基于葡萄糖的微/纳球形材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发新颖的合成路线是获取高性能材料的重要途径。材料进入应用领域的前提是制备工艺问题的解决,以期获得尺寸、形貌、维度、单分散性稳定可靠的材料。球形材料,特别是空心的球形材料,具有密度低、稳定性好、表面渗透能力强及光学性质特殊等特性,因而在催化剂载体、轻质材料、微反应器等领域应用前景广阔。
     本论文从葡萄糖出发,采用水热合成技术制备得到了一系列炭基和金属氧化物的球形微/纳米材料。并对产物的形貌、结构、组成及性质采用扫描电镜、透射电镜、X射线衍射、红外、热重等技术手段进行了表征。主要结果如下:
     1.以葡萄糖为原料,水热条件下制备得到了粒径和形貌可控的炭基微/纳米材料。没添加表面活性剂时,通过调控实验参数可控制备得到直径在150-800nm的炭基球状材料;通过改变非离子表面活性剂(吐温80)的加入量,制备得到了多形态(碗状、椭圆形及鸭梨形开口状)微/纳米尺度的炭基材料;所得到的炭基材料表面存在丰富的含氧官能团。
     2.以葡萄糖基活性炭微球为模板,制备了微米尺度空心球结构的ZnO。首先水热法合成锌/炭复合微球,然后高温氧化除炭。研究发现煅烧条件对于ZnO产物的结构有重要影响,在空气中煅烧复合微球可得到微米尺度的空心球结构的ZnO,球壳由团聚的纳米粒子组成;在氧气中煅烧复合微球则得到了ZnO纳米棒组装形成的海胆结构的ZnO。
     3.进一步调控合成过程,制备得到了金属氧化物为壳纳米金属Ag为核的复合纳米材料(Ag@ZnO)。以水热条件下制备得到炭包银(Ag@C)为模板制备Zn~(2+)/Ag@C复合物,高温氧化除去炭质组分,得到了金属氧化物包Ag的rattle结构的材料。
     综上所述,本论文从葡萄糖出发,采用水热合成和模板转化技术,可控制备得到了数种类型各异的微/纳米功能材料:表面富含官能团的球形炭、ZnO空心球及ZnO海胆状结构、金属氧化物包覆纳米Ag的复合结构材料。成功实现了不同材料之间的结构转换,以及从单一材料向复合材料的转化过程,为微/纳米材料的控制合成提供了新颖的思路及可行的途径。
Controllable synthesis of materials is of significant importance for their technological application and fundamental research. The synthetic procedure is the key issue for obtaining materials with controllable size, morphology, dimension, monodispersity and unique properties. Spherical materials, especially those with hollow structures, possess tailorable structures, low densities, high surface areas, and unique optical, electrical, and surface properties. They might meet the needs of scientists and have promising applications in vast areas of miniature sensors, artificial cells, fillers, catalysts, acoustic insulation, microchip reactors, delivery vehicle systems, and photonic crystals.
     This thesis focuses on the preparation of several functional materials, including carbon spheres, metal oxide spheres with hollow structures and metal oxide encapsulated Ag nanoparticles, with glucose as the starting materials. The as-obtained products were characterized by SEM, TEM, XRD, FTIR and TG techniques.
     The main results are summarized as follows:
     (1) Diverse morphologies of carbon materials were fabricated under hydrothermal condition with glucose as the carbon precursor. In the absence of surfactant, carbon spheres with different diameters have been controllably prepared by tuning the experimental factors, such as reactant concentration, reaction time and temperature. Carbon materials with elliptic, pear-like, and bowl-like morphologies were prepared with the assistance of a non-ion surfactant Tween 80. The surfaces of the carbonaceous materials were occupied by abundant oxygen-containing functional groups.
     (2) ZnO spheres with hollow structures have been prepared with the glucose-based carbonaceous materials as template. During the synthetic process, zinc/carbon hybrid microspheres are firstly acquired and then the carbon was eliminated by oxidation in air at elevated temperature. It was found that concentration of oxygen significantly has an influence on the ZnO hollow structures obtained. ZnO hollow spheres were formed when the oxidation occurred at low oxygen concentration, however, urchin-like materials made of ZnO nanorods were obtained at high oxygen concentration.
     (4) Coupling the reduction of noble metal salts and carbonization of glucose, Ag@C core/shell structures are synthesized. Using these Ag@C core-shell structures as template, several metal oxides hollow spheres encapsulated Ag nanoparticles are successfully synthesized.
