锰矿尾渣污染土壤的植物修复以及土壤改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酶活性是衡量土壤生物学活性和土壤生产力的重要指标。对湘潭锰矿尾渣库地区商陆(Phytolacca acinosa Roxb.)和芦苇(Phragmites australis)根际和非根际土壤酶的活性特征进行了研究,结果表明,商陆根际土壤各种酶的活性显著大于非根际土壤。商陆根际环境对土壤酶活性的影响表现为:蔗糖酶>脲酶>脱氢酶>酸性磷酸酶>过氧化氢酶,根际效应值(R/S)分别为:1.687、1.598、1.586、1.485和1.328。除过氧化氢酶活性外,商陆根际和非根际土壤各种酶活性与重金属复合污染程度显著负相关,表现出重金属复合污染对土壤酶活性的抑制效应。芦苇可显著地提高根际土壤酶的活性,芦苇根际环境对不同土壤酶活性的影响顺序为:蔗糖酶>脱氢酶>过氧化氢酶>酸性磷酸酶>脲酶,根际效应值分别为1.759、1.485、1.425、1.406、1.394。商陆和芦苇均可有效地改善土壤环境,提高土壤各种酶的活性,是锰污染土壤植物修复的理想植物。
     锰尾渣重金属含量高,理化性质差,在配制的受锰尾渣轻度污染的土壤上施用3种改良剂:熟石灰、钙镁磷肥、熟石灰+钙镁磷肥(1:1)混合改良剂,并种植小白菜,通过研究不同改良剂处理下,作物幼苗期SOD活性、MDA积累量,收获后植物生物量、植物体重金属含量、土壤pH、土壤重金属形态等理化性质的差异,得到以下研究结果:
     (1)锰尾渣污染的土壤中,高浓度的重金属会抑制作物的生长,降低生物产量,甚至导致作物死亡。在污染土壤中加入改良剂后,三种改良剂可以有效地缓解重金属对小白菜的毒害。
     (2)土壤受到锰尾渣污染会对作物生理生化活动产生影响,在小白菜幼苗期间表现为作物体内MDA积累量增加和SOD酶活性增加,三种改良剂处理后作物体内MDA积累量会降低,SOD活性也有所恢复,说明改良剂处理会缓解锰尾渣中重金属污染对小白菜生长产生的危害。
     (3)植物吸收土壤中重金属的量不仅与重金属总量有关,更重要的是取决于土壤中重金属有效态含量的多少,向污染土壤中添加熟石灰、钙镁磷肥、熟石灰+钙镁磷肥(1:1)混合改良剂后,土壤中有效态Mn、Cd、Pb含量下降显著,其中,土壤有效Mn含量的下降极显著。
The study on the soil enzyme activities in Phytolacca acinosa Roxb. rhizosphere and non-rhizosphere soil of Xiangtan manganese mine showed that all tested enzyme activities were higher in rhizosphere than in non-rhizosphere soil. The effects of rhizosphere environment on the soil enzyme activities were in the sequence of invertase > urease >dehydrogenase> acid phosphatase >catalase, and the R/S value was1.687, 1.598, 1.586, 1.485, 1.328, respectively. The tested enzyme activities were negatively correlated with soil heavy metals pollution except catalase activity, suggesting the inhibitory effects of heavy metals joint pollution on soil enzyme activities. Soil enzyme activities of rhizosphere and non-rhizosphere soil of Phragmites australis in Xiangtan manganese mine had also been studied. The effects of rhizosphere environment on the soil enzyme activities were in the sequence of invertase > dehydrogenase > catalase >acid phosphatase>urease, and the R/S value was 1.759, 1.485, 1.425, 1.406, 1.394, respectively. Both Phytolacca acinosa Roxb. and Phragmites australis could effectively improve soil environment, and thus, enhance the activities of soil enzymes. Both of the two kinds of plants were good candidates of Phytoremediation for manganese polluted soil.
     Manganese mine tailings were rich in heavy metal and had poor physical properties. The differences in the activity of SOD and accumulation of MAD in plant max seedling, production of plants, metal content, soil pH, morphology of soil metals etc. were studied through pot culture experiment which used low-grade polluted soil by manganese mine tailings, followed by adding different level of lime, calcium magnesium phosphate, mixture of lime and calcium magnesium phosphate respectively. The results showed that:
     (1) Heavy metal did great harm to plant and decreased the production of cabbage, however, adding lime, calcium magnesium phosphate, mixture of lime and calcium magnesium phosphate could increase the production significantly. The three additives could relief the toxicity to cabbage significantly.
