锂离子电池正极材料LiMn_2O_4的合成及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池具有高的体积能量密度和质量能量密度,且工作电压高,无记忆效应,循环寿命长,已成为21世纪电池的主体。尖晶石LiMn2O4作为锂离子电池正极材料,具有廉价、毒性低、环境友好以及Mn资源丰富等优势而受到广泛关注。本文概述了锂离子电池的工作原理、结构优势和正极材料的的研究进展,介绍了尖晶石锰酸锂的研究现状。研究了合成LiMn2O4的两种新方法。针对其循环过程中发生的容量衰减问题,分别采用了Fe元素掺杂、改进合成方法和表面包覆,对尖晶石LiMn2O4正极材料进行了改性研究。
     通过EDTA溶胶凝胶法制备了正极材料LiMn2O4和LiFexMn2-xO4 (x=0, 0.05)的超细粉体,采用热分析测试,X射线衍射等表征手段和伏安循环等电化学性能测试确定了锰酸锂的较优合成工艺,研究表明采用600 oC合成的尖晶石LiMn2O4材料具有很高的质量比容量(0.5 C,120.2 mAh·g-1),50次循环后容量保持为初始容量的70%。通过Fe部分掺杂后,比容量虽然稍有下降为113.6 mAh·g-1,但材料的循环性能得到了很大提高,50次循环后的比容量仍有首次容量的83%。
     以廉价的Li2CO3和MnO2为原料,以毒性很低的有机溶剂丙酮为液相分散剂,通过液相活化和机械活化,采用两步煅烧使反应物更均匀混合,制得了结晶度高的,纯相的尖晶石锰酸锂正极材料。经过电化学性能表征得出合成的材料不仅具有高的质量比容量(0.2 C,3.3 - 4.4 V电压范围内,初始放电容量为117 mAh·g-1)和循环稳定性(40次循环后容量仍保持为首次容量的94%),同时材料的倍率性能相比传统固相法也有极大提高。改进固相法合成尖晶石锰酸锂因其合成工艺简单易操作,所用合成原材料价格低廉,同时制得的LiMn2O4表现出了优秀的电化学性能,所以此方法具备商业化应用的很大潜力。
     研究了通过液相沉淀法在LiMn2O4表面包覆Al2O3后,对材料高温电化学性能的影响。采用缓冲溶液液相沉淀法,Al(OH)3能非均匀的成核,从而使得LiMn2O4表面形成的Al2O3层很薄,因此不仅没有对Li+的脱嵌造成阻碍,同时有效的保护了LiMn2O4表面不受电解液的侵蚀,减少了Mn的溶解,从而提高的材料的高温循环稳定性。
Lithium ion batteries have become one of the most important batteries in 21th century because of its high volume and mass energy density, high working voltage, long life and little self discharge. As one of the cathode materials for lithium ion batteries, spinel LiMn2O4 attracts great attention due to its low cost, abundant Mn resource, low toxicity and environmental friendly nature. The principle of charge & discharge for lithium ion batteries, its structure and the research progress on cathode materials was presented in this paper. Two new methods were developed to synthesize LiMn2O4. In order to overcome the severe capacity fading which limits the commercial application of lithium ion batteries, Fe was adopted to partially substitute of Mn and Al2O3 was used for the surface modification.
     The super-fine powders of spinel LiFexMn2-xO4 (x=0, 0.05) were synthesized using EDTA- citric acid (EDTA-CA) sol-gel method with manganese acetate, lithium nitrate as raw materials. The precursor and synthesized powders of LiMn2O4 were characterized by TG-DSC, XRD, CV and galvanostatic charge and discharge. It is found that the optimal sintering temperature is 600 oC. At room temperature, the initial discharge capacity of the half cell with LiMn2O4 cathode material is 120.2 mAh·g-1 at the current density of 0.5 C and the capacity can remain 70% of initial capacity after 50 cycles. By Fe doping, the initial discharge capacity decreased to 113.6 mAh·g-1, however, the LiFe0.05Mn1.95O4 material performed improved cycle ability, maintaining 83% of initial capacity after 50 cycles. An improved solid state reaction method was also developed, in which low toxicity acetone was used as a dispersant making the Li2CO3 and MnO2 to mix homogeneously.
