ZnSnO_3气敏材料的制备及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的陶瓷半导体气敏材料主要有SnO_2、Fe_2O_3、WO_3、ZnO、In_2O_3等过渡金属氧化物,但这些材料大多是广普型的气敏材料,对气体的选择性并不好。虽然通过贵金属掺杂和制膜工艺的改进气敏选择性有所改进,但是又增加了成本。从20世纪80年代起,人们发现ZnSnO_3和LaFeO_3等钙钛矿复合金属氧化物材料用传统工艺制备的气敏元件就能表现出良好的敏感特性。随后就开始了大量的研究,成为近年来研究的热点。本文以ZnSnO_3为研究对象,分别对这种材料的纳米化制备、气敏性能、掺杂改性等方面进行实验研究;对其气敏机理也进行了初步的探索研究。
     本课题采用共沉淀法制备了ZnSnO_3的前驱体,再通过高温焙烧合成得到了钙钛矿型复合氧化物。XRD图谱分析表明:用超声波振荡分散和低温陈化新工艺制得ZnSnO_3为单相结构,产物中没有杂相出现;而制得的粉末纯度也比传统工艺制得粉末的纯度高。EDS分析表明粉末中都没有别的杂质元素。TEM分析表明新工艺合成的ZnSnO_3材料粒度均匀,粒径小于40nm。
     将不同工艺制得的ZnSnO_3粉末以及掺杂后的粉末制备成烧结型气敏元件在HW-30A气敏检测仪进行气敏测试。研究结果表明:超声振荡分散后,-15℃陈化10小时,在600℃空气中烧结5小时制得的烧结型ZnSnO_3气敏感传感器对乙醇的灵敏度达15.239,掺入一定量的金属氧化物能不同程度提高传感器对乙醇的灵敏度和选择性。在所有的氧化物掺杂剂中,La_2O_3能显著提高其灵敏度,最佳掺杂量为5%wt。此外,掺La_2O_3的ZnSnO_3传感器的回复-响应时间为10s左右;在有其它气体存在时,这种掺杂ZnSnO_3传感器仍然对乙醇有较高的选择性;稳定性也较好。SEM对敏感层表面分析表明:气敏特性和表面的气孔率、显微裂纹分布和晶粒大小有很大关系。
     目前对ZnSnO_3的研究主要集中在酒精等有机气体方面,对氢气的气体敏感性能研究还不多见。ZnSnO_3掺杂PdCl2后发现其对H2有较高灵敏度,实验发现最佳掺杂量为5wt%.在1500ppm的气氛下,对H2有较高的灵敏度,是纯的ZnSnO_3对H2的26倍,为63.485。在存在其他气体的干扰下,掺杂5wt%PdCl2制备的ZnSnO_3气体敏感材料仍然对氢气具有较高的选择性,对杂质气体的抗干扰能力强,回复-响应时间足够实际应用。
     用点缺陷理论和质量作用定律解释了ZnSnO_3的电阻和气体分压成指数关系。其中指数和不同气体在敏感层表面的吸附-脱附反应有很大关系。当两种以上气体存在时,根据气体表面覆盖度的不同,就产生了优先吸附的现象,这是选择性的原因。掺杂剂的作用机理或是对被检测气体有较大的亲和作用,使气体更容易吸附,加速吸脱附和氧化过程;或是能改变表面的酸碱性,促进反应的发生,而提高其选择性和灵敏度;或是抑制晶粒生长,从而充分利用晶粒尺寸效应,提高传感器的灵敏度和稳定性。
Traditional semiconductor ceramics gas sensitive materials are mainly some transition metal oxides including SnO_2、Fe_2O_3、WO_3、ZnO、In_2O_3 etc. However, these materials have still some insufficiencies in respects of selectivity, durability, and resistance to environmental influences such as higher temperature, humidity etc. Although much work has been done on the selection of additives and catalysts and on the improvement of production technology etc., things still fall short of the demand for quantitative detection. Consequently, in addition to the continued efforts to improve the existing materials, there is a constant exploration of new material aimed at obtaining gas sensors of better performance and still lower prices. This dissertation aims at an original zinc tin complex oxide (ZnSnO_3) based gas sensitive material. The nano-sized powder preparation, gas sensitive properties, gas-sensitive mechanics and modification of ZnSnO_3 have been researched.