     (2) The MDA content and the activity of SOD in the cabbage were increased under heavy metal stress. Adding lime, calcium magnesium phosphate, mixture of lime and calcium magnesium phosphate could decrease the MDA content and the activity of SOD in the body of plants.
     (3) The content of Mn, Cd, Pb adsorbed by plants was related positively to the content of available Mn, Cd, Pb in soils, and the latter was influenced by the soil pH. The available Mn, Cd, Pb decreased significantly after adding lime, calcium magnesium phosphate, mixture of lime and calcium magnesium phosphate to the soil, especially the available Mn.
引文
[1]杨立全.甘蓝抗重金属污染的研究.山西农业科学,2002,30(4):60-62
    [2]周启星等.污染土壤及地下水修复的PRB技术及展望.环境污染治理技术与设备,2001,2(5):48-53
    [3]李永庚,蒋高明.矿山废弃地生态重建研究进展.生态学报,2004,24(1):95-100
    [4]吴欢,周兴.矿山废弃地生态恢复研究.广西师范学院学报,2003,20(S1):32-35
    [5] Dudka S,Adriano D C.Environmental impacts of mental ore mining and processing:a review.Journal of Environmental Quality,1997,(26):590-602
    [6]郑喜砷,鲁安怀,高翔,等.土壤重金属污染现状与防治方法.土壤与环境,2002,11(1):79-84
    [7]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展.地球科学进展,2001,16 (1):86-89
    [8]丛艳国,魏立华.土壤环境重金属污染物来源的现状分析.现代化农业,2002,(1):18-20
    [9] Hinojosa M B,Garca-Ruz R,Vinegla B,et al.Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill.Soil Biology and Biogeochemistry,2004,36(10):1637-1644
    [10] Aceves M B,Grace C,Ansorena J,et al.Soil microbial biomass and organic C in a gradient of zinc concentration in soils around a mine spoil tip.Soil Biology and Biochemisty,1999,31(6):867-876
    [11] Kandeler E,Lurienegger G,Schwarz S.Influence of heavy metals on the functional diversity of soil microbial communities.Bilogy and Fertility of Soils,1997,23(3):299-306
    [12] Yuan Peng Wang,Ji Yan Shi,Hui Wang,et al.The influence of soil heavy metals pollution on soil microbial biomass , enzyme activity , and community composition near a copper smelter.Ecotoxicology and Environmental Safety,2007,67(1):75–81
    [13] Chander K,Brookes P C,Harding S A,et al.Microbial biomass dynamics following addition of metal-enriched sewage sludge to a sandy loam.Soil Biology and Biochemistry,1995,27(11):1409-1421
    [14]罗虹,刘鹏,宋小敏.重金属镉、铜、镍复合污染对土壤酶活性的影响.水土保持学报,2006,20(2):94-96
    [15]杨春璐,孙铁珩,和文祥.汞对土壤酶活性的影响.应用生态学报,2007,18(3):620-624
    [16]王振中,张友梅,邓继福,等.重金属在土壤生态系统中的富集及毒性效应.应用生态学报,2006,17(10):1948-1952
    [17]宋玉芳.土壤重金属污染对蚯蚓的急性毒性效应研究.应用生态学报,2002,13(2):187-190
    [18]王模善,赵铁铭.重金属镉对沉水植物毒性效应的研究.西南大学学报,2008,30(4):128-134
    [19]安志装,王校常,施卫明,等.重金属与营养元素交互作用的植物生理效应.土壤与环境,2002,11(4):392-396
    [20]李海华,刘建武,李树人,等.土壤—植物系统中重金属污染及作物富集研究进展.河南农业大学学报,2000,34(1):30-34
    [21]崔玉静,朱永官,赵中秋.饮食中的Ca含量对Cd在生物体内的积累与毒性作用的影响.卫生研究,2004,33(3):361-364
    [22]杨晓刚,余东游,许梓荣.动物铅毒性研究进展.中国畜牧杂志,2006,42(19):57-59
    [23]郑徽,金银龙.汞的毒性效应及作用机制研究进展.卫生研究,2006,35(5):663-666
    [24]考庆君,吴坤.铬的生物学作用及毒性研究进展.中国公共卫生,2004,20 (11):1398-1400
    [25] Tessier A,Campbell P G C,Blsson M.Sequential extraction procedure for the speciation of particulate trace metals.Anal Chem,1979,51(6):844-850
    [26] Zhou D M,Roman Z,Kurt C.Electrochemical remediation of copper contaminated kaolinite by con-ditioninganolyte and catholyte pH simultaneou-sly.J Environ Sci(China),2003,15(3):396-400
    [27] She P,Liu Z,Ding F X,et al.Surfactant enhanced ctroremediation of phenanthrene.Chinese J Chem Eng,2003,(11):73-78
