复合可见光光催化剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1972年本多和藤岛报道了“本多--藤岛效应”以来,多相半导体光催化的研究以其在治理污染和氢能制备方面的应用引起了广泛关注。传统的二氧化钛光催化剂,以无毒、性能稳定、廉价等优点已得到广泛应用。但是,由于其带隙较宽,不能利用可见光,限制了其对太阳光的利用。为了更多的利用太阳能,开发可见光响应的光催化材料成为光催化利用的一个研究热点。
     含Ag金属氧化物半导体材料是一类可见光响应的光催化材料。锑酸银和铌酸银带隙分别是2.6 eV和2.8 eV,都能利用可见光,并且具有光催化性能。本文通过成分控制、合成方法以及形成复合材料的形式制备了样品,并且研究了其表面光电性能和光催化性能。具体的研究工作如下
     1)通过离子交换法制备了具有不同Ag/Sb锑酸银。首先通过AgNO_3和H_2Sb_2O_6·nH_2O反应制备了前躯体Ag_xH_ySb_2O_6·nH_2O,然后在700 oC煅烧1小时,得到不同组分的锑酸银(Ag_xSb_2O_y:x=0.5,y=4.83;x=1.0,y=5.18;x=1.5,y=5.52;x=1.7,y=5.77)样品。利用X射线衍射仪、紫外可见分光光度计、拉曼散射光谱仪、扫描电子显微镜和表面光电压谱仪,表征了其物相组成,表面形貌,表面光电特性。通过光催化降解罗丹明B(RhB)评价了其光催化性能。结果显示随着在锑酸银中Ag/Sb的增加,光学带隙减小,表面光电压减小,对RhB的光催化降解性能增强;同时,表面光电压和光催化性能受样品中的+3价锑离子的含量调制:随着正三价锑的含量减小,光催化性能逐渐增加。
     2)采用溶剂热法在不同温度下(170-240 oC)制备了的铌酸银(AN170, AN180, AN190, AN200, AN240)样品。首先在100 mL的反应釜中加入适量的乙二醇,硝酸银和五氯化铌,接着在不同温度的干燥箱中反应24小时。然后把得到的先驱体在800 oC煅烧2小时,得到铌酸银样品。利用X射线衍射仪、紫外可见分光光度计、拉曼散射光谱仪、扫描电子显微镜和表面光电压谱仪,表征了其物相组成,表面形貌,表面光电特性。通过光催化降解罗丹明B(RhB)评价了其光催化性能。结果表明:样品不同形貌的形成可能归因于不同的银颗粒造成的;AN190样品具有最高的光催化性能和最弱的表面光电压,可能归因于铌酸银和五氧化二铌的协同作用。温度的选择和五氧化二铌的量对于形貌的形成和样品的性质起着关键的作用。
     3)采用固相法制备了不同摩尔比的锑酸银与铌酸钠的复合物。首先把适量的Ag_2O,Sb_2O_3和Na_2CO_3,Nb_2O_5分别按一定的摩尔比混合均匀,依次在750和900 oC分别煅烧4小时和8小时,得到锑酸银与铌酸钠的复合物(xAgSbO_3/NaNO_3, x=0.5、1.0、2.0、4.0、6.0)样品。利用X射线衍射仪、紫外可见分光光度计、拉曼散射光谱仪、扫描电子显微镜和表面光电压谱仪,表征了其物相组成,表面形貌,表面光电特性。通过光催化降解罗丹明B(RhB)评价了其光催化性能。结果表明:样品的表面光电压和光催化活性对锑酸银的含量敏感。铌酸钠与锑酸银的摩尔比是1:1时的复合物具有最高的光催化活性,这一点归因于它的良好的分散性,电子传输和表面光电特性。这些结果表明制备良好的复合物来修饰催化剂的光物理和光化学特性是一种有效的方法。
Multiphase semiconductor photocatalysis, the problems of the pollution and preparation of hydrogen have been paid wide attention since Fuji and Shima reported“Honda-Fujishima Effect”. Traditional photocatalysis, TiO_2 with non-toxic, stable performance and low-cost price has been widely applied. But, titanium dioxide is not able to absorb visible light due to its wide band gap, in order to make full use of solar energy, developing photoctalysis in visible region has been one of numerous research focuses in photocatalytic field.