     Furthermore, we adopted two-step calcinations to achieve a high crystalline spinel LiMn2O4 which played an important role in the electrochemical property. The electrochemical characterizations indicated that the spinel LiMn2O4 prepared by the improved solid state reaction method shows a higher capacity, and better cycle stability. It has an initial capacity of 117 mAh·g-1 at a current density of 0.2 C between 3.3 - 4.5 V and good cycle stability, maintaining 94% of its initial capacity after 40 cycles. Moreover, the LiMn2O4 prepared by the improved method shows better discharge ability at high rates than that prepared by the conventional method. This method has a great potential for the commercial preparation of LiMn2O4 because it can produce the LiMn2O4 with enhanced capacity and cycle life by a simple way with low cost of raw materials.
     In order to improve the cycle performance of material at high temperature, the LiMn2O4 was modified by coating its surface with a thin layer of amorphous A12O3. In buffer solution, Al(OH)3 can be heterogeneous nucleation, therefore after heat treatment, a thin layer of A12O3 could form on the surface of the spinel. Obviously, coating the surface of LiMn2O4 with A12O3 can modify the properties of its surface, which is exposed to the electrolyte solution and avoid the parasite reactions. A12O3 can also capture the HF from electrolyte, which reacts with the LiMn2O4 and accelerate the dissolution of Mn, then the cycle stability of the spinel material was improved.
引文
[1]涂健.掺杂和表面改性尖晶石LiMn2O4用作离子电池正极材料的研究[D].浙江:浙江大学, 2006
    [2]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社, 1996: 1-464
    [3] Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367
    [4] Chan C.K., Peng H.L., Liu G., et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35
    [5] Wakihara M. Recent developments in lithium ion batteries[J]. Materials Science & Engineering R-Reports, 2001, 33(4): 109-134
    [6]吴玉平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社, 2002: 1-369
    [7]郭炳昆,徐徽,王友先等.锂离子电池[M].长沙:中南工业大学出版社, 2002: 1-260
    [8] Ogura S., Kawama I., Sakurai T., et al. Development of oil filled pressure compensated lithium-ion secondary battery for DSV Shinkai 6500 [A]. IEEE. Oceans 04 MTS/IEEE Techno-Ocean 04, Vols 1- 2[C]. New York: 345 E 47th ST, 2004: 1720-1726
    [9] Wang J., Raistrick I.D., Huggins R.A. Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes[J]. Journal of The Electrochemical Society, 1986, 133 (3): 457-460
    [10] Besenhard J.O., Yang J., Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. Journal of Power Sources, 1997, 68 (1): 87-90
    [11] Nagaura T., Tozawa K. Lithium ion rechargeable battery[J]. Progress in Batteries and Solar Cells, 1990, 9(2): 209- 217
    [12]周恒辉,慈云祥.锂离子电池电极材料研究进展[M].化学进展, 1998, 10(1): 85-94
    [13] Armstrong A.R., Bruce P.G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature, 1996, 381(1038): 499-500
    [14] Dahn J.R., Zheng T., Liu Y., et al. Mechanisms for Lithium Insertion in Carbonaceous Materials[J]. Science, 1995, 270(5236): 590- 593
