不同钙培养条件下几种木本植物对酸雨的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸雨作为世界十大环境问题之一,已越来越受到社会及学者的关注;酸雨会引起植物体及生态系统钙流失,从而严重危害植物生长,导致森林衰退。已有研究显示,外源钙的施加可以帮助受酸雨危害过森林的恢复,但不同钙浓度下植物对酸雨抗性如何尚缺乏研究;同时,目前对酸雨危害的研究也多集中在生理水平,少见机理层次的报道。基于以上两方面研究的重要性,本文以酸雨区主要物种马尾松(Pinus massoniana)、柳杉(Cryptomeria fortunei)、杉木(Cunninghamialanceolata)、枫香(Liquidambar formosana)、华山松(Pinus armandi)、锥栗(Fagaceae henryi)种子和幼苗为研究对象,研究其在3种钙水平上对酸雨的响应;并利用荧光差异凝胶电泳(DIGE)技术,分析酸雨处理下马尾松和湿地松(Pinus elliotii)幼苗蛋白质组学的变化。主要结果如下:
     pH3.0酸雨处理下,6种植物种子的活力、发芽率、发芽指数、胚根长度受到抑制;不同钙浓度对种子的发芽能力影响显著,高钙条件下种子发芽能力得到有效恢复,即钙能够缓解酸雨对植物种子的危害。不同植物对钙的喜好程度不同,恢复程度也存在种间差异。不同钙浓度下,酸雨对6种植物叶片表面伤害、叶绿素含量及净光合速率的影响程度不同,钙离子能够提高幼苗抵抗酸雨的能力;随钙浓度升高,叶片伤斑减小甚至消失,叶绿素含量升高,光合能力增强。
     经pH3.0酸雨处理马尾松幼苗2月,有35个蛋白的表达变化量在2倍以上;其中,下调蛋白点14个,上调蛋白点21个。对差异蛋白进行归类分析发现,酸雨处理可以下调3个Rubisico大亚基蛋白,致使光合作用效率降低。同时,蔗糖磷酸酶、丙酮酸脱氢酶、磷酸甘油醛脱氢酶、磷酸核酮糖激酶、果糖二磷酸醛缩酶、苯醌氧化还原酶表达量下降,导致糖酵解、磷酸戊糖途径、脂肪酸代谢等生理活动不能正常进行。另一方面,酸雨胁迫可以导致ATP合成酶、颗粒结合型淀粉合成酶、叶绿体苹果酸脱氢酶的表达量升高,上调机体内这些能量相关酶的表达,增加对酸雨胁迫的抗性。此外,酸雨胁迫还可以下调赤霉素氧化酶、异黄酮还原酶、胆色素脱色氨酶、脱氢奎尼酸合成酶等与次生代谢相关酶的表达。最后,酸雨胁迫下,与Ca~(2+)有关的单二氢抗坏血酸还原酶、热激蛋白、过氧化物酶的表达量升高,致使机体对酸雨的抗性提高。
     总之,酸雨胁迫对植物体的影响影响是多途径的,机体则通过降低自身能量损耗及激活其他能量途径来保证能量供应,维持正常生长;钙离子可以诱导植物体过量表达相关蛋白,提高对酸雨胁迫的抗性。
As one of the world's top ten environmental issues,acid rains have attracted more and more attentions of society and scholars.Acid rains could deplete the calcium from the plants or ecosystems,lead to serious negative effects on plant growth,and thus cause the decay of forests.The application of exogenous calcium have previously been reported to aid in the recovery of forest that was damaged by acid rains,however,few studies have been performed to compare the resistance to acid rain under different calcium concentrations.On the other hand,many researchers have devoted their attentions to impacts of acid rains on physiology but not on mechanism levels.Base on the above significances of acid rain effects,this thesis was designed to investigate the effects of acid rains on plant seeds and seedlings of Pinus massoniana,Cryptomeria fortune,Cunninghamia lanceolata,Liquidambar formosana,Pinus armandi and Fagaceae henryi at three calcium concentrations levels.And also,difference gel electrophoresis(DIGE) technology was used to determine the variations of the proteomics in Pinus massoniana and Pinus elliotii under acid rains stress.The main results are as follows:
     The vigor index,seed germination rate,germination index and radicle length of the six kinds of plant seeds were significantly inhibited by pH 3.0 acid rain treatment.; Calcium play an important role in seed germination with higher germination ability at higher calcium condition,indicating the alleviation of the acid rain induced damage on seed.There was an inter-specific difference of the restoration extent since the plants have different needs for calcium.Different damages of acid rains on the leaf necrosis,chlorophyll content and net photosynthetic rate of the six plants were observed at different calcium concentrations;and the seedling was more resistant to acid rains stress at higher calcium concentration.As an increase of calcium concentration,damage-areas caused by acid rains on leaves reduced or even disappeared and chlorophyll content and photosynthetic capacity increased.