     Silver oxide semiconductor is a type of photocatalysis material with responding to visible light. Silver antimonite with band gap of 2.6 eV and silver niobate with band gap of 2.8 eV not only absorb visible light but only possess photocatalytic property. In this work, samples were prepared by controlling composition, prepared methods and formation of composite materials. Surface photovoltaic and photocatalytic properties of samples were researched. The specific research work is as follows:
     1) Silver antimonite with different molar ratio of Ag/Sb were prepared by an ion change method. Firstly, Ag_xH_ySb_2O_6·nH_2O were prepared by the ion exchange of AgNO_3 and H_2Sb_2O_6·nH_2O, and were calcined at 700 oC for 1 hour, in result that the samples of Ag_xSb_2O_y (x=0.5,y=4.83;x=1.0,y=5.18;x=1.5,y=5.52;x=1.7,y=5.77) were obtained. Their phases, surface morphology and surface photovoltaic property were characterized by X-ray diffraction, UV-visible spectrophotometer, Raman scattering, scanning electron microscopy and surface photovoltage spectroscopy, respectively. The photocatalytic property was estimated by degradation of Rhodamine B. The results show that the optical band gap decreases, the surface photovoltage decreases and the photocatalytic activity for Rhodamine B decomposition increases with increasing the Ag/Sb ratio in silver antimonites. The surface photovoltaic and photocatalytic properties were impacted by the percent of Sb~(3+) in the samples. The photocatalytic activity variation with the amount of Sb3+ implies that appropriate amount of Sb~(3+) in the sample was favorable for photocatalytic activity.
     2) Silver niobate was prepared by a solvothermal method at different temperatures (170-240 oC). Firstly, approppriate amount of EG, silver nitrate and columbium pentachloride are put into 100 mL reactor,then react for 24 hours at different temperatures. Last, the precursor is calcained for 2 hours at 800 oC, in result samples of AN170, AN180, AN190, AN200 and AN240 are obtained. Their phases, surface morphology and surface photovoltaic property were characterized by X-ray diffraction, UV-visible spectrophotometer, Raman scattering, scanning electron microscopy and surface photovoltage spectroscopy. The photocatalytic property was estimated by degradation of Rhodamine B. The results show that different morphologies may be due to different morphologies of Ag particles and that AN190 with the weakest photovoltage and the highest photocatalytic activity may be due to synergetic effect between silver niobate and Nb2O5. Both the temperature and the amount of Nb_2O_5 are crucial for the morphologies, the photoelectric and photocatalytic properties of the samples.
     3) The compound with different molar ratio of silver niobium and sodium antimony were prepared by solid state reaction method. Firstly, appropriate amount Ag_2O,Sb_2O_3, Na_2CO_3 and Nb_2O_5 were well mixed respectively, then are calcained at 750 oC for 4 hours and 900 oC for 8 hours in turn. The samples of xAgSbO3/NaNO3 (x=0.5, 1.0, 2.0, 4.0, 6.0)are obtained. Their phases, surface morphology and surface photovoltaic property were characterized by X-ray diffraction, UV-visible spectrophotometer, Raman scattering, scanning electron microscopy and surface photovoltage spectroscopy. The photocatalytic property is estimated by degradation of Rhodamine B. The results show that the surface photovoltage and photocatalytic activities were sensitive to the molar percentage of sodium antimony in the samples; the highest photocatalytic activity was observed on the composite of silver niobium and sodium antimony due to the better dispersiveness, electron transfer and surface photoelectric properties, these results indicate that making the composite is an effective method to modify the photophysical and photochemical properties of photocatalyst.
引文
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water[J], Nature, 1972, 238: 37.
    [2] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo , Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J] , J. Photochem. Photobiol. A chem., 2002, 148: 257.
    [3] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocalysis in nitrogen- doped titanium oxides[J], Science, 2001,293: 269.
    [4] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light [J], Chem. Lett., 2003, 32: 364.
    [5] H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anataseTiO_2 powders as a visible-light sensitive photocatalyst [J], Chem. Lett., 2003, 32: 772.
    [6] T. Sano, N. Negishi, K. Koike, K. Takeuchi, S. Matsuzawa, Preparation of a visible light-responsive photocatalyst from a complex of Ti~(4+) with a nitrogen-containing ligand [J], J. Mater. Chem., 2004 14: 380.
    [7] Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J.N.Kondo, M. Hara, K. Domen, Metal ion and. N co-doped TiO_2 as a visible-light photocatalyst [J], J. Mater. Res., 2004, 19: 2100.
    [8] (a) O’Regan, B. Gratzel, M. Low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J], Nature, 1991, 353: 737-740. (b) J He, G Benko, F Korodi, R Lomoth, ?kermark, B.; L Sun, A. Hagfeldt, V Sundstrom, Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO_2 electrode [J], J. Am. Chem. Soc., 2002, 124: 4922-4932.
    [9] Tetsuya Kako, Naoki Kikugawa, Jinhua Ye, Photocatalytic activity of AgSbO_3 under visible light irradiation [J], Catalysis Today, 2008,131: 197-202.
