inorg. Chem., 2009, 48, 9980.
    [28]Dai L C, Wu X T, Fu Z Y, et al. Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)-Trimesate Coordination Polymers with Different Coordination Architectures[J]. Inorg. Chem., 2002, 41, 1391.
    [29]Kupplera R J, Timmonsb D J, Fang Q R, et al. Potential applications of metal-organic frameworks[J]. Coordination Chemistry Reviews. 2009, 253, 3042.
    [30]Qiu S L, Zhu G S. Molecular engineering for synthesizing novel structures of metal-rganic frameworks with multifunctional properties[J]. Coordination Chemistry Reviews. 2009, 253, 2891.
    [31]Li J R, Kuppler R J and Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38, 1477.
    [32]A. W. C. van den Berg and C. Otero Areán, Materials for hydrogen storage: current research trends and perspectives[J].Chem. Commun., 2008, 668.
    [33]Kaye S S, Dailly A, Yaghi O M, Long J R. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)[J].J. Am. Chem. Soc,. 2007, 129, 14176.
    [34]Kenji Sumida, Matthew R. Hill, Satoshi Horike, Anne Dailly and Jeffrey R. Long. Synthesis and Hydrogen Storage Properties of Be12(OH)12(1,3,5-benzenetribenzoate)4[J]. J. Am. Chem. Soc.,2007, 129, 14178.
    [35]Franc ois-Xavier Coudert, Caroline Mellot-Draznieks, Alain H. Fuchs, and Anne Boutin. Double Structural Transition in Hybrid Material MIL-53 upon Hydrocarbon Adsorption: The Thermodynamics Behind the Scenes[J]. J. Am. Chem. Soc., 2007, 129, 14179.
    [36]Fujita M, Kwon Y J, Washizu S and Ogura K. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine[J]. J. Am. Chem. Soc., 1994, 116, 1151.
    [37]Stein A, Melde B J, Schroden R C.“Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age”[J]. Adv. Mater., 2000, 12, 1403.
    [38]Davidson A.“Modifying the walls of mesoporous silicas prepared by“supramolecular-templating”[J]. Curr.Opin.Colloid.Interface Sci., 2002, 7, 92.
    [39]Horcajada P, Surble S, Serre C, Hong D Y, Seo Y K, Chang J S, Greneche J M, Margiolaki I, Férey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores[J]. Chem. Commun., 2007, 2820.
    [40]Ravon U, Savonnet M, Farrusseng D, A. Simon-Masseron, G. Chaplais,D. Bazer-Bachi,N. Bats, V. Lecocq. 2008, FR 0805536.
    [41]Corma A. State of the art and future challenges of zeolites as catalysts[J]. J. Catal. 2003,216,298.
    [42]Rosi N L, Kim J, Eddaoudi M, Chen B L, O’Keeffe M, Yaghi O M. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units[J]. J. Am. Chem. Soc., 2005, 127, 1504.
    [43]Day P and Underhill A E. Metal-Organic and Organic Molecular Magnets, Spec. Publ. - R. Soc. Chem., ed. Cambridge,UK, 2000, 252.
    [44]Blundell S J. Magnetism in Condensed Matter. Oxford University Press, 2001.
    [45]Liu Y Y, Ma J F, Yang J and Su Z M. Syntheses and Characterization of Six Coordination Polymers of Zinc(II) and Cobalt(II) with 1,3,5-Benzenetricarboxylate Anion and Bis(imidazole) Ligands[J]. Inorg. Chem., 2007, 46, 3027.
    [46]Kumagai H, Akita-Tanaka M, Inoue K and Kurmoo M. Hydrothermal synthesis and characterization of a new 3D-network containing the versatile cis,cis-cyclohexane-1,3,5-tricarboxylate[J]. J. Mater. Chem., 2001, 11, 2146.
    [47]Janiak C. Engineering coordination polymers towards applications[J].Dalton Trans., 2003, 2781.
    [48]Maspoch D, Ruiz-Molina D and Veciana J. Old materials with new tricks: multifunctional open-framework materials[J]. Chem. Soc. Rev., 2007, 36, 770.