     After 2 months treated by pH 3.0 acid rains,35 proteins expression with at least a 2-fold changed were observed in seedling of Pinus massoniana,therein 14 proteins being down-regulated and 21 proteins being up-regulated.Due to the acid rains stress, there were 3 down-regulated proteins belonging to Rubisico large subunits;and caused the reduction of the plant photosynthesis.At the same time,several energy metabolism-related proteins were also detected to be down-regulated,such as sucrose-phosphatase,pyruvate dehydrogenase,glyceraldehyde-phosphate dehydrogenase,phosphoribulokinase,fructose-bisphosphate aldolase,Quinone oxidoreductase,which are key enzyme of glycolysis,pentose phosphate and fatty acid metabolism pathway.The above results indicate acid rain can influence the activity of protease and further influence plant's physiological processes.
     Acid rain also lead to other energy-related protein expression increased.Such as ATP synthase,granule-bound starch synthase,malate dehydrogenase et al.It means plant rely on more energy supply by other energy pathway in order to increase resistance to acid rain.Acid rain induce Pinus massoniana secondary metabolites enzyme express change,such as caffeate O-methyltransferase,putative gibberellin 20-oxidase,phenylcoumaran benzylic ether reductase,3-dehydroquinate synthase.At last,the resistance-related proteins are up regulated to resist acid rain stress.Such as peroxiredoxin,Hsp70,monodehydroascorbate reductase.
     In a word,acid rain stress has a great impact on various plants' metabolic pathways.In order to ensure the normal growth of the seedling,plant can reduce their energy consumption or activate the other pathway of energy.We also find some stress related proteins are over expression by the supply of calcium.It means that calcium can improve the resistance to aicd rain.
引文
[1]冯宗炜.中国酸雨的生态影响和防治对策[J].云南环境科学,2000,19(S1):1-6.
    [2]张晓勇,王振红.当前酸雨形势和治理对策[J].环境科学与管理,2007,32(8):85-8.
    [3]王文兴.中国酸雨成因研究[J].中国环境科学,1994,14(5):323-9.
    [4]冯砚青.中国酸雨状况和自然成因综述及防治对策探究[J].云南地理环境研究,2004,16(1):25-8.
    [5]丁国安,徐晓斌,王淑凤等.中国气象局酸雨网基本资料数据集及初步分析[J].应用气象报,2004.15:85-94.
    [6]Mooney H,Vitousek P M,Matson P A.Exchange of materials between terrestrial Ecosystems and the atmosphere[J].Science,1987,238:926-32.
    [7]Kaiser J.Environmental policy-the other global pollutant:nitrogen proves tough to curb[J].Science,2001,294(5545):1268-9.
    [8]Roda F,Avila A,Rodrigo A.Nitrogen deposition in Mediterranean forests[J].Environ Pollut,2002,118(2):205-13.
    [9]Agren G I,Bosatta E.Nitrogen saturation of terrestrial ecosystems[J].Environ Pollut,1988,54(3-4):185-97.