    [10] Yasukawa M, Hosono H, Photoemission studies on valence band structure of AgSbO_3[J], Solid State Communications, 1995,95(6): 399-403.
    [11] H Wiggers, U, Simon G, Schon Conductivity Studies on AgSbO_3 with Channel Structure by Impedance Spectroscopy[J], Solid State Ionics, 1998,107: 111-116.
    [12] H Mizoguchi, H W Eng, P M Woodward, Probing the Electronic Structures of Ternary Perovskite and Pyrochlore Oxides Containing Sn~(4+) or Sb~(5+)[J], Inorg. Chem., 2004, 43: 1667~1680.
    [13] A. Zarbin, O. Alves, J. Amarilla, R. Rojas, J. Rojo, Silver Antimonates with Pyrochlore-like Structure Prepared by Thermal Treatment of Silver Proton-Exchanged Antimonic Acid: Formation Process and Structural Characterization[J], Chem. Mater.,1999, 11: 1652.
    [14] H Kato, H Kobayashi, A Kudo, Role of Ag in Band Structures and Photocatalytic Properties of AgMO3 (M:Ta and Nb) with the Perovskite Structure[J], J. Phys. Chem. B, 2002, 106: 12441.
    [15] M Valant, A Axelsson, N Alford, Review of Ag(Nb,Ta)O3 as a. Functional Material [J], J. Euro. Ceram. Soc, 2007, 27: 2549.
    [16] G Li, T Kako, D Wang, Z Zou, J Ye, Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions[J], J. Solid State Chem., 2007, 180: 2845.
    [17] D Wang, T Kako, J Ye, Efficient Photocatalytic Decomposition of Acetaldehyde over a Solid-Solution Perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under Visible-Light Irradiation[J], J. Am. Chem. Soc. 2008, 130: 2724.
    [18] X Hu, M Valant, D Suvorov, Phase transitions and dielectric properties of the Ag1-xBix/3NbO3 system[J], J. Appl. Phys. 2006, 99: 124109.
    [19] G Li, T Kako, D Wang, Z Zou, J Ye, Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation[J], Dalton Trans., 2009, 2423.
    [20] P E D, Jongh D Vanmaekelbergh, Effect of electronic and nuclear factors on the dynamics of dye-to-semiconductor electron transfer Trap-limited electronic transport in nanometer-size TiO_2 particles[J], J. Phys. Rev. Lett., 1996, 77: 3427.
    [21] G Schlichthorl, S Y Huang, J Sprague, A J Frank, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO_2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy[J], J. Phys. Chem. B,. 1997, 101: 8141.
    [22] S Y Kuang, L X Yang, Sh L Luo, Q Y Cai, Fabrication, Characterization and Photoelectrochemical Properties of Fe2O3 modified TiO_2 Nanotube Arrays[J]. Applied Surface Science, 2009, 255: 7385-7388.
    [23] X W Zhang, L Ch Lei, Preparation of photocatalytic Fe2O3-TiO_2 coatings in one step by metal organic chemical vapor deposition[J]. Applied Surface Science, 2008, 254: 2406-2412.
    [24] Z F Bian, J Zhu, S H Wang, Y Cao, X F Qian, H X Li, Self-assembly of active Bi2O3/TiO_2 visible photocatalyst with ordered mesoporous structure and highlycrystallized anatase[J], J. Phys. Chem. C, 2008, 112: 6258-6262.
    [25] Sh F Chen, L Chen, S Gao, G Y Cao, The preparation of coupled SnO2/TiO_2 photocatalyst by ball milling[J], Mater. Chem. Phys., 2006, 98: 116-120.
    [26] D W Kim, S W Lee, H S Jung, J Y Kim, H Shin, K S Hong, Effects of heterojunction on photoelectrocatalytic properties of ZnO-TiO_2 films[J], International Journal of Hydrogen Energy, 2007, 32: 3137-3140.
    [27] Leeor Kronik, Yoram Shapira, Surface photovoltage phenomena: theory, experiment, and applications[J]. Surf. Sci. Rep.,1999, 37: 1-206.
    [28] L.J. Kichter, R.R. Cavanagh, Prog. Surf. Sci., 1992, 39 : 155.
    [29] V Donchev, K Kirilov, Ts Ivanov, K Germanova, Surface photovoltage phase spectroscopy– a handy tool for characterisation of bulk semiconductors and nanostructures[J], Mater. Sci. Eng., B, 2006, 129: 186-192.
    [30] H Masuda, T Itakura, K Gotoh, T Takahashi, T Teshima, The measurement and evaluation of the contact potential difference between various powders and a metal[J], Adv. Powder Technol., 1995, 6: 295-303.