    [49]Suh M P, Cheon Y E and Lee E Y. Syntheses and functions of porous metallosupramolecular networks[J]. Coord. Chem. Rev., 2008, 252, 1007.
    [50]Cahill C L, de Lilla D T and Frisch M. Homo- and heterometallic coordination polymers from the f elements[J]. CrystEngComm., 2007, 9, 15.
    [51]Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M and Yaghi O M. Systematic Design of Pore Size and Functionality in Isoreticular Metal-Organic Frameworks and Application in Methane Storage[J]. Science, 2002, 295, 469.
    [52]Yang J, Li G D, Cao J J, Yue Q, Li G H and Chen J S. Structural Variation from 1D to 3D: Effects of Ligands and Solvents on the Construction of Lead(II)-Organic Coordination Polymers[J]. Chem.-Eur. J., 2007, 13, 32481.
    [53]Zang S Q, Su Y, Li Y Z, Ni Z P and Meng Q J. Assemblies of a New Flexible Multicarboxylate Ligand and d10 Metal Centers toward the Construction of Homochiral Helical Coordination Polymers: Structures, Luminescence, and NLO-Active Properties[J]. Inorg. Chem., 2006, 45, 174.
    [54]Chu Q, Liu G X, Huang Y Q, Wang X F and Sun W Y. Syntheses, structures, and optical properties of novel zinc(II) complexes with multicarboxylate and N-donor ligands[J].Dalton Trans., 2007, 4302.
    [55]Serre C, Millange F, Thouvenot C, Gardant N, PelléF and Férey G. Synthesis, characterisation and luminescent properties of a new three-dimensional lanthanide trimesate: M((C6H3)-(CO2)3) (M = Y, Ln) or MIL-78[J]. J. Mater. Chem., 2004, 14, 1540.
    [56]CaoX Y, Li Z J, Zhang J, Qin Y Y, Cheng J K and Yao Y G. Single- or double-stranded helices-sustained molecular bilayer architecture[J]. CrystEngComm., 2008, 10, 1345.
    [57]Chen L, Xu G J, Shao K Z, Zhao Y H, Yang G S, Lan Y Q, Wang X L, Xu H B and Su Z M. pH-dependent self-assembly of divalent metals with a new ligand containing polycarboxylate: syntheses, crystal structures, luminescent and magnetic properties[J]. CrystEngComm., 2010, 12, 2157.
    [58]Zheng B, Bai J F and Zhang Z X. pH-Controlled change of the coordination modes of the highly symmetrical multitopic ligand and metal-oxygen arrays for constructing coordination assemblies[J]. CrystEngComm., 2010, 12, 49.
    [59]Zheng B, Dong H, Bai J F, Li Y Z, Li S H and Scheer M. Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand To Construct Coordination Assemblies: Experimental and Theoretical Studies[J]. J. AM. CHEM. SOC., 2008, 130, 7778.
    [60]Khavasi H R and Bahareh Mir Mohammad Sadegh. Temperature-Dependent Supramolecular Motif in Coordination Compounds[J]. Inorg. Chem. 2010, 49, 11415.
    [61]Tracy L Hennigar, Donald C Mac Quarrie, Pierre Losier, Robin D. Rogers and Michael J. Zaworotko. Supramolecular Isomerism in Coordination Polymers: Conformational Freedom of Ligands in [Co(NO3)2( 1,2-bis(4-pyridyl)ethane)1.5]n[J] .Angew. Chem., Int. Ed., 1997, 9, 36.
    [62]Song Y F, Kitson P J, Long D L, Alexis D C Parenty, Robert J. Thatcher and Leroy Cronin. Supramolecular self-assembly and anion-dependence of copper(II) complexes with cationic dihydro-imidazo phenanthridinium (DIP)-containing ligands[J]. CrystEngComm., 2008,10, 1243.
    [1]Khlobystov A N, Blake A J, Champness N R, Lemenovskii D A, Majouga A G, Zyk N V, Schroder M. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands[J]. Coord. Chem. ReV. 2001, 222, 155.
