钴铝复合金属氧化物包覆锂离子电池正极材料的制备和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有工作电压高、循环性能好、比能量大、环境友好等优点,已经成为21世纪绿色电池的首选。锂离子电池的关键材料之一是正极材料。尖晶石LiMn2O4原材料丰富、低毒性、低成本及容易制备而被视为最有应用前途的锂离子电池正极材料之一。但是LiMn2O4循环稳定性尤其高温循环稳定性差,制约了其发展,其容量衰减的主要原因是锰的溶解、Jahn-Teller效应以及HF对正极材料的腐蚀。目前商品化锂离子电池的正极材料主要是具有α-NaFeO2型层状结构的LiCoO2,但LiCoO2价格昂贵,实际比容量偏低,仅为140 mAh·g-1左右,仅为其理论比容量274mAh·g-1的50%,且抗过充性能差,这主要是由于在充电过程中随锂离子的脱出,LiCoO2晶体结构发生不可逆相变所致。针对这些问题,本论文采用表面包覆改性的方法提高LiMn2O4的高温循环性能、LiCoO2的抗过充电性能和循环稳定性。具体研究内容如下:
     (1)采用钴铝水滑石(CoAl-LDH)为包覆材料前驱体制备CoAl-LDH包覆尖晶石LiMn2O4,再焙烧得到钴铝复合金属氧化物(CoAl-MMO)包覆尖晶石LiMn2O4正极材料,并分别对恒pH值法、成核晶化隔离法和复合共沉淀法(恒pH值法+成核晶化隔离法)合成LDH包覆LiMn2O4进行比较,考察前驱体合成方法对CoAl-MMO包覆LiMn2O4材料结构、形貌和电化学循环性能的影响,发现复合共沉淀法在LiMn2O4表面包覆效果最好,制备出来的CoAl-MMO包覆LiMn2O4电化学循环性能最佳。采用复合共沉淀法合成不同CoAl-MMO包覆量的LiMn2O4正极材料,并考察了CoAl-MMO包覆量对LiMn2O4材料结构、形貌和电化学性能的影响。
     (2)采用共沉淀法制备CoAl-LDH包覆在层状LiCoO2表面,再焙烧得到CoAl-MMO包覆LiCoO2正极材料。CoAl-MMO包覆稳定了LiCoO2的晶体结构,改善了材料的抗过充性能和循环稳定性。以中间相碳微球(MCMB)为负极,以CoAl-MMO包覆LiCoO2为正极组装成AA电池。在充放电电压范围分别为2.75-4.2V和2.75-4.4V,1C充放电倍率条件下,CoAl-MMO包覆的LiCoO2材料的首次放电比容量分别为141 mAh·g-1和160 mAh·g-1,400次循环的容量保持率分别为93.8%和91.3%,分别优于LiCoO2的87.5%和69.2%的容量保持率。
Lithium ion battery is the primary choice of the green battery in the 21th century due to its advantages such as high operating voltage, brilliant cycle stability, high theoretical capacity and environmental friendly. Spinel lithium manganese oxide (LiMn2O4) with the merits of abundant manganese resources, low cost, low toxicity and ease of preparation, is a most promising candidate material for lithium ion battery. However, its cyclic stability is poor in nonaqueous electrolytes, especially at a higher temperature above 55℃. The capacity fading is mainly due to dissolution of Mn2+, Jahn-Teller effect and corrosion of HF. At present, layered LiCoO2 is the major cathode material of commercial lithium ion battery. However, the main problems of LiCoO2 cathode material are its expensive cost, low practical capacity, poor overcharge tolerance. The main reason is that the crystal structure of LiCoO2 materials undergoes irreversible phase transformation as the lithium ions deintercalate during the charging process. In order to improve cycling property of LiMn2O4 at high temperature and overcharge tolerance of LiCoO2, this paper mainly involves two aspects with surface treatment:
     (1) LiMn2O4 coated with Co-Al layered double hydroxide (CoAl-LDH) precursor is calcined to obtain Co-Al mixed metal oxide (CoAl-MMO) coated LiMn2O4. The CoAl-LDH coated LiMn2O4 precursor is prepared by constant value of pH titrate method, the separate nucleation and aging steps (SNAS) method and the complex coprecipitation method(constant value of pH titrate method and the SNAS method). The effects of different mehods of preparation of CoAl-LDH coated LiMn2O4 precursor on the structure, morphology and electrochemical performance of CoAl-MMO coated LiMn2O4 have been studied, the complex coprecipitation method is best. Then we study the effect of coating amounts on the structure, morphology and electrochemical cycling performance of CoAl-MMO coated LiMn2O4 prepared by the complex coprecipitation method.