    [31] L Kronik, Y Shapira, Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering[J], Surf. Interface Anal., 2001, 31: 954-965.
    [32] T F Xie, D J, Wang L J Zhu, C Wang, T J Li, Application of Surface Photovoltage Technique to the Determination of Conduction Types of Azo Pigment Films[J], J. Phys. Chem. B, 2000, 104: 8177-8181.
    [33] Ts Ivanov, V Donchev, K Germanova and K Kirilov, A vector model for analysing the surface photovoltage amplitude and phase spectra applied to complicated nanostructures[J], J. Phys. D: Appl. Phys., 2009, 42: 135302.
    [34]江月松,光电技术与实验[M],北京理工大学出版社,2005,5: 119-121.
    [35]沈伟韧,赵文宽,贺飞等. TiO_2光催化反应及其在废水处理中的应用[J],化学进展,1998, 10: 349~361.
    [36] S N Frank, A Bard , Photochemistry of colloidal semiconducting iron oxide polymorphs [J], J. J. Phys. Chem. 1987, 91: 5076-5083.
    [37]董庆华,半导体光催化[J],感光材料与化学, 1993, 11: 76-81.
    [38] Y-M Gao, W Lee, Trehen R. Mater. Res. Bull., 1991, 26: 1247-1254.
    [39] R W. Matthews.A comparison of 254 nm and 350 nm ex citation of TiO_2 in simplephotocatalytic reactor[J], JPPAC., 1992, 66: 355-366.
    [40] C Richard, A M Martre, P Boule. J. Photochem. Photobiol. A: Chem., 1992, 66: 225-234.
    [41] J Cunningham, S Srijaranai. J. Photochem. Photobiol. A: Chem., 1991, 58: 361-371.
    [42] A L Pruden, D F Ollis. Degradation on chloroform by photoassistal heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide[J],Environ. Sci. Technol. 1983, 17: 628-631.
    [43] H Harada, T Ueda, T Sakata. Semiconductor effect on the selective photocatalytic reaction of .alpha.-hydroxycarboxylic acids[J], J. Phys. Chem., 1989, 93: 1542-1548
    [44] M Abdullah, K. C Low Gary, R W. Mathews,Effect of Inorganic Anions on Rate of Photocatalytic Oxidation of Organic carbon over Illuminated Titanium Dioxied[J], J. Phys. Chem. 1990, 94: 6820 -6825.
    [45] D M Blake, J Webb, C Turchi, et al. Kinetic and Mechanistic Overview of TiO_2 Photocatalyzed Oxidation Reactions in Aqueous Solution[J], Sol. Ener. Mater., 1991, 24: 584-593.
    [46] K Okamoto, Y Yamamoto, H Tanaka, et al. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO_2 powder[J], Bull. Chem. Soc. Jpn. 1985, 58: 2023-2027.
    [47] T Uchihara, M Matsumura, J Ono, et al. Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide[J], J. Phys. Chem., 1990, 94: 415-418.
    [48] A P Hong, D W Bahnemann, M R Hoffmann. 1.Cobalt(II) tetrasulfophthalocyanin on titanium dioxide. 2. Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide[J], J. Phys. Chen. 1987, 91: 6245-6251.
    [49] Tetsuya Kako, Jinhua Ye, Synergistic effect of different phase on the photocatalytic activity of visible light sensitive silver antimonates[J], Journal of Molecular Catalysis A: Chemical, 2010, 320: 79–84.
    [50] K.R.Gopidas, z M.Bohorque, P.V Kamat.Photophysical and photochemical aspects of coupled semiconductors:charge-transfer processes in colloidal cadmium sulfidetitaniaand cadmiumsulfide-silver(I)iodide systems[J] . Journal of Physical Chemistry.1990,94(16):6435~6440.
    [1] A. Fujishima, K. Honda, Electrochemical photolysis of water[J], Nature, 1972, 238: 37.
    [2] J. M. Herrmann, Heterogeneous photocatalysis: state of the art and present applications in honor of Pr. R. L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill), Top. Catal., 2005, 34: 49.
    [3] F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater., 2008, 20: 35.
    [4] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis[J], Chem. Rev., 1995, 95: 69.
    [5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J], Science, 2001,293: 269.
    [6] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J], Nature, 2001, 414: 625.
    [7] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water - enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight[J], Nature, 2006, 440: 295.
    [8] H. Kato, H. Kobayashi, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO_2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium[J], J. Phys. Chem. B, 2002, 106: 12441.