    [10]Aber J M W,Nadelhoffer K.Nitrogen saturation in temperate forest ecosystems Hypotheses revisited[J].BioScience,1998,48(2):921-34.
    [11]Tissue D T,Griffin K L,Turnbull M H,et al.Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure[J].Tree Physiol,2001,21(12-13):915-23.
    [12]Kurz W A,Apps M J.The carbon budget of Canadian forests:a sensitivity analysis of changes in disturbance regimes,growth rates,and decomposition rates[J].Environ Pollut,1994,83(1-2):55-61.
    [13]Mcnulty S G,Aber J D,Newman S D.Nitrogen saturation in a high elevation New England spruc-fir stand[J].ForEcolManage,1996,84(5):109-21.
    [14]Ulrich B.Waldsterben:forest decline in West Germany[J].Environmental Science and Technology,1990,24(6):436-41.
    [15]Arp P A.Aluminium Speciation in Soil solution:Equilibrium Calculations.[J].Water,Air and Soil Pollutio,1986,31(27):366-89
    [16]康德梦,庞叔藻.西南酸雨地区土壤中铝溶出规棒的探讨[J].环境科学学报,1987,7(2):221-30.
    [17]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998,35(2):162-71.
    [18]朱茂旭,蒋新,季国亮.酸性条件下红壤中铝的活化及环境意义[J].地球化学,2002,31(4): 361-5.
    [19]Mulder J,Stein A.The solubility of aluminum in acidic forest soils:long-term changes due to acid deposition[J].Geochim Cosmochim Acta,1994,58(1):85-94.
    [20]Rengel Z.Role of calcium in aluminum toxicity[J].New Phytol 1992,12(1):499-513.
    [21]Li P J,Stagnitti F,Xiong X,et al.Temporal and spatial distribution patterns of heavy metals in soil at a long-standing sewage farm[J].Environ Monit Assess,2009,149(1-4):275-82.
    [22]Mats A,Ake L,Lage B.Monitoring of heavy metals in protected forest catchments in Sweden[J].Water Air Soil Poll,1995,2(17):755-60.
    [23]John D,Antti-Jussi L.Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter,SW Finland [J].EnvironPoll,1998,99(48):225-32.
    [24]Michopoulo P.Lead migration in some acid forest soils under Beech in Greece[J].J Envron Qual,1999,27(9):1705-8.
    [25]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对红壤中铝和水溶性有机质溶出及重金属活动性的影响[J].土壤学报,2003,40(3):380-5.
    [26]汪雅谷,盛沛麟,袁大伟.模拟酸雨对土壤金属离子的淋溶和植物有效性的影响[J].环境科学学报,1988,9(2):22-6.
    [27]陈照喜,王晓蓉,田笠卿.模拟酸雨下土壤中稀土元素的环境行为和植物可利用性研究[J].环境科学学报,1995,15(1):32-8.
    [28]Hutchinson T C,Watmough S A.The impact of simulated acid rain and fertilizer application on a mature sugar maple(Acer saccharum Marsh.) forest in central Ontario Canada[J].Water,Air,and Soil Pollution,1999,109(9):17-39.
    [29]凌大炯,章家恩,欧阳颖.酸雨对土壤生态系统影响的研究进展[J].土壤,2007,39(4):514-21.
    [30]Schaberg P G,Dehayes D H,Hawley G J.Anthropogenic calcium depletion:A unique threat to forest ecosystem health?[J].Ecosystem Health,2001,7(4):214-28.
    [31]Tomlinson G H.Acidic deposition,nutrient leaching and forest growth[J].Biogeochemistry,2003,65(1):51-81.
    [32]Zeng G M,Zhang G,Huang G H.Exchange of Ca~(2+),Mg~(2+) and K~+ and uptake of H~+,NH4~+ for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in CentralSouth China[J].Plant Science,2005,268(459):259-66.
    [33]Ling D J,Zhang J E,Ouyang Y.Advancements in research on impact of acid rain on soil ecosystem:a review.[J].Soils,2007,39(4):514-21.