     (2) LiCoO2 coated with CoAl-LDH precursor prepared by coprecipitation method is calcined to obtain CoAl-MMO coated LiCo02. The CoAl-MMO coating stabilizes the crystal structure, and improves the overcharge tolerance and cycling performance of LiCoO2. When the voltage range is 2.75-4.2 V and 2.75-4.4 V, and the discharge rate is 1C, the initial discharge capacity of CoAl-MMO (1.0wt.%Co,0.17wt.%Al) coated LiCoO2 is 141 mAh-g-1 and 160 mAh·g-1, and the 400th capacity retention is 93.8%and 91.3%, which is better than 87.5% and 69.2% of pristine LiCoO2 respectively.
引文
[1]Alcantara R, Lavela P, Tirado J L, et. Recent advances in the study layered lithium transition metal oxides and their application as intercalation electrodes[J]. Journal of Solid State Electrochemistry,1999,3:121-134
    [2]Nishi Y. Lithium ion secondary:past 10 years and the future[J]. Journal of Powder Sources, 2001,100:101-106
    [3]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002,1-294
    [4]Armand M. In Materials for Advanced Batteries[M]. New York:Plenum Press,1980
    [5]Auborn J J, Barberio Y L. Lithium intercalation cells without metallic lithium MO2/LiCoO2 and WO2/LiCoO2[J]. Journal of the Electrochemical Society,1987,134(3):638-641
    [6]Dahn J R, Sacken U V, Juzkow M W. Rechargeable LiNiO2/carbon cells[J]. Journal of the Electrochemical Society,1991,138:2207-2211
    [7]Guyomard D, Tarascon J M. The carbon/Li1+xMn2O4 system[J]. Solid State Ionics,1994,69: 222-237
    [8]黄振谦,张昭.锂离子电池(RCB)进展[J].电池,1995,25:143-145
    [9]任学佑.、锂离子电池及其发展前景[J].电池,1996,26:38-40
    [10]汪继强.锂离子蓄电池技术进展及市场前景[J].电源技术,1996,20:147-151
    [11]任学佑.锂离子电池的新进展[J].电池,1997,27:188-191
    [12]张胜利,余仲宝,韩周祥.锂离子电池的研究与发展[J].电池工业,1999,4(1):26-28
    [13]陈洪超,李相东.锂离子电池原理、研究现状与发展前景[J].军事通讯技术,2000,22(1):55-58
    [14]钟俊辉.锂离子电池及其材料[J].电池,1996,26:91-95
    [15]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008.8-9
    [16]Aurbach D, Ein-Eli Y, Chusid O. The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable "Rocking-chair" type batteries [J]. Journal of the Electrochemical Society,1994,141:603-611
    [17]吴宇平,戴晓兵,马军旗.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.3-10
    [18]张晓雨,尖晶石型锰酸锂正极材料简介[J].北京大学学报(自然科学版),2006:98
    [19]Yamane R, Inoue T. A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80 ℃ and the suppressing substances of its fading[J]. Journal of powder Sources,2001,99:60-65
    [20]Manthiram A, Kim J.Low Temperature Synthesis of Insertion Oxides for Lithium Batteries[J]. Chemistry of Materials,1998,10:2895-2909
    [21]周振平,赵世玺,柳震,等.正极材料LixMn2O4容量在循环过程中的损失机理研究[J].材料导报,2001,15:30-33
    [22]徐融冰,鲁道荣.LiMn2O4的Jahn-Teller效应研究[J].电池工业,2006,11:388-400
    [23]Doron A. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of powder Sources,2000,89:206-218
    [24]唐致远,阮艳莉.锂离子电池容量衰减机理的研究进展[J].化学进展,2005,17:1-7
    [25]伊廷锋,霍慧彬,陈辉,等.锂离子蓄电池LiMn2O4正极材料容量衰减机理分析[J].电源技术,2006,1 30:599-603
    [26]李群,卢世刚,邱向东.阴极材料正尖晶石LiMn2O4制备方法研究现状[J].电源技术,1999,23(5):289
    [27]Xia Y Y, Yoshio M. Studies on an Li-Mn-O spinet system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries. Part Ⅱ. Optimum spinel from γ-MnOOH[J]. Journal of Power Sources,1995,57:125-131
    [28]洪良仕,李运姣,习小明.热处理制度对机械化学法合成LiMn2O4的影响[J].电池,2005,35(6):450-452
    [29]严宏伟.一种合成锂离子电池中正极材料的方法中国专利,CN1143267A.1997-02-19
    [30]康慨,戴受惠,万玉华.固相配位化学反应法合成LiMn2O4的研究[J].功能材料,2000,31(3):283-286