    [28]钱海燕,王兴详,黄国勤,等.钙镁磷肥和石灰对受Cu、Zn污染的菜园土壤的改良作用.农业环境科学学报,2007,26(1):235-239
    [29] Rizzi L,Pet ruzzelli G,Poggio G.Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization.Chemosphere,2004, 57(9):1039-1046
    [30] Clemente R,Walker J D,Roig A,et al.Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage atAznalcóllar(Spain).Biodegradation,2003,14(3):199-205
    [31] Clemente R,Almela C,Bernal P M.A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste.Environmental Pollution,2006,143(3):397-406
    [32] Bolan N S , Adriano D C , Duraisamy P , et al . Immobilization and phytoavailability of cadmium in variable charge soils,III.Effect of biosolid compost addition.Plant and Soil,2003,256(1):231-241
    [33] Keller C,Marchetti1 M,Rossi Luca,et al.Reduction of cadmium availability to tobacco(Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils:a pot experiment.Plant and Soil, 2005,276(1):69-84
    [34]邓文靖,周立祥.植物多酚物质原位钝化污染土壤重金属的研究.环境科学学报,2003,23 (4):458-462
    [35]李法云,藏树良,罗义.污染土壤生物修复技术研究.生态学杂志,2003,22(1):35-39
    [36]寇永纲,伏小勇,侯培强,等.蚯蚓对重金属污染土壤中铅的富集研究.环境科学与管理,2008,33(1):62-64
    [37] Ma Y,Dickinson N M,Wong M H.Toxicity of Pb/Zn mine tailings to the earthworms Pheretima and the effects of burrowing on metal availability.Biology and Fertility of Soils,2002,36(1):79-86
    [38] Gregory J Dick,Yifan E Lee,Bradley M Tebo.Manganese(II)-Oxidizing Bacillus Spores in Guaymas Basin Hydrothermal Sediments and Plumes.Appl Environ Microbiol,2006,72(5):3184-3190
    [39] Colleen M Hansel,Chris A Francis.Coupled Photochemical and Enzymatic Mn(II) Oxidation Pathways of a Planktonic Roseobacter-Like Bacterium.Appl Environ Microbiol,2006,72(5):3543-3549
    [40] Naoyuki Miyata,Yukinori Tani,Keisuke Iwahori,et al.Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus,strain KR21-2.FEMS Microbiology Ecology,2004,47(1):101-109
    [41] Miyata Naoyuki,Maruo Kanako,Tani Yukinori,et al.Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles.Geomicrobiology Journal,2006,23(2):63-73
    [42]田耀全,郝汉舟,靳孟贵,等.生物修复在治理土壤污染中的应用.安全与环境工程,2006,13 (4):30-34
    [43]李坤陶.生物修复技术及其应用.生物学教学,2007,32 (1):4-6
    [44]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展.土壤与环境,2002,11(1):85-89
    [45]耿春女,李培军,陈素华,等.菌根生物修复技术在沈抚污水灌区的应用前景.环境污染治理技术与设备,2002,3 (7):51-55
    [46] Abou-Shanab R A,Aangle J S,Delorme T A,et al.Rhizobacterial Effects on Nickel Extraction from Soil and Uptake by Alyssum murale.New Phytologist,2003,158(1):219-224
    [47] Robinson B H,Chiarucci A,Brooks R,et al.The nickel hyperaccumulator plant Alyssum Bertolonii as a potential agent for phytoremediation and phytomining of nickel.Journal of Geochemical Exploration,1997,59(2):75-86
    [48] Cunningham S D,Ow D W.Promises and prospects of Phytoremediation. Journal of Plant physiology,1996,110(3):715-716
    [49]陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210
    [50]杨肖娥,龙新宪,倪吾钟.东南景天(Sedum alfredii H)—一种新的锌超积累植物.科学通报,2002,47(13):1003-1006
    [51] Lin Wang,Qixing Zhou,Lingling Ding,et al.Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L.as a newly found cadmium hyperaccumulator.Journal of Hazardous Materials,2008,154(2):818-825