    [2]Inoue K, Imai H, Ghalsasi P S, Kikuchi K, Ohba M, Okawa H, Yakhmi J V. A Three-Dimensional Ferrimagnet with a High Magnetic Transition Temperature (TC) of 53 K Based on a Chiral Molecule[J]. Angew. Chem., Int. Ed. 2001, 40, 4242.
    [3]Perry J J, McManus G J, Zaworotko M J. Sextuplet phenyl embrace in a metal-organic Kagomélattice[J]. Chem. Commun. 2004, 22, 2534.
    [4]Batten S R, Murray K S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide[J]. Coord. Chem. ReV. 2003, 246, 103.
    [5]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord. Chem. ReV. 2003, 246, 247.
    [6]Masaoka S, Furukawa S, Chang H C, Mizutani T, Kitagawa S. A New Class of Cyclic Hexamer: [Co6L6]24? (H6L=hexaazatriphenylene hexacarboxylic acid)[J]. Angew. Chem., Int. Ed. 2001, 40, 3817.
    [7]Kitaura R, Fujimoto K, Noro S, Kondo M, Kitagawa S. A Pillared-Layer Coordination Polymer Network Displaying Hysteretic Sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol)[J]. Angew. Chem., Int. Ed. 2002, 41, 133.
    [8]Kim J, Chen B, Reineke T M, Li H, Eddaoudi M, Moler D B, O’Keeffe M, Yaghi O M. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures[J]. J. Am. Chem. Soc. 2001, 123, 8239.
    [9]Wang Z Q, Kravtsov V Ch, Zaworotko M J. Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra[J]. Angew. Chem., Int. Ed. 2005, 44, 2877.
    [10]Barthelet K, Marrot J, Riou D, Fe′rey G. A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics[J]. Angew. Chem., Int. Ed. 2002, 41, 281.
    [11]Millange F, Serre C, Fe′rey G. Tandem intermolecular Suzuki coupling/intramolecular vinyl triflatearene coupling[J]. Chem. Commun. 2002, 822.
    [12]Dybtsev D N, Chun H, Kim K. Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew. Chem., Int. Ed. 2004, 43, 5033.
    [13]Wen L L, Dang D B, Duan C Y, Li Y Z, Tian Z F, Meng Q J. 1D Helix, 2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide[J]. Inorg. Chem. 2005, 44, 7161.
    [14]Wen L L, Li Y Z, Lu Z D, Lin J G, Duan C Y, Meng Q J. Syntheses and Structures of Four d10 Metal-Organic Frameworks Assembled with Aromatic Polycarboxylate and bix [bix = 1,4-Bis(imidazol-1-ylmethyl)benzene][J]. Cryst. Growth Des. 2006, 6, 530.
    [15]Zang S Q, Su Y, Li Y Z, Ni Z P, Zhu H Z, Meng Q J. Interweaving of Triple-Helical and Extended Metal-O-Metal Single-Helical Chains with the Same Helix Axis in a 3D Metal-Organic Framework[J]. Inorg. Chem. 2006, 45, 3855.
    [16]Zang S Q, Su Y, Li Y Z, Ni Z P, Meng Q J. Assemblies of a New Flexible Multicarboxylate Ligand and d10 Metal Centers toward the Construction of Homochiral Helical Coordination Polymers: Structures, Luminescence, and NLO-Active Properties[J]. Inorg. Chem. 2006, 45, 174.
    [17]Jian F F, Zhao P S, Xiao H L, Zhang S S. Strueture of Hexakis(imidazole) nikel(II)Nitrate Solvent:[Ni(IM)6(NO3)2.4H2O[J].Chin.J.Chem., 2002, 20,1134.
    [18]Khlobystov A. N., Blake A. J., Champness N. R., et al.Supramolecular design of one-dimensional coordination polymers based on silver(I)complexes of aromatic nitrogen-donor ligands[J].Coord.Chem. Rev., 2001, 222, 155.