    [31]Hwang B J, Santhanam R. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method[J]. Journal of Power Source,2001,97-98:443-446
    [32]Hwang B J, Santhanam R. Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol-gel method at low temperature[J]. Journal of Power Source,2001, 101:86-89
    [33]Lee Y, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics,1998, 109:285-294
    [34]Naghash A R, Lee J Y. Preparation of spinel lithium manganese oxide by aqueous co-precipitation [J]. Journal of Power Sources,2000,85:284-293
    [35]Raja M W, Mahanty S, Basu R N, Multi-faceted highly crystalline LiMn2O4 and LiNio.5Mn1.5O4 cathodes synthesized by a novel carbon exo-templating method[J]. Solid State Ionics,2009, 180:1261-1266
    [36]Wu H M, Tu J P, Yuan Y F, One-step synthesis LiMn2O4 cathode by a hydrothermal method[J]. Journal of Power Sources,2006,161:1260-1263
    [37]Jiang C H, Dou S X, Liu HK. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction[J]. Journal of Power Sources,2007,172:410-415
    [38]Ye S H, Bo J K, Li C Z. Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method [J]. Electrochimica Acta,2010,55:2972-2977
    [39]Pechini M P. To Sprague Electric Co. method of preparing lead and alkaline earth titanates and niobares and coating method using the same to form a capactcitor[P]. U.S.A Pat:330697,1997
    [40]Takemylant S, Chung H T. Preparation and characterization of LiMn2O4 powders by the emulsion drying method[J]. Journal of Power Sources,1999,84:32
    [41]Wolverton C, Alex Zunger. First-principles theory of cation and intercalation ordering in LixCoO2[J]. Journal of Power Sources,1999,81-82:680-684
    [42]李运娇,王晨生,孙召明.锂离子电池正极材料LiCoO2和LiNiO2的研究进展[J].稀有金属与硬质合金,2002,30(1):38-41
    [43]吴宇平,戴晓兵,马军旗.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.132-134
    [44]Julien C, Gastro-Garcia S. Lithiated cobaltates for lithium-ion batteries:Structure, morphology and electrochemistry of oxides grown by solid-state reaction, wet chemistry and film deposition [J]. Journal of Power Sources,2001,97-98:290-293
    [45]周健,戴秀珍.B元素对正极材料LiCoO2结构及性能的影响[J].安徽大学学报(自然科学版),2007,31:67-70
    [46]Okubo M, Hosono E, Kim J, et. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. Journal of the American Chemical Society,2007,129:7444-7452
    [47]Kim H J, Jeong Y U, Lee J H, et. Crystal structures, electrical conductivities and electrochemical properties of LiCo1-xMgxO2 (0≤x≤0.11)[J]. Journal of Power Sources,2006, 159:233-236
    [48]Myung S T, Kumagai N, Komaba S, et. Effect of Al doping on the microstructure of LiCoO2 cathode [J]. Solid State Ionics,2001,139:47-56
    [49]苏力宏,锂离子电池正极材料粉体合成和制备研究[D].西安:西安工业大学,2005
    [50]Yazami R, N. Lebrun, M. Bonneau. High performance LiCoO2 positive electrode material[J]. Journal of Power Sources,1995,54:389-392
    [51]Tan K S, Reddy M V, Subba Rao G V, et. High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries[J]. Journal of Power Sources,2005,147:241-248
    [52]Kim M K, Park K S, Son J T, et. The electrochemical properties of thin-film LiCoO2 cathode prepared by sol-gel process[J]. Solid State Ionics,2002,152-153:267-272
    [53]Amatucci G G, Tarascon J M, Larcher D, et. Synthesis of electrochemically active LiCoO2 and LiNiO2 at 100 ℃ [J]. Solid State Ionics,1996,84:169-180