    [52] ShuheWei,Qixing Zhoua,Shiny Mathews,et al.A newly found cadmium accumulator—Taraxacum mongolicum.Journal of Hazardous Materials,2008, 159(2):544-547
    [53]常学秀,段昌群.根分泌作用与植物对重金属毒害的抗性.应用生态学报,2000,11(2):315-320
    [54] Lasat M M,Baker A J M,Kochian L V.Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn Hyperaccumulator and nonaccumulator species of Thlaspi.Plant Physiology,1996,38(12):1715-1722
    [55] KramerU,Cotter Howells J D,Charnock J M.Free histidineas a metal chelator in plants that accumulators nickel.Nature,1996,379(5):635-638
    [56] Kramer U,Grime G M,Smith J A C,et al.Micro PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nuclear Instrument and Methods in Physics Research B,1996, 130(3):346-350
    [57] Salt D E,Prince R C,Baker A J M,et al.Zinc ligands in the matal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorptionspectroscopy.Enviromental Science and Technology,1999,33(6):713-717
    [58] Rugh C L,Reeves R D.Proceeding of extended abstract of 5th international conference on the biogeochemistry of trace element.Nature Biotechnology, 1999,141(2):32-33
    [59] Terry N,Rugh C L.Proceeding of extended abstract of 5th International conference on the Biogeochemistry of trace element.Nature Biotechnology,1999,141(2):24-25
    [60]沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境,2000,16(2):39-44
    [61]张健,孙根年.土壤重金属污染与植物修复研究进展.云南师范大学学报(自然科学版),2004,24(2):52-57
    [62]徐昕,陶思源,郝林.用转基因植物修复重金属污染的土壤.植物学通报,2004,21(5):595-607
    [63] MALIN M,LEIF B.Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals.Trends Plant Sci,2001,19(2):67-73
    [64] Zhang Y W,TAM N F Y,Wong Y S.Cloning and characterization of type 2 metallothionein-like gene from a wetland plant,Typha latifolia.Plant Science, 2004,167(4):869-877
    [65] COBBETT C S.Phytochelatin and their roles in heavy metal detoxificati-on.Plant Physiol,2000,123(8):825-832
    [66] COBBETT C S . A family of phytochelatin synthase from plant fungal species.Trends in Plant Sci,1999,4(9):335-336
    [67] CINTIA G K,MASAAKI N,MICHIMI N,et al.Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase.Biotechnology Letters,2004,26(3):153-157
    [68] Jiangbo Guo,Xiaojing Dai,Wenzhong Xu,et al.Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana.Chemosphere,2008, 72(7):1020-1026
    [69] Chieh-Chen Huang, Masaru Narita, Takeshi Yamagata, et al.Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene, 1999, 239(2):361-366
    [70] MALI N M,LEIF B.Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals.Trends Plant Sci,2001,19(2):67-73
    [71] BIZILY S , RUGH C L , SUMMERS A O , et al . Phytoremediation ofmethylmercury pollution:merB expression in Arabidopsis thaliana confers resistance to organomercurials . Proc Natl Acad Sci USA,1999,96(32) :6808-6813
    [72]田吉林,沈瑞娟,何玉科.merB基因的序列修饰及转基因烟草对有机汞的高抗作用.科学通报,2002,47(23):1815-1819
    [73] ANDREW C P HEATON , CLAYTON L RUGH, NIAN JIE WANG, et al.Physiological response of transgenic merA-Tobacco(Nicotiana tabacum) Tofoliar and root mercury exposure.Water Air Soil Pollut,2005,161(1):137-155
    [74]王红旗,陆泗进,陈延君.污染土壤植物修复中螯合诱导和转基因技术的应用现状与前景.地学前缘,2005,12(增刊):36-42
    [75] DHANKHER O P,Li Y,ROSEN B P,et al.Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression.Nature Biotechnology,2002, 20(11):1140-1145