    [9] J. Tang, Z. Zou, J. Ye, Photophysical and photocatalytic properties of AgInW2O8, J. Phys. Chem. B, 2003, 107: 14265.
    [10] R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical Properties and Photocatalytic Activities under Visible Light Irradiation of Silver Vanadates[J], Phys. Chem. Chem. Phys., 2003, 5: 3061.
    [11] T. Murase, H. Irie, K. Hashimoto, Ag+-Inserted NbO2F as a Novel Photocatalyst[J], J. Phys. Chem. B 2005, 109: 13420.
    [12] S. Ouyang, H. Zhang, D. Li, T. Yu, J. Ye, Z. Zou, Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites[J], J. Phys. Chem. B, 2006, 110: 11677.
    [13] Y. Maruyama, H. Irie, K. Hashimoto, Visible Light Sensitive Photocatalyst, Delafossite Structuredα-AgGaO2[J], J. Phys. Chem. B, 2006, 110: 23274.
    [14] G. Li, T. Kako, D.Wang, Z. Zou, J. Ye, Composition dependence of the photophysical and photocatalytic properties of (AgNbO_3)_(1-x)(NaNbO_3)x solid solutions[J], J. Solid State Chem., 2007, 180: 2845.
    [15] T. Kako, N. Kikugawa, J. Ye, Photocatalytic activities of AgSbO_3 under visible light irradiation[J], Catal. Today, 2008, 131: 197.
    [16] X. Li, S. Ouyang, N. Kikugawa, J. Ye, Novel Ag2ZnGeO4 Photocatalyst for Dye Degradation under Visible Light Irradiation[J], Appl. Catal. A: Gen., 2008, 334: 51.
    [17] G. Li, D.Wang, Z. Zou, J. Ye, Enhancement of Visible-Light Photocatalytic Activityof Ag0.7Na0.3NbO3 Modified by a Platinum Complex[J], J. Phys. Chem. C, 2008, 112 (51): 20329.
    [18] D.Wang, T. Kako, J. Ye, Efficient Photocatalytic Decomposition of Acetaldehyde over a Solid-Solution Perovskite (Ag_(0.75)Sr_(0.25))(Nb_(0.75)Ti_(0.25))O_3 under Visible-Light Irradiation[J], J. Am. Chem. Soc., 2008, 130: 2724.
    [19] G. Li, S. Yan, Z.Wang, X.Wang, Z. Li, J. Ye, Z. Zou, Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3[J], Dalton Trans. 2009, 40: 8519.
    [20] G. Li, T. Kako, D.Wang, Z. Zou, Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation[J], J. Ye, Dalton Trans., 2009, 13: 2423.
    [21] J. Singh, S. Uma, Efficient Photocatalytic Degradation of Organic Compounds by Ilmenite AgSbO_3 under Visible and UV Light Irradiation[J], J. Phys. Chem. C, 2009, 113: 12483–12488.
    [22] A. Zarbin, O. Alves, J. Amarilla, R. Rojas, J. Rojo, Silver Antimonates with Pyrochlore-like Structure Prepared by Thermal Treatment of Silver Proton-Exchanged Antimonic Acid: Formation Process and Structural Characterization[J], Chem. Mater., 1999, 11: 1652.
    [23] H. Hosono, M. Yasukawa, H. Kawazoe, Novel oxide amorphous semiconductors: transparent conducting amorphous oxides[J], J. Non-Crystal. Solid, 1996, 203: 334.
    [24] M. Jansen, H. Letschert, Inorganic yellow-red pigments without toxic metals[J], Nature, 2000, 40: 980.
    [25] L. Berry, B. Post, S. Weissmann, W. McClune, Powder Diffraction File, Inorganic sets 1-5, Joint Committee on Powder Diffraction Standards[J], Swarthmore, 1974, 246.
    [26] G. Li, Y. Bai, X. Liu,W.F. Zhang, Surface photoelectric properties of AgNbO3 photocatalyst[J], J Phys. D: Appl. Phys., 2009, 42: 235503.
    [27] B. Xin, P.Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Effect of surface species on Cu-TiO_2photocatalytic activity, Appl. Surf. Sci., 2008, 254: 2569.
    [28] L. Li, X. Duan, Semiconducting of nanocrystalline tin oxide and its influence facrors[J], Trans. Nonferrous Met. Soc. China, 2005, 15 (6): 1356.
    [29] B. Xin, L. Jing, Z. Ren, B.Wang, H. Fu, Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO_2[J], J. Phys. Chem. B, 2005, 109: 2805.
    [30] X. Li, N. Kikugawa, J. Ye, Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity[J], Adv. Mater., 2008, 20: 3816.
    [31] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 dispersions[J], J. Phys. Chem. B, 1998, 102: 5845.