     Perovskite-type ZnSnO_3 were prepared by the chemical coprecipitation method. Powders prepared by different preparation technology have been analyzed through X-ray diffraction. The results show: With the application of supersonic wave and hypothermia ageing technology to the coprecipitation method, nano-ZnSnO_3 powder prepared was purer than that prepared by the traditional coprecipitation method. Energy spectrum analysis indicated that there have been impurity elements in the powder. TEM analysis indicated that the powder was less than 40 nm and extraordinary mean.
     Gas sensitive characteristics of all agglomerate type sensors fabricated from the whole samples have been investigated mainly by means of HW-30A gas sensitivity detector. The following results could be highlighted: sensors that is manufactured from powders prepared by the technology of ultrasonic shock, ageing at -15℃for 10 hours and heat treated at 600℃for 5 hours have sensitivity(S=13.239 at the C2H5OH concentration of 1000 ppm), and some amount of metal oxide additive is helpful for sensitivity and electivity towards ethanol. Among all additives, sensitivity of sensors can be enhanced prominently by La_2O_3 addition and is twice more than sensor from pure ZnSnO_3 as well as the optimal addition amount is 5%wt. Moreover, the response and recovery time is about 10 S, and this sensor with La_2O_3 addition still has a strong selectivity to ethanol when other gases exist at the same time, as well as excellent stability. SEM analysis about sensitive layer indicated that pore and micro crack size distribution and grain size have all significant influences on gas-sensitive characteristic.
     The point defect theory and the mass action law were applied to explain to the index relationship of the resistance of the sensor and the concentration of the gas in experience. Index value was relation to the adsorption/desorption responses of different gas on the surface of sensitive layer. There being two distinct gases in environment, on the basis of the differentiation coverage of variant gases the phenomenon of priority adsorption come into being, so it appears selectivity to gas. Addition agents either have so biggish appetency for tracer ethanol that it is easy to adsorb and accelerate the course of adsorption/desorption responses, or alter surface pH value to accelerate ethanol decomposed, or restrain grain growth to improve sensitivity and stability of sensor.
引文
[1]高峰.中国传感器产业的特点和发展方向[J].电子产品世界, 2000, (6): 12, 20.
    [2]寇云起.气敏元件和传感器技术的发展现状[J].电子元器件应用, 2001, 3(4): 5~8.
    [3]白春礼主编.纳米科技现在与未来[M].成都:四川教育出版社, 2002: 149.
    [4] Wada K, Eashira M. Ceramic Society of Japan, 1998, 106:84.
    [5] Wada K, Eashira M. Ceramic Society of Japan, 1998, 106:621.
    [6] P.Ivanov, E.Llobet. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces[J]. Sensors and Actuators B, 2004, 99(2): 201~206.
    [7] M.A.Pena, J.L.G.Fierro. Chemical Strucure and Performance of Perovskite Oxides[J]. Chem.Rev, 2001, 101: 1981-2017.
    [8] Chonghe Li, etal. Formability of ABO3 perovskites[J]. Journal of Alloys and Compounds, 2004, 372: 40~48.
    [9] Ling-bing Kong, Yu-sheng Shen. Gas-sensing property and mechanism of CaxLa1-xFeO3 Cermmics[J]. Sensors and Actuators B, 1996, 30: 217~221.
    [10] Wu Xing-Hui, Wang Yu-De. Electrical and gas-sensing properties of perovskite-type CdSnO3 semiconductor material[J]. Materials Chemistry and Physics, 2002,77: 588–593.