    [19]Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J].Chem. Rev., 2001, 101, 1629.
    [20]Zaworotko M. J.Superstructural diversity in two dimensions: crystal engineering of laminated solids[J].Chem. Commun., 2001, 1, 1.
    [21]Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J].Nature, 2003, 423, 705.
    [22]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantio selective separation and catalysis[J].Nature,2000, 404, 982.
    [23]Halder G J, Kepert C J, Moubaraki B, et al. Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material[J].Science, 2002, 298, 1762.
    [24]Takamizawa S, Nakata E, Yokoyama H, et al. Carbon Dioxide Inclusion Phases of a Transformable 1D Coordination Polymer Host[Rh2(O2CPh)4(pyz)]n[J].Angew. Chem. Int. Ed., 2003, 42, 4331.
    [25]Dybtsev D N, Chun H, Yoon S H, et al. Microporous Manganese Formate:A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J].J.Am.Chem.Soc., 2004, 126, 32.
    [26]Kesanli B, Cui Y, Smith M R, et al. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage[J].Angew Chem. Int. Ed., 2005, 44, 72.
    [27]Mondal K C, Sengupta O, Nethaji M, et al. Assembling metals(CoII and Mn II)with pyridylcarboxylates in the presence of azide:synthesis,structural aspects and magnetic behavior of three coordination polymers[J].Dalton Trans, 2008, 6, 767.
    [28]Montney M R, Supkowski R M, LaDuca R L. Five-fold interpenetrated strongly hydrogen bonded rhomboid grid layers constructed from the aggregation of neutral coordination complexes with long pendant aromatic dicarboxylate and organodiimine ligands[J].CrystEngComm, 2008, 1, 111.
    [29]Sun D, Ma S, Ke Y, et al. Synthesis, characterization and photoluminescence of isostructural Mn,Co,and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability[J].Chem. Commun., 2005, 21, 2663.
    [30]Gao H L, Yi L, Ding B, et al. First 3D Pr(III)-Ni(II)-Na(I)Polymer and A 3D Pr(III) Open Network Based on Pyridine-2,4,6-tricarboxylic Acid[J].Inorg. Chem., 2006, 45, 481.
    [31]WangFQ, MuWH, Zheng X J, et al. Hydrothermal Reaction of Cu(II)/Pyrazine-2,3,5-tricarboxylic acid and Characterization of the Copper(II) Complexes[J].Inorg. Chem., 2008, 47, 5225.
    [32]Li W, Jia H P, Ju Z F ,et al. A series of manganese-carboxylate coordination polymers exhibiting diverse magnetic properties[J].Dalton Trans. 2008, 39, 5350.
    [33]Pasán J, Sanchiz J, Lloret F, et al. Crystal engineering of 3-D coordination polymers by pillaring ferromagnetic copper(II)-methylmalonate layers[J].CrystEngComm. 2007, 6, 478.
    [34]Ye JW, Wang J, Zhang J Y, et al. Construction of 2-D lanthanide coordination frameworks: syntheses, structures and luminescent property[J]. CrystEngComm. 2007, 6, 515.
    [35]Tang L, Li D, Fu F, et al. The structure and magnetic properties of a 3D pillared-layer polymer and two helical chains constructed from flexible ligands[J].J.Mol. Struct., 2008, 888, 344.
    [36]Wu S T, Long L S, Huang R B, et al. pH-Dependent Assembly of Supramolecular Architectures from 0D to 2D Networks[J].Cryst. Growth Des., 2007, 7, 1746.
    [37]CaoXY, Zhang J, Li Z J, et al. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, self-threading and(3,6)-connected nets[J].CrystEngComm, 2007, 9, 806.
    [38]Thuéry P. Uranyl Ion Complexation by Citric and Citramalic Acids in the Presence of Diamines[J].Inorg. Chem., 2007, 46, 2307.
    [29]Zhou Y, Yue C, Yuan D, et al. Nickel-Organic Coordination Layers with Different Directional Cavities[J].Eur. J Inorg. Chem., 2006, 23, 4852.