    [32] T. Watanabe, T. Takirawa, K. Honda, Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide[J], J. Phys. Chem., 1977, 81 (19): 1845.
    [1] Clemens Burda, Xiaobo Chen, Radha Narayanan et al, Chemistry and Properties of Nanocrystals of Different Shapes[J], Chem. Rev., 2005, 105: 1025-1102.
    [2] Jingyi Chen, Fusayo Saeki, Benjamin J. Wiley et al, Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents[J], NANO LETTERS, 2005, 5(3): 473- 477.
    [3] Zheng Miao, Dongsheng Xu, Jianhua Ouyang et al, Electrochemically Induced Sol?Gel Preparation of Single-Crystalline TiO_2 Nanowires[J], NANO LETTERS, 2002, 2(7): 717-720.
    [4] Haifeng Shi, Xiukai Li ,Defa Wang et al, NaNbO_3 Nanostructures: Facile Synthesis, Characterization, and Their Photocatalytic Properties[J], Catal Lett, 2009, 132: 205–212.
    [5] Jinzhan Su, Liejin Guo, Sorachon Yoriya et al, Aqueous Growth of Pyramidal-Shaped BiVO_4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting[J], Cryst. Growth Des., 2010, 10 (2): 856–861
    [6] Benjamin J. Wiley, Sang Hyuk Im, Zhi-Yuan Li et al, Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis[J], J. Phys. Chem. B, 2006, 110: 15666-15675.
    [7] Sang Hyuk Im, Yun Tack Lee, Benjamin Wiley, Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection andMonodispersity[J], Angew. Chem. Int. Ed., 2005, 44: 2154–2157.
    [8] Benjamin J. Wiley, Yujie Xiong, Zhi-Yuan Li et al, Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms, NANO LETTERS, 2006, 6(4): 765-768.
    [9] M. Valant, A. Axelsson and N. Alford, Review of Ag(Nb, Ta)O_3 as a functional material, J. Eur. Ceram. Soc. 2007, 27: 2549.
    [10] H. Kato, H. Kobayashi and A. Kudo, Role of Ag~+ in the band structures and photocatalytic properties of AgMO_3 (M: Ta and Nb) with the perovskite structure J. Phys. Chem. B, 2002, 106: 12441.
    [11] Guoqiang Li, Ying Bai, Xiangyang Liu et al, Surface photoelectric properties of AgNbO_3 photocatalyst[J], J. Phys. D: Appl. Phys., 2009, 42: 235503.
    [12] Igor Levin, Victor Krayzman, Joseph C. Woicik et al, Structural changes underlying the diffuse dielectric response in AgNbO3[J], PHYSICAL REVIEW B, 2009, 79: 104113.
    [13] MatjazValant, Danilo Suvorova, Christian Homann et al, Ag(Nb,Ta)O_3-based ceramics with suppressed temperature dependence of permittivity[J], Ournal of the European Ceramic Society, 2001, 21: 2647–2651.
    [14] Lingxia Li, Dapeng Wang, Xiawan Wu, Temperature-stable and high-εdielectric ceramicsbased on Ag (Nb_(1-x)Ta_x)O_3[J], Journal of the European Ceramic Society, 2006, 26: 1991–1993.
    [15] Guoqiang Li, Tetsuya Kakoa, Defa Wang et al, Composition dependence of the photophysical and photocatalytic properties of (AgNbO_3)_(1-x)(NaNbO_3)_x solid solutions[J], Journal of Solid State Chemistry, 2007, 180: 2845–2850.
    [16] Defa Wang, Tetsuya Kako, Jinhua Ye, Efficient Photocatalytic Decomposition of Acetaldehyde over a Solid-Solution Perovskite (Ag_(0.75)Sr_(0.25))(Nb_(0.75)Ti_(0.25))O_3 under Visible-Light Irradiation[J], J. AM. CHEM. SOC., 2008, 130: 2724-2725.
    [17] Guoqiang Li, Shicheng Yan, Zhiqiang Wang et al, Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3[J], Dalton Trans. 2009, 8519–8524.
    [18] D. Arney, C. Hardy, B. Greve, P. A. Maggard, Flux synthesis of AgNbO_3: Effect of particle surfaces and sizes on photocatalytic activity[J], Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 54–60.
    [19] Huaiyong Zhu, Zhanfeng Zheng, Xueping Gao et al, Growth of single-crystalline KNbO3 nanostructures[J], J. AM. CHEM. SOC., 2006, 128, 2373-2384.
    [20] R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, Preparation, testing and characterization of doped TiO_2 active in the peroxidation of biomolecules under visible light[J], J. Phys. Chem. B, 2005, 109: 5994.