引文
[1] 邱介山,孙玉峰,周颖.淀粉基碳包覆铁纳米胶囊的合成及其磁学性能.新型炭材料,2006,21(3):202-205
    [2] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie-International Edition, 2004, 43 (5): 597-601.
    [3] 田建华,李向军,位辰先.LiFePO4/C复合材料的制备和性能.化学工业与工程,2007,241(1):1-4.
    [4] Serp P, Feurer R, Kalck P et al. A chemical vapour deposition process for the production of carbon nanospheres. Carbon, 2001, 39 (4): 621-626.
    [5] Inagaki M. Discussion of the formation of nanometric texture in spherical carbon bodies. Carbon, 1997, 31 (5): 711-713.
    [6] Wang Q, Li H, Chen L Q et al. Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39 (14): 12211-2214.
    [7] Wang Q, Cao F Y, Chen Q W et al. Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Materials Letters, 2005, 59 (28): 3738-3741.
    [8] Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21 (13): 6019-6024.
    [9] Wang Z F, Mao P F, He N Y. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon, 2006, 44 (15): 3277-3284.
    [10] Basavalingu B, Byrappa K, Yoshimura M et al. Hydrothermal synthesis and characterization of micro to nano sized carbon particles. Journal of Materials Science, 2006, 41 (5): 1465-1469.
    [11] Wang Z L, Kang Z C. Pairing of Pentagonal and Heptagonal Carbon Rings in the Growth of Nanosize Carbon Spheres Synthesized by a Mixed-Valent Oxide-Catalytic Carbonization Process. Journal of Physical Chemistry, 1996, 100 (5): 17725-17731.
    [12] Jin Y Z, Gao C, Hsu W K et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon, 2005, 43 (9): 1944-1953.
    [13] Hu G, Ma D, Cheng Met al. Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chemical Communications, 2002, (17): 1948-1949.
    [14] Liu J W, Shao M W, Tang Q et al. A medial-reduction route to hollow carbon spheres. Letters to the Editor/Carbon, 2002, 411 (8): 1645-1687.
    [15] Jang J, Li X L, Oh J H. Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterials. Chemical Communications, 2004, (7): 794-795.
    [16] Zhou Z C, Yan Q F, Su F B et al. Replicating novel carbon nanostructures with 3D macroporous silica template. Journal of Materials Chemistry, 2005, 15 (26): 2569-2574.
    [17] Song Y Y, Li Y, Xia X H. One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis. Electrochemistry Communications. 2007, 9 (2): 201-205.
    [18] Hou H Q, Schaper A K, Weller F et al. Carbon Nanotubes and Spheres Produced by Modified Ferrocene Pyrolysis. Chemistry of Materials, 2002, 14 (9): 3990-3994.
    [19] Pol V G, Motiei M, Gedanken Aet al. Carbon spherules: synthesis, properties and mechanistic elucidation. Carbon, 2004, 42 (I): 111-116
    [20] 李永峰,邱介山,王云鹏.一种新颖煤基球形炭及其形成机理.大连理工大学学报,2002,42(6):663-668.
    [21] Wang Z X, Yu L P, Zhang W et al. Carbon spheres synthesized by ultrasonic treatment. Physics Letters A, 2003, 307 (4): 249-252.
    [22] Yah X B, Xu T, Xu Set al. Fabrication of carbon spheres on a-C:H films by heat-treatment of a polymer precursor. Letters to the Editor/Carbon, 2004, 42 (12-13): 2769-2771.
    [23] Wang Q, Li H, Chen L Q et al. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics, 2002, 152-153: 43-50.
    [24] Sun X M, Li Y D. Ga203 and GaN Semiconductor Hollow Spheres. Angewandte Chemie-International Edition, 2004, 43 (29): 3827-3831.
    [25] Li X L, Lou T J, Sun X Met al. Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorganic Chemistry, 2004, 43 (17): 5442-5449.
    [26] Sun X M, Liu J F, Li Y D. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chemistry-A European Journal, 2006, 12 (7): 2039-2047.
    [27] Yang R Z, Li H, Qiu X Pet al. A Spontaneous Combustion Reaction for Synthesizing Pt Hollow Capsules Using Colloidal Carbon Spheres as Templates. Chemistry-A European Journal, 2006, 12 (7): 4083-4090.
    [28] Li H, Wang Q, Shi L H et al. Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chemistry of Materials, 2002, 14 (1): 103-108.