    [15] Sato K., Noyuchi M., Demachi A., et al. Mechanism of lithium storage in disordered carbons[J]. Science, 1994, 264(5158): 556- 558
    [16] Scrosati B. Challenge of portable power[J]. Nature, 1995, 373(1038): 557- 558
    [17] Whittingham M. S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301
    [18] Mizushima K., Jonesa P.C., Wisemana P.J., et al. LixCoO2 (0    [19]吴宇平,戴晓兵,马军旗等.锂离子电池—应用与实践[M].北京:化学工业出版社, 2004: 1-400
    [20]杨军,解晶莹,王久林.化学电源测试原理与技术[J].北京:化学工业出版社,2006:1-346
    [21] Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition-metal oxides as negative - electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(350): 496-499
    [22]陈杨,周振君,童昀.锂离子电池正极材料的研究进展与展望[J].稀有金属与硬质合金, 2007, 35(3): 54-57
    [23] Linden D., Reddy T.B. Handbook of batteries[M].第三版.汪继强.北京:化学工业出版社, 2007: 723-786
    [24]李玉增,钱九红.锂离子电池材料的最新进展[J].稀有金属, 1995, 19(6): 448-453
    [25]高海春.锂离子电池[J].盐湖研究, 1994, 2(4): 54-59
    [26] Choi S., Manthiram A. Factors influencing the layered to spinel-like phase transition in layered oxide cathodes[J]. Journal of The Electrochemical Society, 2002, 149(9): A1157-A1163
    [27] Cho J., Kim Y.J., Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chemistry of Materials, 2000, 12(12): 3788-3791
    [28] Myung S.T., Kumagai N., Komaba S., et al. Effects of Al doping on the microstructure of LiCoO2 cathode materials[J]. Solid State Ionics, 2001, 139(1-2): 47-56
    [29] Tsujikawa T., Uno Y., Hirai T. Electrochemical properties of LiCoO2/nanocarbon composites fabricated from organic liquids[J]. Journal of Power Sources, 2010, 195(12): 3918-3921
    [30] Yi T.F., Shu J., Yue C.B., et al. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery[J]. Materials Research Bulletin, 2010, 45(4): 456-459
    [31]徐亮,徐峙晖,赖琼钰. LiFePO4/C正极材料的液相合成及电化学性能研究[J].功能材料, 2007, 8(38): 1316-1319
    [32] Wang Y.Q., Wang B.L., Yang J., et al. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O[J]. Advanced Functional Materials, 2006, 16(16):2135-2140
    [33] Broussely M., Perton F., Biensan P. LixNiO2, a promising cathode for rechargeable lithium batteries[J]. Journal of Power Sources, 1995, 54(1): 109-114
    [34] Neudecker B.J., Zuhr R.A., Kwak B.S., et al. Lithium manganese nickel oxides Lix(MnyNi1-y)(2-x)O2 -I. Synthesis and characterization of thin films and bulk phases[J]. Journal of The Electrochemical Society, 1998, 145(12): 4148-4159
    [35] Ritchie A.G., Giwa C.O., Lee J.C., et al. Future cathode materials for lithium rechargeable batteries[J]. Journal of Power Sources, 1999, 80(1-2): 98-102
    [36]曹文玉,顾惠敏,翟玉春等.锂离子电池正极材料LiNiO2的制备及修饰[J].材料与冶金学报, 2005, 4(1): 30-35
    [37] Paulsen J.M., Thomas C.L., Dahn J.R. Layered Li-Mn-oxide with the O2 structure: A cathode material for Li-ion cells which does not convert to spinel[J]. Journal of The Electrochemical Society, 1999, 146(10): 3560-3565
    [38] Xiao H., Zhan H., Zhou Y.H. Synthesis of layered-structure LiMn1-xCrxO2 for lithium-ion batteries by the rheological phase method [J]. Materials Letters, 2004, 58(10): 1620-1624.