    [34]Fan H B,Lin D X.Leaching and weathering effects of simulated acid rain on four types of mountain soils in fujin,China.[J].Journal of Mountain Scienc,2002,20(5):570-7.
    [35]Xia H P,Yu Q F,Zhang D Q.The soil acidity and nutrient contents,and their characteristics of seasonal dynamic changes under 3 different forests of Dinghushan nature reserve[J].Acta Ecologica Sinica,1997,17(6):645-53.
    [36]刘可慧,彭少麟.酸沉降对森林植物影响过程和机理[J].生态环境,2005,14(6):953-60.
    [37]Dehayes D H,Schaberg P G,Gary J.Acid rain impacts on calcium nutritio and forest health[J].BioScience,1999,49(10):789-800.
    [38]Neuvonen S,Nyyssonen T,Ranta H.Simulated acid rain and the reproduction of mountain birch [Betula pubescens ssp.tortuosa(Ledeb.) Nyman]:a cautionary tale.[J].New Phytol,1991,118(1):111-7.
    [39]Fujinuma R,Bockheim J,Balster N.Base-cation Cycling by Individual Tree Species in Old-growth Forests of Upper Michigan,USA[J].Biogeochemistry,2005,74(3):357-76.
    [40]Duchesne L,Ouimet R,Moore J-D.Changes in structure and composition of maple-beech stands following sugar maple decline in Qu(?)bec,Canada[J].Forest Ecology and Management,2005,208(1-3):223-36.
    [41]Qiu D L,Liu X H,Guo S Z.Effects of simulated acid rain on fertility of litchi.[J].Journal of Environmental Sciences-China,2005,17(6):1034-7.
    [42]Juice S M,Fahey T J,Siccama T.Response of sugar maple to calcium addition to Northern Hardwood Forest[J].Ecology,2006,87(5):1267-80.
    [43]Likens G E,Driscoll C T,Buso D C.Long-term effects of acid rain:response and recovery of a forest ecosystem[J].Science,1996,272(5259):244-6.
    [44]叶盛,汪东风,丁凌志等.植物体内钙的存在形式研究进展[J].安徽农业大学学报,2000,27(4):417-21.
    [45]Jaffe L A,Weisenseel M H,Jaffe L F.Calcium accumulations within the growing tips of pollen tubes[J].Cell Biol,1975,67:488-92.
    [46]Gilroy S,Bethke P C,Jones R L.Calcium Homeostssis in plants[J].Cell Sci,1993,106:453-62.
    [47]Scheenen W J,Jenks B G,Van Dinter R J,et al.Spatial and temporal aspects of Ca~(2+) oscillations in Xenopus laevis melanotrope cells[J].Cell Calcium,1996,19(3):219-27.
    [48]白昌华,田世平.果树钙营养研究[J].果树科学,1989,6(2):121-4.
    [49]崔彦宏,张桂银,郭景伦等.高产夏玉米钙的吸收与再分配研究[J].河北农业大学学报,1994,10(4):25.
    [50]陈由强,叶冰莹,朱锦惫.低温胁迫下龙眼幼叶细胞内Ca~(2+)水平及细胞超微结构[J].植物资源与环境学报,2000,9(1):12-5.
    [51]尚忠林,毛国红,孙大业.植物细胞内钙信号的特异性[J].植物生理学通讯,2003,39(4):93-101
    [52]Moore C A,Bowen H C,Scrase-Field S,et al.The deposition of suberin lamellae determines the magnitude of cytosolic Ca~(2+) elevations in root endodermal cells subjected to cooling[J].Plant J,2002,30(4):457-65.
    [53]White P J.The pathways of calcium movement to the xylem[J].J Exp Bot,2001,52(358):891-9.
    [54]Yang H Q,Jie Y L.Uptake and transport of calcium in plants[J].Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao,2005,31(3):227-34.
    [55]彭抒昂.梨果实发育中Ca~(2+)在果肉细胞的定位及变化研究[J].园艺学报,2001,28(6):497-503.