    [40]Carballo R, Covelo B, El Fallah M S, et al. Supramolecular Architectures and Magnetic Behavior ofCoordination Polymers from Copper(II) Carboxylates and 1,2-Bis(4-pyridyl)ethane as a Flexible Bridging Ligand[J].Cryst. Growth Des., 2007, 7, 1069.
    [41]Janiak C. Functional organic analogues of zeolites based on metal-organic coordination frameworks[J].Angew.Chem.,Int.Ed.Engl.1997, 36, 1431.
    [42]Batten S R, Robson R. Interpenetrating nets: ordered, periodic entanglement [J].Angew. Chem., Int. Ed., 1998, 37, 1460.
    [43]Hargman P L, Hargman D, Zubieta J. Organic-inorganic hybrid materials: from“simple”coordination polymers to organodiamine-templated molybdenum oxides[J].Angew.Chem.,Int.Ed.,1999, 38, 2638.
    [44]Moulton B, Zaworotko M. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids[J]. Chem. Rev., 2001, 101, 1629.
    [45]Eddaoudi M., Moler D. B., Li H., Chen B., Reineke T. M., O’Keeffe M., Yaghi O. M. Modular chemistry:secondary building units as a basis for the design of highly porous and robust metalorganic carboxylate frameworks[J]. Acc.Chem.Res., 2001, 34,319.
    [46]Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J].Nature,2003, 423, 705,.
    [47]Yaghi O M, O’Keeffe M, Kanatzidis M. Design of solids from molecular building blocks: golden opportunities for solid state chemistry[J]. J.Solid State Chem., 2000, 152, 1.
    [1] Sheldrick G M, SHELXS, University of G?ttingen, Germany, 1997.
    [2] Sheldrick G M, SHELXL, Program for the Refinement of Crystal Structures, University of G?ttingen, Germany, 1997.
    [3]Li X, Cao R, Sun Y Q, Shi Q, Yuan DQ, Sun D F, et.al. Syntheses and Characterizations of Coordination Polymers Constructed from 4-Pyridylacetic Acid[J]. Cryst.Growth Des. 2004, 4, 255.
    [4]Jung E J, Lee U K, Koo B K. Hydrothermal synthesis and crystal structure of [Co(2,5-pydc)(H2O)2]n?H2O (2,5-pydc = 2,5-pyridinedicarboxylate)[J]. Inor. Chim. Acta. 2008, 361, 2962.
    [5]Sun L P, Niu S Y, Jin J, Yang G D and Ye L. Synthesis, Structure and Surface Photovoltage of a Series of NiII Coordination Polymers[J]. Eur. J. Inorg. Chem. 2006, 5130, 5130.
    [6]Wen L L, Lu Z D, Lin J G, Tian Z F, Zhu H Z and Meng Q J. Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons[J]. Cryst.Growth Des.2007.7, 93.
    [7]Gong Y, Hu C W, Li H, et al. Two novel coordination polymers with different molecular tectonicsbased on obalt-succinate-organoamine systems [J].Inorg.Chem Commun., 2006, 9, 273.
    [8]Zhang G Q, Yang G Q, Ma J S. Versatile Framework Solids Constructed from Divalent Transition Metals and Citric Acid:Syntheses,Crystal Structures,and Thermal Behaviors[J].Cryst. Growth Des., 2006, 6, 375.
    [9]Liu F C, Zeng Y F, Jiao J,et al. First Metal Azide Complex with Isonicotinate as a Bridging LigandShowing New Net Topology: Hydrothermal Synthesis, Structure and Magnetic Properties[J].Inorg.Chem, 2006, 45, 2776.
    [10]Ying S M, Mao J G. Introducing a Second Ligand: New Route to Luminescent Lanthanide Polyphosphonates[J]. Cryst. Growth. Des. 2006, 6, 964.
    [11]Hong X L, Li Y Z, Hu H M, et al. Synthesis, Structure, Luminescence and Water Induced Reversible Crystal-to-Amorphous Transformation Properties of Lanthanide(III) Benzene-1,4-dioxy-lacetates with a Three-Dimensional Framework[J]. Cryst. Growth. Des. 2006, 6, 1221.