    [11] Xing-Hui Wu, Yu-De Wang. Preparation and gas-sensing properties of perovskite-type MSnO3 (M=Zn, Cd, Ni) [J]. Materials Letters, 2002, 56: 732–736.
    [12] Shanwen Tao, Feng Gao. Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation[J]. Sensors and Actuators B, 2000,71: 223~227.
    [13]上官文峰等高纯超细BaSnO3球形粉料的研制[J].工业陶瓷, 1992, 53(3):2~3.
    [14]徐甲强.贵金属催化剂对锡酸锌气敏特性的影响[J].云南大学学报, 1997, 19(1): 79~82.
    [15]张玲等.钙钛矿结构La0.68Pb0.32FeO3纳米材料的制备及气敏特性研究[J].稀有金属材料与工程2004 33(3): 293~296.
    [16]牛新书等.纳米晶HoFeO3的合成及其气敏性能研究[J].化学物理学报, 2004, 17 (2):79~82.
    [17]靳建华等.用酒石酸凝胶法制备LaFeO3纳米晶[J].稀土, 2001, 22(2): 61~63.
    [18] S.Hodjati, K.Vaezzadeh. Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas[J]. Applied Catalysis B: Environmental, 2000, 26(1): 5~16.
    [19]卢周广等.锡酸盐和锆酸盐的水热法制备方法研究[M].长沙:中南大学2004: 1~50.
    [20]郑昌琼冉均国主编新型无机材料[M].北京:科学出版社2003:14.
    [21]徐甲强等. ZnSnO3纳米粉体的合成及其气敏特性研究[J].硅酸盐学报, 2002, 30(3): 331~334.
    [22] Yan-Li Liu, Yun Xing. Ethanol gas sensing properties of nano-crystalline cadmium stannate thick films doped with Pt[J]. Analytica Chimica Acta, 2004,527: 21–26.
    [23] Yude Wang, Jingbo Chen, Xinghui Wu. Preparation and gas-sensing properties of perovskite- type SrFeO3 oxide[J]. Materials Letters, 2001,49:.361~364.
    [24]陈敏,王幼文,郑小明.超细钙钛矿复合氧化物的制备和性能研究[J].无机化学学报, 2003, 19(10): 1145~1149.
    [25]赵善麒,徐宝琨等. LaFeO3栅膜FET气体传感器的研究[J].半导体学报, 1994, 15(2): 145~147.
    [26]索辉. La0.7Sr0.3FeO3纳米晶薄膜的制备及FET式气敏元件的研制[J].功能材料, 2000, 31: 59~61.
    [27]祁志美,张耀华.浸渍涂布法制备(CaxLal-x)FeO3薄膜及其气敏效应的研究[J].功能材料, 1994, 25(1): 59~63.
    [28]牛新书.柠檬酸体系中SmFeO3的合成及酒敏特性[J].传感器技术, 2003, 22(9): 5~7.
    [29]张天舒,沈瑜生. ZnSn03的制备工艺、物相组成对电导及气敏性能的影响[J]传感器学报1991, (2): 44~47.
    [30]王中长,刘天模,利佳等.高纯纳米ZnSnO3气敏材料的制备及气敏性能[J].硅酸盐学报, 2004, 32(12): 1555~1559.
    [31] Xiangfeng Chu,et al. PREPARATION AND GAS-SENSING PROPERTIES OF NANO- CoTiO3[J]. Materials Research Bulletin, 1999, 34: 1789–1795.
    [32]葛秀涛,高峰. YFeO3复合氧化物半导体材料的制备、掺杂和气敏性能研究[J].中国科学技术大学学报, 2000, 30(1): 92~98.
    [33] Peng Song, Jifan Hu. Preparation and ethanol sensitivity of nanocrystalline La0.7Pb0.3FeO3- based gas sensor[J]. Materials Letters, 2004, 58: 2610~2613.
    [34] P. Song. The structure, electrical and ethanol-sensing properties of La1?xPbxFeO3 perovskite ceramics with x≤0.3[J]. Sensors and Actuators B,2005,104: 312–316.