    [29] Liu Y C, Qiu X P, Huang Y Q et al. Methanol electro2oxidation on mesocarbon microbead supported Pt catalysts. Carbon, 2002, 40 (13): 2375-23801.
    [30] Xie F Y, Tian Z Q , Meng H et al. Increasing the three-phase boundary by a novel three-dimensional electrode. Journal Power Sources, 2005, 141 (2): 211-2151.
    [31] 徐常威,刘应亮,沈培康.乙醇在炭微球负载催化剂上的电化学氧化电池.电池,2006,36(4):364-366.
    [32] 王秀丽,林宏艳,卢海燕.纳米碳球负载钯纳米粒子催化合成1,10-邻菲咯啉-5,6-二胺.应用化学,2006,23(11):1223-1227.
    [33] Yang R Z, Qiu X P, Zhang H R et al. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon, 2005, 43 (1): 11-16.
    [34] 任平 官建国 甘治平.空心微球的制备和研究进展.材料导报.2004,18,200-203.
    [35] Moya S, Sukhorukov G B. Auch Met al. Microencapsulation of organic solvents in polyelectrolye multilayer icrometer sized shells. Journal of Colloid and Interface Science, 1999, 216 (2): 297-302.
    [36] Caruso F, Trau D, Mohwald Het al. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir, 2000, 16 (4): 1485-1488.
    [37] Mathiowitz E, Jacob J S, Jong Y S et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature, 1997, 386 (6623): 410-414.
    [38] 李报厚,张登君,张冠东等.氧化钇和氧化铈稳定氧化锆空心球形陶瓷粉末的研制.功能材料,1997,28(5):518-521.
    [39] Arnal P M, Comotti M, Schuth F. High-temperature-stable catalysts by hollow sphere encapsulation. Angewandte Chemie-International Edition, 2006, 45 (48): 8224-8227.
    [40] Kawahashi N, Shiho H, Copper and Copper Compounds as Coatings on Polystyrene Particles and as Hollow Spheres. Journal of Materials Chemistry, 2000, 10 (10): 2294-2297.
    [41] Caruso F. Hollow Capsule Processing Through Colloidal Templating and Self-assembly. Chemistry A European Journal, 2000, 6 (3): 413-419.
    [42] Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998, 282(5391): 1111-1114.
    [43] 游丹,李波,林波等.制备大直径无气泡聚苯乙烯空心微球.强激光与粒子束,2000,12(3):355-357.
    [44] Kim J W, Joe Y G, Suh K D. Poly (methyl methacrylate) hollow particles by water-in-oil-in-water emulsion polymerization. Colloid and Polymer Science, 1999, 277 (2-3): 252-256.
    [45] Yang Y Y, Shi M, Goh S Het al. POE / PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. Journal of Controlled Release, 2003, 88 (2): 201-213.
    [46] Bruinsma P J, Liu J, Baskaran S. Mesoporous silica synthesized by solvent evaporation: spun fibers and spray dried hollow spheres. Chemistry of Materials, 1997, 9 (11): 2507-2512.
    [47] Wang H, Zhu J, Zhu J etal. Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods. Journal of Physical Chemistry B, 2002, 106 (15): 3848-3854.
    [48] Zhu J J, Xu S, Wang H. Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route. Advanced Materials, 2003, 15 (2): 156-159.
    [49] Kroto H W, Heath J R, 0' Brien S C, et al. C60 buckminsterfullerene. Nature, 1985, 318(6042): 162-163.
    [50] Motojima S, Chen X, Yang S et al. Properties and potential applications of carbon microcoils/nanocoils. Diomand and Related Materials, 2004, 13 (11-1): 1989-1992.
    [51] Mani R C, Li X, Sunkara M K et al. Carbon Nanopipettes. Nano letters, 2003, 3 (5): 671-673.
    [52] Kang Z H, Wang E B, Mao B D et al. Controllable Fabrication of Carbon Nanotube and Nanobelt with a Polyoxometalate-Assisted Mild Hydrothermal Process. Journal of The American Chemical Society, 2005, 127 (18): 6534-6535.
    [53] Su F B, Zhao X S, Wang Y et al. Hollow carbon spheres with a controllable shell structure. Journal of Materials Chemistry, 2006, 16 (45): 4413-4419.
    [54] Esumi K, Kimura Y, NakadaT et al. Adsorption of some solutes on heat-treated meso-carbon microbeads treated by plasma. Carbon, 1989, 27 (2): 301-303.