    [56]张士功.硝酸钙对小麦幼苗生长过程中盐害的缓解作用[J].麦类作物,1998,18(5):59-62.
    [57]Peter M,Groffman,Melany C.F,et al.Calcium additions and microbial nitrogen cycle processes in a Northern Hardwood Forest[J].Ecosystems,2006,9(2):1289-305.
    [58]刘剑锋,唐鹏,彭抒昂.采后浸钙对梨果实不同形态钙含量及生理生化变化的影响[J].华中农业大学学报,2004,23(5):560-2.
    [59]杨廷良,崔国贤,罗中钦等.钙与植物抗逆性研究进展[J].作物研究,2004,5:380-4.
    [60]Epstein E.How calcium enhances plant salt tolerance[J].Science,1998,280:1906.
    [61]袁清昌,许长成,邹琦.钙以及钙调素拮抗剂对小麦幼苗LOX活性的影响[J].植物生理学通讯,1997,23(4):266-9.
    [62]关军锋.钙与果实生理生化的研究进展[J].河北农业大学学报,1991,14(4):105-9.
    [63]李湘麒,熊月明,陆修闽.柑橘钙素营养研究综述[J].福建果树,2001,1(13-9.
    [64]阎国华.Ca(NO_3)_2对盐胁迫下大豆离体胚再生植株保护系统的影响[J].山西农业大学学报,1996,16(3):222-5.
    [65]汪良驹 等.钙在无花果细胞盐诱导脯氨酸积累中的作用[J].植物生理学报,1999,5(1):38-42.
    [66]章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用[J].植物生理学通讯,2000,36(2):146.
    [67]Liu J P,Zhu J K.A Calcium Sensor Homolog Required for Plant Salt Tolerance[J].Science,1998,280(5317):1943-5.
    [68]安国勇,董发才,胡楠.盐胁迫条件下钙对小麦根细胞膜电位和钾离子吸收的影响[J].河南大学学报,2002,32(3):25-8.
    [69]龚明,刘兴富.钙对玉米幼苗抗盐性的效应[J].植物生理学通讯,1994,30(6):429-32.
    [70]Pei Z M,Murata Y,Benning G,et al.Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J].Nature,2000,406(6797):731-4.
    [71]程林海,唐连顺,张原根等.钙处理对土壤干旱下棉花叶片水分状况、光合作用及呼吸速率的影响[J].山西农业科学,1995,23(3):23-6.
    [72]郭礼坤.钙与赤霉素合剂(Ca~(2+) GA)处理种子的抗旱增产效果及原理[J].水土保持研究,1998,5(1):79-87.
    [73]檀建新,董永华,张伟等.钙对渗透胁迫下玉米幼苗内源激素和多胺含景的影响[J].植物生理学通讯,1998,34(2):94-6.
    [74]Reveni R,Reveni M.Foliar fertilizer therapy-A concept in integrated pest management[J].Crop Prot,1998,17:111-8.
    [75]Kawano T S,Takahashi K.Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture:The earliest events in salicylic acid signal transduction.[J].Plant Cell Physiol,1998,39:721-30.
    [76]Peng H X,Sivasithamparam K,Turner D W.Chlamydospore germination and fusarium wilt of banana plantlets in suppressive and conductive soils are affected by physical and chemical factors [J].Soil Biol Biochem,1999,31:1363-3741.
    [77]Reddy a S,Day I S,Narasimhulu S B,et al.Isolation and characterization of a novel calmodulin-binding protein from potato[J].J Biol Chem,2002,277(6):4206-14.
    [78]Chung W S,Lee S H,Kim J C,et al.Identification of a calmodulin-regulated soybean Ca~(2+)-ATPase(SCAI) that is located in the plasma membrane[J].Plant Cell,2000,12(8):1393-407.
    [79]Subbaiah C C,Sachs M M.Maize capl encodes a novel SERCA-type calcium-ATPase with a calmodulin-binding domain[J].J Biol Chem,2000,275(28):21678-87.