    [39] Myung S.T., Komaba S., Kumagai N. Hydrothermal synthesis of orthorhombic LiCoxMn1-xO2 and their structural changes during cycling[J]. Journal of The Electrochemical Society ,2002, 149(10): A1349-A1357
    [40] Hwang S.J., Park H.S., Choy J.H. Variation of chemical bonding nature of layered LiMnO2 upon delithiation/relithiation and Cr substitution[J]. Solid State Ionics, 2002, 151(1-4): 275-283
    [41] Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194
    [42] Wang, Y.G.; Wang, Y.R.; Hosono, E.J., et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method[J]. Angewandte Chemie-International Edition, 2008, 47(39): 7461-7465
    [43] Yamada A., Chung S.C., Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of The Electrochemical Society, 2001, 148(3): A224-A229
    [44] Prosini P.P., Zane D., Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta, 2001, 46(23): 3517-3523
    [45] Konarova M., Taniguchi I. Synthesis of carbon-coated LiFePO4 nanoparticles with highrate performance in lithium secondary batteries[J]. Journal of Power Sources, 2010, 195(11): 3661-3667
    [46]雷敏,应皆荣,姜长印,等.高密度球形LiFePO4的合成及性能[J].电源技术, 2006, 30(1): 11-13
    [47] Manev V., Banov B., Momchilov A., et al. LiMn2O4 for 4 V lithium-ion batteries[J]. Journal of Power Sources, 1995, 57(1-2): 99-103
    [48] Qiu X.P., Sun X.G., Shen W.C., et al. Spinel Li1+xMn2O4 synthesized by coprecipitation as cathodes for lithium-ion batteries[J]. Solid State Ionics, 1997, 93(3-4): 335-339
    [49] Thackeray M.M. Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry, 1997, 25(1-2): 1-71
    [50] Tian L., Yuan A.B. Electrochemical performance of nanostructured spinel LiMn2O4 in different aqueous electrolytes[J]. Journal of Power Sources, 2009, 192(2): 693-697
    [51] Thackeray M.M., David W.I.F., Bruce P.G., et al. Lithium insertion into manganese spinels[J].Materials Research Bulletin, 1983, 18(4): 461-472
    [52] Xia Y.Y., Zhou Y.H., Yoshio M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells[J]. Journal of The Electrochemical Society, 1997, 144(8): 2593-2600
    [53] Park S.B., Shin H.C., Lee W.G., et al. Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides[J]. Journal of Power Sources, 2008, 180(1): 597-601
    [54] Amatucci G.G., Schmutz C.N., Blyr A., et al. Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries[J] Journal of Power Sources, 1997, 69(1-2): 11-25
    [55] Wohlfahrt-Mehrens M., Vogler C., Garche J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127(1-2): 58-64
    [56] Erdinc O., Vural B., Uzunoglu M. A dynamic lithium-ion battery model considering the effects of temperature and capacity fading[J] 2009 International Conference on Clean Electrical Power (ICCEP 2009), 2009, 1-2: 374-377
    [57] Yamada A. Lattice Instability in Li(LixMn2?x)O4[J]. Journal of Solid State Chemistry, 1996, 122(1): 160-165
    [58] Li X.F., Xu Y.L., Wang C.L. Suppression of Jahn–Teller distortion of spinel LiMn2O4 cathode[J]. Journal of Alloys and Compounds, 2009, 479(1-2): 310-313
    [59] Ohzuku T., Kato J., Sawai K., et al. Electrochemistry of manganese dioxide in lithium nonaqueous cells (Ⅳ). Jahn-Teller deformation of MnO6-octahedron in LixMnO2[J]. Journal of The Electrochemical Society, 1991, 138(9): 2556-25601
    [60]万传云,尖晶石LiMn2O4容量衰减的原因及性能改进[J].电池, 2007, 37(6): 463-465
    [61] Amaral F.A., Bocchi N., Brocenschi R.F., et al. Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M=Ga3+, Al3+, or Co3+, N=S2- or F-) for use as cathode material in lithium batteries[J]. Journal of Power Sources, 2010, 195(10): 3293-3299
    [62] Rajakumar S., Thirunakaran R., Sivashanmugam A., et al. Synthesis, Characterization, and Electrochemical Properties of LiCrxNiyMn2-x-yO4 Spinels as Cathode Material for 5 V Lithium Battery[J]. Journal of The Electrochemical Society, 2010, 157(3): A333-A339