    [54]于永丽,翟秀静,符岩,等.微波法合成锂离子材料LiCoO2的研究[J].分子科学学报,2004,20(3):7-10
    [55]Santiago E I, Andrade A V C, Paiva-Santos C O, et. Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis[J]. Solid State Ionics,2003,158:91-102
    [56]李阳兴,姜长印,万春荣.喷雾干燥法制备LiCoO2超细粉[J].无机材料学报,1999,14(4):657-671
    [57]Lala S M, Montoro L A, Donato E D, et. Synthesis of LiCoO2 by metallo-organic decomposition-MOD[J]. Journal of Power Sources,2003,114:127-132
    [58]Liu J, Wen Z Y, Gu Z H, et. Synthesis by an EDTA-based soft-chemistry route and characterization of nanosized LiCoO2 cathode materials[J]. Journal of the Electrochemical Socity,2002,149 (11):A1405-A 1408
    [59]Thackery M M. Structural considerations of layered and spinel lithium oxides for lithium ion battery [J]. Journal of the Electrochemical Society,1995,142:2558-2560
    [60]Wang G X, Zhong S, Bradhurst D H, et. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries[J]. Journal of Power Sources 1998,76:141-146
    [61]Yang H X, Dong Q F, Hu X H, et. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH·H2O[J]. Journal of Power Sources,1999,79:256-261
    [62]Myoung Y S, Ryong L. Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery [J]. Journal of Power Sources,2002,111:97-103
    [63]刘景,温兆银,顾中华.LiNi0.8Co0.2O2的络合法合成及其电化学性能研究[J].电化学,2006,9(1):76-81
    [64]蔡振平,刘人敏,吴国良.锂离子电池正极材料LiNi0.5Co0.5O2的制备及性能[J].电池,2002,32(S1):58-61
    [65]许惠,钟辉.流变相-喷雾干燥法合成LiCo0.3Ni0.7O2正极材料的研究[J].无机化学学报,2004,19(3):497-501
    [66]Nakahara K, Iwasa S, Satoh M, et. Rechargeable batteries with organic radical cathodes[J]. Chemical Physics Letters,2002,359:351-354
    [67]Wan Y Q, Wang J L, Yang J, et. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4-4H2O[J]. Advanced Functional Materials,2006,16:2135-2140
    [68]Takahashi M, Tobishima S, Takei K. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics,2002,148 (3-4):283-289
    [69]马利华,杨胜杰,张胜利.锂离子电池正极材料LiFePO4/C的研究进展[J].郑州轻工业学院学报(自然科学版),2009,24:9-12
    [70]Chen Z Y, Zhu H L, Ji S. Influence of carbon sources on electrochemical performance of LiFePO4/C composites[J]. Solid State Ionics,2008,179:1810-1815
    [71]Liang G C, Wang L, Ou X Q. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution[J]. Journal of Power Sources,2008, 184:538-542
    [72]Barker J, Saidi M Y, Swoyer J L. Electrochemical insertion properties of the novel lithium vanadium fluorophosphates[J]. Journal of the Electrochemical Society,2003,150(10): A1394-A1398
    [73]Franger S, Cras F L, Bourbon C, et. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J]. Journal of Power Sources,2003, 119-121:252-257
    [74]Scaccia S, Carewska M, Wisniewski P, Prosini P P. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries[J]. Materials Research Bulletin, 2003,38:1155-1163
    [75]Kobayashi H, Arachi Y, Emura S, et. Investigation on lithium de-intercalation mechanism for Li1-yNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources,2005,146(1-2):640-644
    [76]Yabuuchi N, Ohzuk T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources,2003,119-121:171-174
    [77]Yabuuchi N, Ohzuku T. Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2 in lithium batteries at elevated temperatures[J]. Journal of Power Sources,2005,146(1-2):636-639
    [78]Tran N, Croguennec L, Jordy C, Biensan P, Delmas C. Influence of the synthesis route on the electrochemical properties of LiNi0.425Mn0.425Co0.15O2[J]. Solid State Ionics,2005,176: 1539-1547