    [21] J. Yin, Z. Zou, J. Ye, Synthesis and photophysical properties of barium indium oxides [J]. Journal of Materials Research, 2002, 17: 2201.
    [22] H. Xu, H. Li, C. Wu, J. Chu et al, Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4[J], J. Hazard. Mater., 2008, 153:877–884.
    [23] Xiansheng Liu, Xiangyang Liu, Guoqiang Li et al, Enhancement of photogenerated charges separation inα-Fe_2O_3 modified by Zn2SnO4[J], J. Phys. D: Appl. Phys., 2009, 42: 245405.
    [24] Andrea Testino, Ignazio Renato Bellobono, Vincenzo Buscaglia et al, Optimizing thephotocatalytic properties of hydrothermal TiO_2 by the control of phase composition and particle morphology. A systematic approach[J], J. AM. CHEM. SOC. 2007, 9 (129): 12
    [25] Francombe, M. H.; Lewis, B. Structural and electrical properties of silver niobate and silver tantalite, Acta Crystallogr., 1958, 11: 175.
    [26]Yu-Jen Hsiao, Yen-Hwei Chang, Yee-Shin Chang et al, Growth and characterization of NaNbO3 synthesized using reaction-sintering method[J], Materials Science and Engineering B, 2007, 136: 129–133.
    [27] K. Tanaka, K. Kakimoto, H. Ohsato, Morphology and crystallinity of KNbO3-based nano powder fabricated by sol–gel process[J], J. Eur. Ceram. Soc., 2007,27: 3591–3595
    [28] V. Donchev, K. Kirilov, Ts. Ivanov et al, Surface photovoltage phase spectroscopy– a handy tool for characterisation of bulk semiconductors and nanostructures[J], Materials Science and Engineering B, 2006,129: 186–192.
    [29] Snaith, H. J.; Friend, R. H., Morphological dependence of charge generation and transport in blended polyfluorene photovoltaic devices[J],Thin Solid Films, 2004, 451-452, 567-571.
    [30] Y. Xu, M. A.A. SCHOONEN, The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J], American Mineralogist, 2000, 85:543–55.
    [1] J. S. Jang, S. M. Ji, S. W. Bae, H C. Son, J. S. Lee, Optimization of CdS/TiO_2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420 nm) [J], Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188: 112–119.
    [2] J. S. Jang, S. J. Hong, J.Y. Kim, J.S. Lee, Heterojunction photocatalyst TiO_2/AgGaS2 for hydrogen production from water under visible light[J], Chemical Physics Letters, 2009, 475: 78–81.
    [3] P. Bonamali, S. Maheshwar, N. Gyoichi, Preparation and characterization of TiO_2/Fe_2O_3 binary mixed oxides and its photocatalytic properties[J], Materials Chemistry and Physics, 1999, 59: 254–261.
    [4] H. L. Xia, H. S. Zhuang, T.Zhang, D. C Xiao, Visible-light-activated nanocomposite photocatalyst of Fe_2O_3/SnO_2[J], Materials Letters, 2008, 62: 1126–1128.
    [5] S.Y. Chai, Y. J. Kim, M.H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, Heterojunctioned BiOCl/Bi_2O_3, a new visible light photocatalyst[J], Journal of Catalysis, 2009, 262: 144–149.
    [6] M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation[J], J. Phys. Chem. B, 2002, 106: 12441-12447.
    [7] Y. L. Liu, L. J. Guo, W. Yan, H. T. Liu, A composite visible-light photocatalyst for hydrogen production[J], Journal of Power Sources, 2006, 159: 1300–1304.
    [8] T. Kako, N. Kikugawa, J.H. Ye, Photocatalytic activities of AgSbO_3 under visible light irradiation[J], Catalysis Today, 2008, 131: 197–202.
    [9] N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen, K. Sato, Overall Water Splitting by RuO2-dispersed Divalent-ion-doped GaN Photocatalysts with d10 Electronic Configuration[J], Chem. Lett., 2006, 35: 796.
    [10] K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Inoue, Photocatalysis for Water Decomposition by RuO2-Dispersed ZnGa_2O_4 with d10 Configuration[J], J. Phys. Chem. B, 2002, 106: 9048.
    [11] J. Singh, S. Uma, Efficient Photocatalytic Degradation of Organic Compounds by Ilmenite AgSbO_3 under Visible and UV Light Irradiation[J], J. Phys. Chem. C, 2009, 113:12483–12488.
    [12] Z. Cheng, K. Ozawa, M. Osada, A. Miyazaki, H. Kimura ,Low-Temperature Synthesis of NaNbO3 Nanopowders and their Thin Films from a Novel Carbon-Free Precursor[J], J. Am.Ceram. Soc., 2006, 89: 1188–1192.