    [63] Wu H.M., Belharouak I., Abouimrane A., et al. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(9): 2909-2913
    [64] Yang Z.X., Yang W.S., Evans D.G., et al. The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material[J]. Journal of Power Sources, 2009, 189(2): 1147-1153
    [65] Liu D.Q., He Z.Z., Liu X. Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries[J]. Materials Letters, 2007, 61(25): 4703-4706
    [66]周园,岳鸿飞,冉广芬.低温电解法制备球形尖晶石LiMn2O4及性能研究[J].稀有金属材料与工程, 2007, 36(8): 1477-1479
    [67] Lu C.H., Wu T.Y., Wu H.C., et al. Preparation and electrochemical characteristics of spherical spinel cathode powders via an ultrasonic spray pyrolysis process[J] Materials Chemistry and Physics, 2008, 112(1): 115-119
    [68] Naghash A.R., Lee J.Y. Preparation of spinel lithium manganese oxide by aqueous co-precipitation[J]. Journal of Power Sources, 2000, 85(2):284–293
    [69] Jiang C.H., Dou S.X., Liu H.K., et al. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction[J] Journal of Power Sources, 2007,172 (1): 410–415
    [70]何则强,熊利芝,吴显明,等.流变相法制备LiNi0.5Mn1.5O4锂离子电池正极材料及其电化学性质[J].无机化学学报, 2007, 23(5): 875-878
    [71] Arumugam D., Kalaignan G.P., Manisankar P. Development of structural stability and the electrochemical performances of 'La' substituted spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries[J]. Solid State Ionics, 2008, 179(15-16): 580-586
    [72] Lee K.S., Bang H.J., Myung S.T., et al. Synthesis and electrochemical properties of spherical spinel Li1.05M0.05Mn1.9O4 (M=Mg and Al) as a cathode material for lithium-ion batteries by co-precipitation method[J]. Journal of Power Sources, 2007, 174(2): 726-729
    [73] Taniguchi I. Physical and electrochemical properties of spherical nanostructured LiCrxMn2-xO4 particles synthesized by ultrasonic spray pyrolysis[J]. Industrial & Engineering Chemistry Research, 2005, 44(17): 6560-6565
    [74] Ha H.W., Yun N.J., Kim K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries[J]. Electrochimica Acta, 2007, 52(9): 3236-3241
    [75] Son J.T., Park K.S., Kim H.G., et al. Surface-modification of LiMn2O4 with a silver-metal coating[J]. Journal of Power Sources, 2004, 126(1-2): 182-185
    [76] Cho J. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials[J]. Journal of Materials Chemistry, 2008, 18(19): 2257-2261
    [77]刘永辉.电化学测试技术[M].北京:北京航空学院出版社, 1987: 1-503
    [78]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002: 1-194
    [79] Zhang H., Cao G.P., Wang Z.Y., et al. Carbon nanotube array anodes for high-rate Li-ion batteries[J]. Electrochimica Acta, 2010, 55(8): 2873-2877
    [80] Nguyen C.C., Song S.W. Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(8): 3026-3033
    [81] Zhang Y.C., Wang C.Y. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode[J]. Journal of The Electrochemical Society, 2009, 156(7): A527-A535
    [82] Gomez L.S., de Meatza I., Martin M.I., et al. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis[J]. Electrochimica Acta, 2010, 55(8): 2805-2809
    [83] Fonseca C P, Neve S. The usefulness of a LiMn2O4 composite as an active cathode material in lithium batteries[J]. J Power Sources, 2004, 135(1-2): 249-254.
    [84] Ke D., Rong H.G., Dong P.Z., et al. Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method[J]. Electrochimica Acta, 2010, 55(5): 1733-1739
    [85] Bang H.J., Donepudi V.S., Prakash J. Preparation and characterization of partially substituted LiMyMn2-yO4 (M = Ni, Co, Fe) spinel cathodes for Li-ion batteries. [J]. Electrochimica Acta, 2002, 48(4): 443-451
    [86] Zhou W.J., He B.L., Li H.L. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries[J]. Mater Res Bull, 2008, 43(8-9): 2285-2294.
    [87] Tarascon J M, McKinnon W R, Coowar F, et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4 [J]. Journal of The Electrochemical Society, 1994, 141(6): 1421-1431.