    [80]Haeseleer F,Imanishi Y,Sokal I,et al.Calcium-binding proteins:intracellular sensors from the calmodulin superfamily[J].Biochem Biophys Res Commun,2002,290(2):615-23.
    [81]White P J,Bowen H C,Demidchik V,et al.Genes for calcium-permeable channels in the plasma membrane of plant root cells[J].Biochim Biophys Acta,2002,1564(2):299-309.
    [82]Zhang T,Wang Q,Chen X,et al.Cloning and biochemical properties of CDPK gene OsCDPK14from rice[J].J Plant Physioi,2005,162(10):1149-59.
    [83]宋秀芬,洪剑明.植物细胞中钙信号的时空多样性与信号转导[J].植物学通报,2001,18(4):436-44.
    [84]Marten H,Konrad K R,Dietrich P,et al.Ca~(2+)-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum[J].Plant Physiol,2007,143(1):28-37.
    [85]Merlot S,Leonhardt N,Fenzi F,et al.Constitutive activation of a plasma membrane H~+-ATPase prevents abscisic acid-mediated stomatal closure[J].EMBO J,2007,26(13):3216-26.
    [86]Murata Y,Pei Z M,Mori I C,et al.Abscisic acid activation of plasma membrane Ca~(2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants[J].Plant Cell,2001,13(11):2513-23.
    [87]龚明,李勇军,李忠光等.钙信使系统在植物对热胁迫信号的传导、响应与适应中的作用[J].植物环境生理学术讨论会论文汇编,1999,
    [88]Reddy V S,Reddy A S.Proteomics of calcium-signaling components in plants[J].Phytochemistry,2004,65(12):1745-76.
    [89]Kellnet R.Proteomie-Concepts and perspectives.[J].Fresenius' J Anal Chem,2000,366(99):517-524.
    [90]Kersten B L,Kuhn E J,Giavalisco P K,et al.Large-scale plant proteomics[J].Plant Mol Biol,2002,48:133-41.
    [91]Gorg O C,Boguth G T.The current state of two-dimensional electrophoresis with immobilized pH gradients[J].Electrophoresis,2000,21:1037-53.
    [92]Alison A.A post-genomic challenge:learning to read patterns of protein synthesis[J].Nature,1999,402(915):233-7.
    [93]Boguski M S,Mcintosh M W.Biomedical informatics for proteomics.[J].Nature,2003,422(6928):233-7.
    [94]Wang S,Regnier F.Proteomics bases on selecting and quantifying cysteine containing peptides by covalent chromatography[J].J Chromatogr 2001,924:345.
    [95]Karp N A,Kreil D P,Lilley K S.Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gelelectrophoresis[J].Proteomics,2004,4(5):1421-32.
    [96]Casati P,Zhang X,Burlingamea L.Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity[J].Mol Cell Proteomics,2005,4(11):673-1685.
    [97]Tonge R,Shaw J,Middleton B.Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology[J].Proteomics,2001,1(3):377-96.
    [98]苏正淑,张宪政.几种测定植物叶绿素含量的方法比较[[J].植物生理学通讯,1989,25(5):77-8.
    [99]Saravanan R S,Rose J K.A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues[J].Proteomics,2004,4(9):2522-32.
    [100]Fulda S,Huang F,Nilsson F,et al.Proteomics of Synechocystic sp.strain PCC 6803[J].Eur.J.Biochem,2000,267:5900-5907.
    [101]王勋陵,鲁晓云.钙对臭氧伤害小麦的防护作用[J].西北植物学报,1993,13(3):163-9.
    [102]陈士林,卫秀英,赵新亮.赤霉素和钙对玉米种子萌发的效应[J].种子,2004,4(3):47-9.
    [103]商桑,田丽波,黄绵佳.模拟酸雨对茄科3种蔬菜种子萌发的影响[J].植物研究,2007,27(4):493-9.