    [79]Cho T H, Park S M, Yoshio M, Hirai T, Hideshima Y. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method[J]. Journal of Power Sources,2005,142(1-2):306-312
    [80]Cao H, Zhang Y, Zhang J, Xia B. Synthesis and electrochemical characteristics of layered LiNio.6Coo.2Mno.2O2 cathode material for lithium ion batteries[J]. Solid State Ionics,2005,176: 1207-1211
    [81]Hwang B J, Tsa Y W, Carlier D, et. Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2[J]. Chemistry of Materials,2003,15(19):3676-3682
    [82]Zhou F, Cococcioni M, Kang K, et. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications,2004,6:1144-1148
    [83]Dominko R, Bele M, Gabersccek, et. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochemistry Communications, 2006,8:217-222
    [84]Nishimura S I, Hayase S, Kanno R. Structure of Li2FeSi04[J]. Journal of the American Chemical Society,2008,130:13212-13213
    [85]Woosuk C, Wonkyung R, Junichi S. Synthesis and electrochemical properties of nonstoichiometric LiAlxMn2-xO4_δ as cathode materials for rechargeable lithium ion battery[J]. Journal of Solid State Chemistry,2006,179:3534-3540
    [86]Amarilla J M, Rojas R M, Pico F, Nanosized LiMYMn2-YO4 (M=Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method Structural characterization and electrochemical properties[J]. Journal of powder Sources,2007,174:1212-1217
    [87]Son J T, Kim H G New investigation of fluorine-substituted spinel LiMn2O4-xFx by using sol-gel process[J]. Journal of powder Sources,2005,147:220-226
    [88]Ye S H, Bo J K, Li C Z, et. Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method[J]. Electrochimica Acta,2010, 55:2972-2977
    [89]Yi T F, Hu X G, Wang D L. Effects of Al, F dual substitutions on the structure and electrochemical properties of lithium manganese oxide[J]. Journal of University of Science and Technology Beijing,2008,15:182-186
    [90]Amatucci G G Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance[J]. Solid State Ionics,1997,104:13-25
    [91]吴宇平,戴晓兵,马军旗,程预江.锂离子电池——应用与实践(第一版)[M].北京:化学工业出版社,2004,328-329
    [92]Tu J, Zhao X B, Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method[J]. Electrochimica Acta,2006,51:6456-6462
    [93]Liu H W, Cheng C X. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries[J]. Materials Chemistry and Physics,2007,101:276-279
    [94]Liu D Q, He Z Z. Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries[J]. Materials Letters,2007,61:4703-4706
    [95]Sahan H, Goktepe H. The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material[J]. Solid State Ionics,2008,178:1837-1842
    [96]Han J M, Myung S T, Sun Y K. Improved Electrochemical Cycling Behavior of ZnO-Coated Li1.05Alo.1Mn1.85O3.95Fo.05 Spinel at 55 ℃ [J]. Journal of The Electrochemical Society,2006, 153:A1290-A1295
    [97]Amatucci G G Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries[J]. Journal of Powder Sources,1997,16:11-25
    [98]Park S C, Kim Y M, Han S C, et. The elevated temperature performance of LiMn2O4 coated with LiNi1-xCoxO2(X=0.2 and 1)[J]. Journal of Power Sources,2002,107:42-47
    [99]Jiao F, Bao J L, Hill A. Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries[J].Angewandte Chemie International Editon, 2008,47:9711-9716