    [13] Y. Guo, K. Kakimoto, H. Ohsato, Phase Transitional Behavior and Piezoelectric Properties of (Na_(0.5)K_(0.5))NbO_3-LiNbO_3 Ceramics[J], Appl. Phys. Lett. 2004, 85: 4121.
    [14] Y. J. Hsiao, Y. H. Chang, Y. S. Chang, T. H. Fang, Y. L. Chai, G. J. Chen, T. W. Huang, Growth and characterization of NaNbO3 synthesized using reaction-sintering method[J], Materials Science and Engineering B, 2007, 136: 129.
    [15] H. Shi, X. K. Li, D. F. Wang, Y. P. Yuan, Z. G. Zou, J. H. Ye, NaNbO_3 Nanostructures: Facile Synthesis, Characterization, and Their Photocatalytic Properties[J], Catal Lett., 2009, 132: 205–212.
    [16] G. Q. Li, D. F. Wang, Z. G. Zou, J. H. Ye, Enhancement of Visible-Light Photocatalytic Activity of Ag_(0.7)Na_(0.3)NbO_3 Modified by a Platinum Complex[J], J. Phys. Chem. C, 2008, 112: 20329–20333.
    [17] G. Q. Li, T. Kakoa, D. F. Wang, Z. G. Zou, J. H. Ye, Composition dependence of the photophysical and photocatalytic properties of (AgNbO_3)_(1-x)(NaNbO_3)_x solid solutions[J], Journal of Solid State Chemistry, 2007, 180: 2845–2850.
    [18] K. Katsumata, C. E. J. Cordonier, T. Shichi, A. Fujishima, Photocatalytic Activity of NaNbO3 Thin Films[J], J. AM. CHEM. SOC., 2009, 131: 3856–3857.
    [19] G. Q. Li, N. Yang, W. L. Wang, W. F. Zhang, Synthesis, Photophysical and Photocatalytic Properties of N-Doped Sodium Niobate Sensitized by Carbon Nitride[J], J. Phys. Chem. C, 2009, 113: 14829–14833.
    [20] H. Hosono, M. Yasukawa, H. Kawazoe, Conductivity studies on AgSbO_3 channel structure by impedance spectroscopy[J], Journal of Non-Crystalline SoLids, 1996, 203: 334-344.
    [21] V. Donchev, K. Kirilov, Ts. Ivanov, K. Germanova, Surface Photovoltage Phase Spectroscopy-a Handy Tool for Characterization of Bulk Semiconductors and Nanostructures[J], Materials Science and Engineering B, 2006, 129: 186–192.
    [22] L. Q. Jing, X. J. Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Du, H.G. Fu, Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J], Solar Energy Materials & Solar Cells, 2003, 79: 141.
    [23] J. F. Mccaan, A. Khan, THE ELECTROCHEMICAL ANDPHOTOELECTROCHEMICAL CHARACTERISTICS OF n-TYPE SODIUM NIOBATE[J], Electrochimica Acta, 1982, 27: 89-94.
    [24] F. Lenzmann, V. Shklover, K Brooks, M. G. Tzal, Mesoporous Nb_2O_5 Films: Influence of Degree of Crystallinity on Properties[J], Journal of Sol-Gel Science and Technology, 2000, 19: 175–180.
    [25] G. Q. Li, Y. Bai, X. Y. Liu, W. F. Zhang, Surface photoelectric properties of AgNbO_3 photocatalyst[J], J. Phys. D: Appl. Phys., 2009, 42: 235503-235506.
    [26] X. S. Liu, X.Y. Liu, G.Q. Li, W. F. Zhang, Enhancement of photogenerated charges separation inα-Fe_2O_3 modified by Zn2SnO4[J], J. Phys. D: Appl. Phys. 2009, 42: 245405-245409.
    [27] D. W. Chen, A.K. RAY, Photodegradation kinetics of 4-nitrophenol in TiO_2 suspension[J], Wat. Res.Vol., 1998, 32: 3223-3234.
    [28] J. Kochany, R. Bolton, Mechanism of photodegradation of aqueous organic pollutants[J], J. Phys. Chem., 1991, 95: 5116-5120.
    [29] X. Z. Li, W. Zhao, J. C. Zhao, Visible Light-sensitized Semiconductor Photocatalytic Degradation of 2,4-Dichlorophenol[J], SCIENCE IN CHINA (Series B), 2002, 45: 421-425.
    [30] J. C. Zhao, C. C. Chen, W. H. Ma, Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation[J] , Topics in Catalysis, 2005, 35: 3–4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700