35kV魏玉线防雷水平的技术措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绵阳电业局有很多是为众多重要军工科研生产单位提供供电的35kV线路,线路走廊往往多为山区,所经地区地形情况十分复杂,土壤电阻率也较高。线路防雷措施较为薄弱,由于历史原因部分35kV线路还不是全线架设避雷线。据近几年的运行数据表明雷击35kV线路造成的电力系统运行事故屡有发生,严重影响我局的安全生产。因此结合绵阳电业局35kV线路实际情况研究提高35kV线路综合防雷措施具有非常重要的工程意义。
    本论文所研究的主要内容就是通过收集、总结我局35kV线路防雷运行资料,分析35kV线路防雷现况,并以我局典型的游仙分局35kV魏玉线路为研究对象,通过对该线路每基杆塔的现场实测数据来利用波过程理论建立数值计算模型。在考虑众多影响因素的基础上,对雷击35kV线路时雷电过电压进行数值计算,通过大量的数值模拟计算,研究如何提高其耐雷水平,特别是研究线路型避雷器经济合理的使用,以及降低雷击跳闸率的综合处理方法。
    通过研究发现,目前由于绵阳局35kV线路的特殊性,35kV线路普遍存在采用传统的防雷措施线路耐雷水平不高、雷击跳闸率偏高、运行维护也较为困难等问题,难以满足生产上的防雷要求,需对现行线路进行防雷综合措施的处理。处理方法包括加装避雷线、尽量减低线路杆塔接地电阻值、消弧线圈的合理使用和采用线路型避雷器。研究表明仅在35kV魏玉线路易击段杆塔上加装线路型避雷器后可提高各种情况下的线路耐雷水平2至4倍,并可大大降低线路雷击跳闸率。论文中还对杆塔接地电阻值大小变化和杆塔档距的大小变化对线路型避雷器使用的效果进行了研究。论文最后还对绵阳局今后防雷工作的开展,提高绵阳局线路防雷运行水平提出了建议和经济合理的方案。
In the substation of Mianyang, a majority of 35kV lines power the military plants for scientific research or manufacture. For the line corridor was a mountainous area with complex landform and high soil resistivity, the line lightning protection measure was weak. And for history reasons some 35kV lines were not all spanned with lightning conductor. The operation data in recent years reveals that the repeatedly accidents which caused by lightning striking 35kV lines heavily affected the safety of our manufacture. So it was worth studying synthetic lightning protection measures on demonstration of the situation of the Mianyan Bureau's 35kV lines.
    On the basis of collecting and summarizing the lightning protection data of our 35kV lines, this paper mainly analyzed the lightning protection status of 35kV line. With the demonstration of 35kV line of Youxian substation, it built a numeral value calculation model of on-line data of each pole. In terms of many factors, it studied on how to improve lightning withstand level, especially on how to use MOA economically and reasonably, and on the synthetic measures to decrease the lightning tripping outrage.
    It is found that, for the specialty of our 35kV lines, we should adopt synthetic lightning protection measures of power lines as the traditional measure could hardly keep up with the lightning protection requirement for its low line lightning protection level, high stripping outrage and bad maintenance. These measures include installation of lightning lines, decrease of the tower grounding resistance as far as possible, the reasonable use of arc suppressing coils and adoption of arresters. The investigation reveals that, the adoption of MOA on segments of 35kV Weiyu lines apt to lighting strike would improve the lightning withstand level to 2-4 times, and would heavily reduce the stripping outrage. This paper also discussed the influence of variation of tower grounding resistance or distance between towers to the effect of MOA. It also put forward feasible suggestion and scheme for our lightning protection work.