    [12]Xia J, Zhao B, Wang H S, et al. Two- and Three-Dimensional Lanthanide Complexes: Synthesis, Crystal Structures and Properties[J]. Inorg. Chem. 2007, 46, 3450.
    [13]Mahata P. and Natarajan S. A New Series of Three-Dimensional Metal-Organic Framework, [M2(H2O)][C5N1H3(COO)2 ]3·2H2O, M = La, Pr, and Nd: Synthesis, Structure, and Properties[J]. Inorg. Chem. 2007, 46, 1250.
    [1]Lo CC,Hung CH,Yuan CS,Wu J E. Photoreduetion of carbon dioxide with H2 and H2O Over TiO2 and ZrO2in a circulated Photocatalytie reaetor[J]. Sola rEnergy Materials and Solar Cells, 2007,91, 1765.
    [2]Wu Y,Yao W Q,Zhu Y F. Interfaeial Structure of Ti2O5/Si Film and Photoaetivity[J].Aeta Physieo-Chimiea Siniea,2007,23, 625.
    [3]Kudo A,Kato H,Nakagawa S. Water Splitting into H2 and O2: on new Sr2M2O7:(M=Nb and Ta) Photoeatalysts with layered perovskite structures: Faetors affeeting the photocatalytic activity[J]. J.Phy.Chem.B.2000,l04, 571.
    [4]Fu H B,Pan C S,Zhang L W,Zhu Y E. Synthesis,characterization and Photocatalytic Properties of nanosized Bi2WO6,PbWO4 and ZnWO4 catalysts[J]. Materials Res. Bull.,2007, 42, 696.
    [5]Hou L R,Yuan C Z,Peng Y. Synthesis and Photocatalytic Property of SnO2/TiO2 nanotobes composites[J]. Joumal of Hazardous Materials,2007, 139, 310.
    [6]Jang J,Kim H G,Borse P H,Lee J.Simultaneous hydrogen Produetion and decomposition of H2S dissolved in alkaline water overCdS2- TiO2 composite Photocatalysts under visible light irradiation[J].Iniemational Journal of Hydrogen Energy,2007,32, 4786.
    [7]Jang J,Ham D J,Lakshlninarasimhan N,etal.. Role of Platinum-like tungsten carbide as cocatalyst of CdS Photocatalyst for Hydrogen Production under visible light irradiation[J].Appl.Cata. A:General,2008, 346, 149.
    [8]Kanade K G,Baeg J O,Mulik U R,etal. Nano-CdS by Polymer-inorganie solid-state reaetion Visible light Pristine Photocatalyst for hydrogen generation[J].Mater.Res.Bull. 2006, 41, 2219.
    [9]Wang D E, Deng K J, Lv K L, Wang C G, Wen L L and Li D F. Structures, photoluminescence and photocatalytic properties of three new Metal-organic frameworks based on non-rigid long bridges[J]. CrystEngComm, 2009, 11, 1442.
    [10]Mahata P, Madras G and Natarajan S. New photocatalysts based on mixed-metal pyridine dicarboxylates[J]. Catalysis Letters, 2007, 115, 1.
    [11] Ma, W., Li, J., Tao, X., He, J., Xu,Y., Yu, J. C. Zhao, J. Efficient Degradation of Organic Pollutants by Using Dioxygen Activated by Resin-Exchanged Iron(II) Bipyridine under Visible Irradiation. Angew. Chem. Int. Ed. 2003, 42, 1029.
    [12] Hu, M.; Xu, Y.; Zhao, J. Efficient Photosensitized Degradation of 4-Chlorophenolover Immobilized Aluminum Tetrasulfophthalocyanine in the Presence of Hydrogen Peroxide. Langmuir.2004, 20, 6302.
    [13]王丹军,岳永德,汤锋,等.氯苯嘧啶醇在有机溶剂中的光化学降解研究[ J ].安徽农业大学学报, 2007, 34, 40 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700