    [35]阎卫平,孙良彦.稀土钙矿型乙醇敏感材料的特性[J].吉林大学自然科学学报, 1991,(2): 52~56.
    [36] Ryoichi Mochinaga. Ethanol-sensing properties of SmCoO3/MOx (M=Zn, Fe, Sn, In) having a heterojunction in wet air[J]. Sensors and Actuators B, 2000, 66: 232–233.
    [37]何爱琴,陈志雄等. ABO3型结构陶瓷中的半导化问题[J].广州师院学报(自然科学版),1992, 1:9~14.
    [38]王中长,刘天模等.掺杂ZnSnO3气敏特性及实用性研究[J].材料科学与工程学报, 2005,23(1): 56~59.
    [39]张英,张继伦.提高乙醇气敏传感器性能的途径[J].传感技术学报, 2002, 3(1): 87~90.
    [40]周志刚,唐子龙,张中太. BaTiO3基PTCR气敏陶瓷的晶界化学研究[J].无机材料学报, 2004, 19: 571~578.
    [41] Yu-De Wang, Xing-Hui Wu, Zhen-Lai Zhou. A new type of semiconductor gas sensor based on the n+n combined structure[J]. Sensors and Actuators B, 2001, 73: 216~220.
    [42]范志新. CaO—SnO2气敏薄膜最佳掺杂含量的理论计算[J].真空, 2002, (4): 26~28.
    [43] Chu Xiang-feng. Dilute CH3SH-sensing characteristics of BaSnO3 thick film sensor[J]. Materials Science and Engineering B, 2004, 106: 305~307.
    [44] Uwe Lampe, Josef Gerblinger, Hans Meixner. Carbon-monoxide sensors based on thin films of BaSnO3[J]. Sensors and Actuators B, 1995, N-25: 657~660.
    [45] Uwe Lampe, Josef Gerblinger, Hans Meixner. Nitrogen oxide sensors based on thin films of BaSnO3 [J]. Sensors and Actuators B, 1995, 26-27: 97~98.
    [46] J. Cerda, J. Arbiol, G. Dezanneau. Perovskite-type BaSnO3 powders for high temperature gas sensor applications [J]. Sensors and Actuators B, 2002, 84: 21~25.
    [47] S. Hodjati, K. Vaezzadeh, C. Petit, V. Pitchon et al. Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas[J]. Applied Catalysis B: Environmental, 2000, 26: 5~16.
    [48] Shanwen Tao, Feng Gao, Xingqin Liu. Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation[J]. Sensors and Actuators B, 2000, 71: 223~227.
    [49]王中长,刘天模,余龙等.高纯纳米ZnSnO3气敏材料的制备及气敏性能[J].硅酸盐学报, 2004, 32(12): 1555–1559.
    [50]张天舒,沈瑜生. ZnSnO3的制备工艺,物相组成对电导及气敏性能的影响[J].传感技术学报, 1993, 2: 44–47.
    [51]徐甲强,刘艳丽,牛新书. ZnSnO3纳米粉体的合成及其气敏特性研究[J].硅酸盐学报, 2002, 30(3): 321–324.
    [52] Abdul-Majeed Azad , Nee Chen Hon. Characterization of BaSnO3-based ceramics Part 1: Synthesis, processing and microstructural development[J]. Journal of Alloys and Compounds, 1998, 270: 95~106.
    [53]上官文峰,吴立华,林云飞.高纯、超细BaSn03球形粉料的研制[J].工业陶瓷, 1992, 53(3): 2~3.
    [54] Wensheng Lu, Helmut Schmidt. Hydrothermal synthesis of nanocrystalline BaSnO3 using a SnO2·xH2O sol[J]. Journal of the European Ceramic Society, 2005, 25: 919~925.
    [55] M. Licheron, G. Jouan, E. Husson. Characterization of BaSnO3 powder obtained by a modifiedsol-gel route[J], J. Eur. Ceram. Soc., 1997, 17: 1453~1457.