    [100]Luo J Y, Wang Y G, Xiong H M. Ordered Mesoporous Spinel LiMn2O4 by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries[J]. Chemitry of Materials,2007, 19:4791-4795
    [101]林晓静,李淑华,何泽珍,等.锂离子电池正极材料层状氧化锰锂的研究进展[J].化工科技,2003,11(6):43-48
    [102]Kim H S, Ko T K, Na B K, Electrochemical properties of LiMxCo1-xO2 [M=Mg, Zr] prepared by sol-gel process[J]. Journal of Power Sources,2004,138:232-239
    [103]廖刚,胡国荣,彭忠东,等.正极材料锂钴氧化物掺杂研究进展[J].电池,2004,34:141-143
    [104]Julien C, Nazri G A, Rougier A. Electrochemical performances of layered LiM 1-yMyO2(M=Ni, Co; M'=Mg, Al, B) oxides in lithium batteries[J]. Solid State Ionics,2000,135:121-130
    [105]Yang Z X, Yang W S, Tang Z F, Pillared layered Li1-2xCaxCoO2 cathode materials obtained by cationic exchange under hydrothermal conditions[J]. Journal of Power Sources,2008, 184:557-561
    [106]Liu L J, Wang Z X, Li H, et. Al2O3-coated LiCoO2 as cathode material for lithium ion batteries[J]. Solid State Ionics,2002,152-153:341-346
    [107]Wang Z X, Liu L J, Chen L Q, et. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries [J]. Solid State Ionics,2002, 148:335-342
    [108]Chen J M, Cho Y D, Hsiao C L, Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells[J]. Journal of Power Sources,2009,189:279-287
    [109]Fey G T, Wang Z F, Lu C Z. MgAl2O4 spinel-coated LiCoO2 as long-cycling cathode materials[J]. Journal of Power Sources,2005,146:245-249.
    [110]Cao H, Xia B J, Zhang Y, et. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries[J]. Solid State Ionics,2005,176:911-914
    [111]Cho J, Jung H, Park Y. Electrochemical properties and thermal stability of LiNi1-xCoxO2 cathode materials[J]. Journal of the Electrochemical Society,2000,147(1):15-20
    [112]Xiang J F, Chang C X, Yuan L J. A simple and effective strategy to synthesize Al2O3-coated LiNio.8Coo.2O2 cathode materials for lithium ion battery[J]. Electrochemistry Communications, 2008,10:1360-1363
    [113]Lee S M, Oh S H, Ahn J P, et. Electrochemical properties of ZrO2-coated LiNio.8Coo.2O2 cathode materials[J]. Journal of Power Sources,2006,159:1334-1339
    [114]Ha H W, Jeong K H, Yun N J, et. Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating[J]. Electrochimica Acta,2005,50:3764-3769
    [115]Hu G R, Deng X R, Peng Z D. Comparison of AlPO4-and Co3(PO4)2-coated LiNio.8Coo.202 cathode materials for Li-ion battery[J]. Electrochimica Acta,2008,53:2567-2573
    [116]Bewlay S L, Konstantinov K. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters,2004,58:1788-1791
    [117]Croce F, Epifanio A D. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-States,2002,5(3):A47
    [118]Ni J F, Zhou H H, Chen J T, et. LiFePO4 doped with ions prepared by co-precipitation method[J]. Materials Letters,2005,59:2361-2365
    [119]杨威,曹传堂.共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究[J].材料工程,2005,6:36-39
    [120]杨占旭.高安全性锂离子电池正极材料的制备及性能研究[D].北京:北京化工大学,2009
    [121]Chen, J M, Cho Y D, Hsiao C L, et. Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells[J]. Journal of Power Sources,2009,189:279-287
    [122]George T K, KaoH M, Muralidharan P, et. Electrochemical and solid-state NMR studies on LiCoO2 coated with A12O3 derived from carboxylate-alumoxane[J]. Journal of Power Sources, 2006,163:135-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700