    [55] Schuler C, Caruso F. Decomposable hollow biopolymer-based capsules. Biomacromolecules, 2001, 2 (3): 921-926.
    [56] Mahajan R K, Chawla J, Bakshi M S. Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid and Polymer Science, 2004, 282 (10): 1165-1168.
    
    [57]N.勋弗尔特编.非离子表面活性剂的制造、性能和分析.苏汉聚等译.北京:轻工业出版社出版.1990.
    
    [58] Ma G H. Mechanism of formation of monodisperse polystyrene hollow particles prepared by membrane emulsification technique. Effect of hexadecane amount on the formation of hollow particles. Macromolecular symposia, 2002, 179 (1): 223-240.
    [59] Okubo M, Minami H, Morikawa K. Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid and Polymer Science, 2003, 281 (3) : 214-219.
    [60] Murry C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. Journal of The American Chemical Society, 1993, 115 (19): 8706-8715.
    [61] 倪安泽,丛洪涛,成会明.具有四角状棒-线结构纳米氧化锌的制备和性能.无机材料学报,2005,19(2):113-117.
    [62] 储德韦,曾宇平,江东亮.表面活性剂辅助水热合成氧化锌纳米棒.无机材料学报,2006,21(3):571-575.
    [63] 刘中奎,郑毓峰,姜海涛.不同形貌氧化锌纳米棒的CVD法制备及生长机制讨论.新疆大学学报(自然科学版),2006,23(4):424-427.
    [64] 黄运华,张跃,贺建等.氧化锌纳米带的低温无催化热蒸发制备及其表征.物理化学学报,2005,21(3):239-243.
    [65] Zhang J, Sun L D, Liao C Set al. A simple route towards tubular ZnO. Chemical Communications, 2002, (3): 262-263.
    [66] 刘长友,李焕勇,介万奇.水热法制备菜花状氧化锌.功能材料,2005,11(36):1753-1756.
    [67] Zhang B P, Birth N T, Segawa Yet al. Photoluminescence study of ZnO nanorods epitaxially growth on sapphire (i120) substrates. Applied Physics Letters, 2004, 84 (4): 586-588.
    [68] Greene L E, Law M, Goldberger Jet al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemic-International Edition, 2003, 42 (26): 3031-3034.
    [69] Feng X J, Feng L, Jin M H et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. Journal of The American Chemistry Society, 2004, 126 (1): 62-63.
    [70] Umar A, Kim S H, Hahn Y B. Sea-urchin-like ZnO nanostructures on Si by oxidation of Zn metal powders: Structural and optical properties. Superlattices and Microstructures, 2006, 39 (1-4): 145-152.
    [71] Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO Nanostructures. Nano Letters, 2002, 2 (11): 1287-1291.
    [72] Gao P X, Wang Z L. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. Journal of TheAmerican Chemical Society, 2003, 125 (37): 11299-11305.
    [73] Kou H M, Wang J, Pan Y B et al. Fabrication of hollow ZnO microsphere with zinc powder precursor. Materials chemistry and physics, 2006, 99 (2-3): 325-328.
    [74] He Y Q, Li X G, Swihart M T. Laser-driven aerosol synthesis of nickel nanoparticles. Chemistry of Materials, 2005, 17 (5): 1017-1026.
    [75] Nagamori M, Funazukuri T. Glucose production by hydrolysis of starch under hydrothermal conditions. Journal of Chemical Technology and Biotechnology, 2004, 79 (3): 229-233.
    [76] Geng CY, Jiang Y, Yap Y, et al. Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Advanced Functional Materials, 2004, 14 (6): 589-594.
    [77] Vanheusden K, Warren W L, Seager C H et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal Applied Physics, 1996, 79 (10): 7983-7990.
    [78] Jin B J, Im S, Lee S Y. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1-2): 107-110.
    [79] McGlynn E, Fryar J, Tobin Get al. Efect of polycrystallinity on the optical properties of highly oriented ZnO grown by pulsed laser deposition. Thin Solid Films, 2004, 458 (1-2): 330-335.
    [80] Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. Journal of Physical Chemistry B, 1998, 102 (16): 2854-2862.
    [81] Studenikin S A, Golego N, Cocivera M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics, 1998, 84 (4): 2287-2294.
    [82] Lee K T, Jung Y S, Oh S M. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries. Journal of American Chemical Society, 2003, 125 (19): 5652-5653.
    [83] 陶东平,杨显万.氧化亚锡歧化还原动力学和二氧化锡还原机理.中国有色金属学报,1998,1:129-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700