    [56] YaminskyVV, YaminskayaKB, PertsovAV, etal. Nucleation and coagulation effects of ultrasound during precipitation in solution [J]. Kolloidnyi Zhurnal, 1991, 53(1): 100–104.
    [57]陈同云,古绪鹏,胡祥余.低温陈化法制备SO2-/ZrO2-TiO2超强酸及其催化性能和稳定性研究[J].无机化学学报, 2002, 18(4): 378–382.
    [58] Zhouguang Lu, Yougen Tang. Two-step synthesis and ethanol sensing properties of Zn2SnO4-SnO2 nanocomposites[J]. Materials Chemistry and Physics, 2005, 92: 5–9.
    [59] Kohji Mitsubayashia, Hiroyuki Matsunagab, Genki Nishiob, et al. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking[J]. Biosensors and Bioelectronics, 2005, 20: 1573–1579.
    [60] Dong Hyun Kim, Sang Hoon Lee, Kwang-Ho Kim. Comparison of CO-gas sensing characteristics between mono- and multi-layer Pt/SnO2 thin films[J]. Sensors and Actuators B, 2001, 77: 427-431.
    [61] Chang-bin Lim, Seajin Oh. Microstructure evolution and gas sensitivities of Pd-doped SnO2-based sensor prepared by three different catalyst-addition process[J]. Sensors and Actuators B, 1996, 30: 223-231.
    [62]王中长,刘天模,余龙等.高纯纳米ZnSnO3气敏材料的制备及气敏性能[J].硅酸盐学报, 2004, 32(12): 1555–1559.
    [63] Junhua Ding, Thomas J. McAvoy, Richard E. Cavicchi, Steve Semancik. Surface state trapping models for SnO2 based microplate sensors[J]. Sensors and Actuators B, 2001, 77: 597-613.
    [64] R.F. Hicks, H.Qi, M.L. Young, R.G.Lee. Effect of catalyst structure on methane oxidation over palladium on alumina[J]. J.Catal, 1990, 122: 295.
    [65] Jianqiao Hu, Furong Zhu, Jian Zhang, Hao Gong. A room temperature indium tin oxide /quartz crystal microbalance gas sensor for nitric oxide[J]. Sensors and Actuators B, 2003, 93: 175-180.
    [66] J.H. Yu, G.M.Choi. Current-voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors[J]. Sensors and Actuators B, 2001, 72: 141-148.
    [67] G.Williams, G.S.V.Coles. The gas sensing potential of nanocrystalline tin dioxide produced by a laser ablation technique[J]. Mater. Res. Soc. Bull., 1999, 24 (6): 25-29.
    [68] S. Nicoletti, L.Dori, F. Corticelli, M. Leoni, P. Scardi. Tin oxide thin film sensors for aromatic hydrocarbons detection: effect of aging time on film microstructure[J]. J. Am. Ceram. Soc., 1999, 82: 1201-1206.
    [69] Ji haeng Yu, Gyeong Man Choi. Selective CO gas detection of CuO- and ZnO-doped SnO2 gas sensor[J]. Sensors and Actuators B, 2001, 75: 56-61.
    [70]李欣,王刚。对石化公司氢气资源化利用探讨[J].炼化世界,2006,4: 24~26.
    [71] Paraguay D F, Miki-Yoshida M, M orales J, etal. Influnence of Al, In, Cu,Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour[J]. Thin Solid Film, 2000,373:137~140.
    [72] Bhooloka Rao B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour[J]. Materials Chemistry and Physics, 2000,64: 62~64.
    [73] Yasuhiro Shimizu, Eiichi Kanazawa,etal. Modification of H2-sensitive breakdown voltages of SnO2 varistors with noble metals[J]. Sensors and Actuators B, 1998, 52:38~44.
    [74]祁志美,张耀华,李民强等。SnO2-SiO2双层薄膜氢敏元件的特性研究.郑州轻工业学院学报[J].,1994,9(1):74~78.