引文
[1] 张纬钹,高玉明,电力系统过电压与绝缘配合,清华大学出版社,1998年12月
    [2] 陈荣柱,35kV架空线路防雷探讨,中国电机工程学会高压专业委员会过电压与绝缘配合分专业委员会,学术年会论文集,2001年11月
    [3] 王永耀,35kV山区架空线路的防雷措施改进,华东电力,1996年第11期
    [4] 连家骅,山区输电线路降低雷电跳闸率的措施,电世界,1994年第4期
    [5] 陈学启、杨春雷、陈日常、何广昌,线路避雷器在输电线路防雷中的应用,中国电力,1995年第三期
    [6] 解广润,电力系统过电压,水利电力出版社,1985年6月
    [7] 杜澎春,高压输电线路防雷保护的若干问题,电力设备,2001年3月,第2卷,第1期
    [8] 高玉名,吴维韩,欧阳昌宜,有关线路避雷器标准和参数设计中的几个问题,中国电力,2001年2月,第34卷第2期
    [9] 董振亚,线路型金属氧化物避雷器应用范围探讨,中国电力,2001年2月,第34卷第2期
    [10] 程学启等,线路避雷器在输电线路防雷中的应用,中国电力,1999年第8期
    [11] 朱德恒,严璋,高电压绝缘,清华大学出版社,1992年2月
    [12] 任秉钧,金属氧化物避雷器,水利电力出版社
    [13] 蒋国雄,邱毓昌,避雷器及其高压试验,西安交通大学出版社,1989年5月
    [14] 中国电工技术学会,电工陶瓷专业委员会,中国电机工程学会输变电专业委员会电瓷避雷器分专业委员会氧化锌避雷器论文集,1986年3月
    [15] 白川晋吾,电气学会全国讲演论文集,1992年
    [16] (日)松浦虔士,电力传输工程,科学出版社
    [17] 何金良,欧阳昌宜,线路ZnO避雷器的发展概况,电网技术,1993,4,23~26
    [18] 王兰义,日本氧化锌避雷器的发展动向,电瓷避雷器,1999,3,27~32
    [19] 黄艳,氧化锌避雷器限制操作过电压的研究,高电压技术,1997,5,80~82
    [20] 曹重华,浅谈雷击对35kV线路合成绝缘子的影响,华东电力,2001年第3期
    [21] 赵爽喜,ZBX自动跟踪补偿消弧装置在35kV系统中的应用电网技术,2001年第25卷第5期
    [22] 王胜昌,35kV龙羊3608线山区无架空地线线路防雷,高电压技术,1999年第25卷第3期
    [23] 高日亮,35kV右元线避雷线断线原因分析及其对策,农村电气化,1994年第2期
    
    
    [24] G.V.podpolrkin,A.D.Sivaev,Lighting Portection of Distribution Lines by Long Flashover Arresters(LFA)
    [25] Shuji Furukawa, Osamu Usuda, Takashi Isozaki, Takashi Irie, Developent And Application Of Lightning Arresters For Transmission Line. IEEE T-PWRD, 1999, 10, 2121~2127
    [26] Takeo Wakai, Naoki Itamoto, Tutomu Sakai, and Msaaru Ishii, IEEE,T-PD, 2000, 4, 684~690
    [27] Furukawa S, et al. Development and application of lightning arresters for transmission lines. IEEE T-PD, 1989, 4, 2121~2129
    [28] Sadovic S, Joulie R. Useof line surge arresters for the improvement of the lighting performance of 63 kV and Trans on Power Delivery, 1997,12(3):1232
    [29] Koch R E. Design of Zinc Oxide Transmission Line Arrestes for Application on
    [30] 138Kv Towers. IEEE Trans. On PAS,1985,104(10)
    [31] Shih CH. Application of Special Arresters on 138Kv Lines of Application Power Company. IEEE Trans. On PAS,1985,104(10)
    [32] Christian H and Volker H. Diagnostics and monitoring of metal-oxide surge arresters in high-voltage networks-comparison of existing and newly developed procedures.IEEE Transaction on Power Delivery,2001,16(1):138
    [33] Mardira K P, Darveniza M and Saha T K. Search for new diagnostics for metal oxide surge arrester. Proceeding of the International Conference on Properties and Applications of Dielectric Materials, Xi'an, China 2000
    [34] P. Pinceti et al. , A simplified model for zinc oxidesurge arresters[J]. IEEE Trans. On Power Delivery, 14(2 ) , April 1 999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700