    [88] Armand M., Tarascon J.M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657
    [89] Bruce P.G., Scrosati B., Tarascon J.M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie-International Edition, 2008, 47(16): 2930-2946
    [90] Jo M., Hong Y.S., Choo J., et al. Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries[J]. Journal of The Electrochemical Society, 2009, 156(6): A430-A434
    [91] Yoncheva M., Stoyanova R., Zhecheva E., et al. Effect of the synthesis procedure on the local cationic distribution in layered LiNi1/2Mn1/2O2[J]. Journal of Alloys And Compounds, 2009, 475(1-2): 96-101
    [92] Lin Y., Pan H.G., Gao M.X., et al. Synthesis and characterization of LiFePO4/C prepared via a sol-gel method[J]. Surface Review And Letters, 2008, 15(1-2): 133-138
    [93] Lin Y., Gao M.X., Zhu D., et al. Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C[J]. Journal of Power Sources, 2008, 184(2): 444-448
    [94] Nam K.W., Yoon W.S., Shin H., et al. In situ X-ray diffraction studies of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge-discharge cycling[J]. Journal of Power Sources, 2009, 192(2): 652-659
    [95] Deng B.H., Nakamura H., Yoshio M. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures[J]. Journal of Power Sources, 2008, 180(2): 864-868
    [96] Raja M.W., Mahanty S., Basu R.N. Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method[J]. Journal of Power Sources, 2009, 192(2): 618-626
    [97] Zhao S.L., Chen H.Y., Wen J.B., et al. Electrochemical properties of spinel LiCoxMn2-xO4 prepared by sol-gel process[J]. Journal of Alloys And Compounds, 2009, 474(1-2): 473-476
    [98] Luo Q., Manthiram A. Effect of Low-Temperature Fluorine Doping on the Properties of Spinel LiMn2-2yLiyMyO4-eta F eta (M=Fe, Co, and Zn) Cathodes[J]. Journal of The Electrochemical Society, 2009, 156(2) : A84-A88
    [99] Eftekhari A. Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode[J]. Solid State Ionics, 2004, 167(3-4): 237-242
    [100] Tu J., Zhao X.B., Xie J., et al. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries[J]. Journal of Alloys And Compounds, 2007, 432(1-2): 313-317
    [101] Doi T., Yahiro T., Okada S., et al. Electrochemical insertion and extraction of lithium-ion at nano-sized LiMn2O4 particles prepared by a spray pyrolysis method[J]. Electrochimica Acta, 2008, 53(27) : 8064-8069
    [102] Jiao F., Bao J.L., Hill A.H., et al. Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries[J]. Angewandte Chemie-International Edition, 2008, 47(50): 9711-9716
    [103] Luo J.Y., Li X.L., Xia Y.Y. Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance[J]. Electrochimica Acta, 2007, 52(13): 4525-4531
    [104]赵世玺. Li-Mn-O体系锂离子电池正极材料的结构及胜能研究[D].武汉:武汉理工大学, 2002
    [105] Singh D., Kim W.S., Craciun V., et al. Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition[J]. Applied Surface Science, 2002, 197: 516-521
    [106] Ye S.H., Bo J.K., Li C.Z., et al. Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method[J]. Electrochimica Acta, 2010, 55(8): 2972-2977
    [107] Wang L.F., Ou C.C., Striebel K.A., et al. Study of mn dissolution from LiMn2O4 spinel electrodes using rotating ring-disk collection experiments[J]. Journal of The Electrochemical Society, 2003, 150(7): A905-A911
    [108] Nishimura K., Douzono T., Kasai M., et al. Spinel-type lithium-manganese oxide cathodes for rechargeable lithium batteries[J]. Journal of Power Sources, 1999, 81: 420-424
    [109] Arora P., White R.E., Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of The Electrochemical Society, 1998, 145(10): 3647-3667
    [110]刘素琴,张建峰,黄可龙.碳包覆尖晶石LiMn2O4的制备及电性能[J].电源技术, 2008, 32(3): 151-153
    [111] Li X.F., Xu Y.L. Novel method to enhance the cycling performance of spinel LiMn2O4[J]. Electrochemistry Communications, 2007, 9(8): 2023-2026

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700