    [75] A.Katsuki, K. Fukui. H2 selective gas sensor based on SnO2[J]. Sensors and Actuators B,1998,52:30~37.
    [76] R.F. Hicks, H.Qi, M.L. Young and R.G.Lee. Effect of catalyst structure on methane oxidation over palladium on alumina[J]. J.Catal, 122(1990):295.
    [77] Roopali Srivastava, R.Dwivedi etal. Development of high sensitivity tin oxide based sensors for gas/odor detection at room temperature, Sensors and Actuators B 50 (1998):175~180.
    [78]刘焕林,吴兴惠.偏锡酸锌气敏材料敏感机理的研究[J].功能材料, 1999, 30(5): 549–550.
    [79]张天舒,沈瑜生,晋传贵. ZnSn03陶瓷材料气敏特性与导电机理[J].应用化学, 1994, 11(2): 31–34.
    [80]徐毓龙,曹全喜,周晓华.金属氧化物半导体电阻型气敏传感器作用机理[J].传感技术学报, 1992, (2): 53~64.
    [81] Liu Huanlin, Wu Xinghui. The Relation between the Sensitivity and Heating Voltage of ZnSnO3 Gas Sensor[J]. Journal of Yunnan University, 1998,20(6): 417~419.
    [82]王中长,刘天模,利佳等.掺杂ZnSnO3气敏特性及实用性研究[J].材料科学与工程学报, 2005, 25(1): 56~59.
    [83] Morrisor S R. Semiconductor gas sensors. Sensor and Actuators, 1982, (2): 329~341.
    [84]徐毓龙,周晓华,曹全喜.氧化物半导体的表面过程与气敏机理[J].传感器技术, 1991, (6): 1~7.
    [85]康昌鹤,唐省吾.气、湿敏感器件及应用[M].北京:科学出版社, 1988.
    [86]郑昌琼冉均国主编新型无机材料[M].北京:科学出版社, 2003: 393-394.
    [87]黄鸿雁,潘喜军.化学量传感器[J].传感器技术, 1989, 3: 56-63.
    [88] J. F. McAleer. Tin dioxide gas sensor: Part 1[J]. Chen. Soc. Faraday. Trans, 1987, (1): 83.
    [89]王中长. ZnSnO3掺杂气敏特性及其机理模型研究[M].重庆:重庆大学硕士学位论文, 2004: 27~31.
    [90] D. Kovacheva, K. Petrov. Preparation of crystalline ZnSnO3 from Li2SnO3 by low temperature ion exchange[J]. Solid State Ionics, 1998, 109: 327–332.
    [91]刘焕林,吴兴惠.偏锡酸锌气敏材料敏感机理的研究[J].功能材料, 1999, 30(5): 549~550.
    [92]张天舒,沈瑜生,晋传贵. ZnSnO3陶瓷材料气敏特性与导电机理[J],应用化学,1994,11(2): 31~34.
    [93]徐毓龙主编.氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社, 1991:第二章.
    [94] Morrison S R. Selectivity in semiconductor gas sensors. Sensors and Actuators, 1987, 12: 425~440.
    [95]范志新. CaO—SnO2气敏薄膜最佳掺杂含量的理论计算[J].真空, 2002, (4): 26~28.
    [96]李标荣.气敏半导瓷及其敏感机理(上)[J].电子元件与材料, 1991, 10(1): 1~6.
    [97]黄昆,韩汝琦主编.半导体物理学[M],北京:高等教育出版社, 1988:第六章.
    [98] S. Roy Morrison著,赵璧英译.表面化学物理[M].北京:北京大学出版社, 1984,第二章,第六章.
    [99] S.V. Manorama, C.V. Gopal Reddy, V.J. Rao. X-ray photoelectron spectroscopic studies of noble metal-incorporated BaSnO3 based gas sensors[J]. Applied Surface Science, 2001, 174: 93~105.
    [100]栾桂冬编著.传感器及其应用[M],西安:西安电子科技大学出版社.2002, 5~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700