    [104]周青,黄晓华,叶亚新.铈对酸雨胁迫下大麦种子萌发的影响[J].中国稀土学报,2000,18(3):261-4.
    [105]张洁宝,郁继华,李雯琳.外源Ca~(2+)对NaCl胁迫下辣椒种子萌发的影响[J].甘肃农业大学学报,2007,42(5):64-7.
    [106]唐静,韩宇,陈康等.钙离子参与一氧化氮促进盐胁迫下的玉米种子萌发[J].植物生理学通讯,2007,43(3):421-4.
    [107]高景慧,张颖,高春起等.外源Ca~(2+)浸种对Cd~(2+)胁迫下红三叶种子萌发和幼苗生长及其生化特性的影响[J].西北植物学报,2007,27(9):1814-9.
    [108]王小明,余小平.IAA和Ca~(2+)对绿豆下胚轴切端伸长的影响及其相互关系[J].西北植物学报,1993,13(2):84-6.
    [109]陈锐章.模拟酸雨对大豆、花生生长和产量的影响[J].生态学杂志,1990,9(5):58-60.
    [110]Park J B,Lee,S.Growth responses of Arabidopsis thaliana exposed to simulated acid rain[J].Journal of the Korean Society for Horticultural Science,1999,40(1):146-51.
    [111]吕均良,李三玉,黄寿波等.模拟酸雨对葡萄叶片和花粉的影响[J].应用与环境生物学报,1999,5(5):459-63.
    [112]宰学明,钦佩,吴国荣等.外源钙对高温胁迫下花生幼苗叶绿体Ca~(2+)-ATPase、Mg~(2+)-ATPase 活性及Ca~(2+)分布的影响[J].中国油料作物学报,2005,27(4):41-4.
    [113]张宗申,利容千,王建波.外源Ca~(2+)预处理对高温胁迫下辣椒叶片细胞膜透性和GSH、ASA 含量及Ca~(2+)分布的影响[J].植物生态学报,2001,250(2):230-4.
    [114]Muthuchelian K N,N.Kulandaivelu,G.Effect of simulated acid rain on ~(14)CO_2 fixation,ribulose-1,5-bisphate carboxylase and nitrate and nitrite reducatases in Vigna sinensis and Phaseolus mungo[J].Photosynthetica,1993,28(3):361-7.
    [115]Turunen M H,S.Percy,K E.Epicuticular wax of subarctic Scots pine needles:Response to sulphur and heavy metal deposition[J].New Phytol,1997,135(3):501-15.
    [116]余春珠,温达志,彭长连.三种木本植物对酸雨的敏感性和抗性[J].生态环境,2005,14(1):86-90.
    [117]邱栋梁,刘星辉,郭素枝.模拟酸雨胁迫下钙对龙眼光合功能的调节作用[J].应用生态学报,2002,13(9):1072-6.
    [118]周希琴.木麻黄幼苗对模拟酸雨胁迫的响应和Ca~(2+)的调节作用[J].植物生理学通讯,2005,41(3):309-12.
    [119]周青,黄晓华,王冬燕等.钙对酸雨胁迫下甜瓜幼苗质膜透性的影响[J].环境科学,1997,16(3):241-7.
    [120]Jiang Y,Deyhoios M K.Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J].BMC Plant Biol,2006,6(25):15-20.
    [121]Tsai C J,Popko J I,Mielke M.Suppression of O-Methyltransferase Gene by Homologous Sense Transgene in Quaking Aspen Causes Red-Brown Wood Phenotypes[J].Plant Physiol,1998,117(2):101-12.
    [122]Carrera E J,Prat S.Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato[J].Plant Physiol,1999,119(2):765.
    [123]Ogura T,Wilkinson A.AAA+ superfamily ATPases:common structure-diverse function[J].Genes to Cells,2001,6(7):575-97.
    [124]Wang X,Yang P,Gao Q.Proteomic analysis of the response to high-salinity stress in Physcomitrella patens[J].Planta,2008,228(1):167-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700