    [76] DHANKHER O P,SHASTI N A,ROSEN B P,et al.Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase.New Phytologist,2003,159 (2):431-441
    [77]赵丽红,杨宝玉,吴礼树,等.重金属污染的转基因植物修复–原理与应用.中国生物工程杂志,2004,24(6):68-73
    [78] SONG W Y,SOHN E J,MARTINOIA E,et al.Engineering tolerance and accumulation of lead and cadmium in transgenic plants.Nature biotechnology,2003,21(8):914-919
    [79] CLEMENS S,KIM E J,NEUMANN D,et al.Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.EMBO J,1999, 18(23):3325-3333
    [80] MAATHUISF J M,SANDERS D.Plasma membrane transport in context making sense out of complexity.Curr Opin Plant Biol,1999,2(3):236-243
    [81]万云兵,仇荣亮,陈志良,等.重金属污染土壤中提高植物提取修复功效的探讨.环境污染治理技术与设备,2002,3(4):56-59
    [82] KUMAR P,DUSHENKOV V,MOTTO H,et al.Phytoextraction:the use of plants to remove heavy metals from soils.Environ Sci Technol,1995,29(13):1232-1238
    [83] SHEN Z G,LI X D,WANG C C,et al.Lead phytoextraction from contaminated soil with hight-biomass plants pecies.Environ Qual,2002,31(16):1893-1900
    [84] Jesus Manuel Pe?alosa,Ramón O Carpena,Saúl Vázquez,et al.Chelate-assistedphytoextraction of heavy metals in a soil contaminated with a pyritic sludge.Science of the Total Environment,2007,378(1):199-204
    [85] QIU R L,TANG Y T,FANG X H,et al.Phytoremediation of Heavy metal contaminated soil and its Mechanism . ACTA Scientiarum Naturalium Universitatis Sunyatseni,2004,43(6):144-149
    [86]魏树和,周启星,刘睿.重金属污染土壤修复中杂草资源的利用.自然资源学报,2005,20(3):432-440
    [87] Ana P G C Marques,Rui S Oliveira,António O S S Rangel,et al.Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi.Chemosphere,2006,65(7):1256-1263
    [88] M Janou?ková, D Pavlíková, M Vosátka . Potential contribution of arbuscularmycorrhiza to cadmium immobilisation in soil.Chemosphere,2006, 65(11):1959-1965
    [89] Yuan Min,Tie boqing,Tang Meizhen,et al.Accumulation and uptake of manganese in a hyperaccumulator Phytolacca American.Minerals Engineering, 2007,20(2):188-190
    [90] S G Xue,Y X Chen,Roger D Reeves,et al.Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phyt-olaccaceae).Environmental Pollution,2004,131(3):393-399
    [91] Liu yunguo,Zhang huizhi,Zeng guangming,et al.Heavy metal accumulation on Mn mine tailings.Pedosphere,2006,16(1):131-136
    [92]杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8(5):564-570
    [93]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000:166-183
    [94]张红艳,王成,肖英,等.土壤中铅铬铜铁锌锰钙的测定.现代科学仪器,2006,(1):124-125
    [95]李腊梅,陆琴,严蔚东.太湖地区稻麦二熟制下长期秸秆还田对土壤酶活性的影响.土壤,2006,38(4):422-428
    [96]关松荫.土壤酶及其研究方法.北京:农业出版社,1986:260-339
    [97]周礼恺.土壤酶学.北京:科学出版社,1987:266-277
    [98]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断.生态学报,2006,26(5):1494-1501
    [99] Morenoa J L,Garcia C,Landib L,et al.The ecological dose value(ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil.Soil Biol Biochem,2001,33(4):483-489
    [100] Speir T W,Kettles H A,Parshotam A,et al.Simple kinetic approach to determine the toxicity of As(Ⅴ) to soil biological properties . Soil Biol Biochem,1999,31(5):705-713
    [101]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响.环境科学学报,2001,21(1):60-63
    [102] Gagnon B,Lalande R,Simard R R,et al.Soil Enzyme Activities Following Paper Sludge Addition in a Winter Cabbage Sweet Corn Rotation.Can J Soil Sci,2000,80(9):91-97
    [103]刘胜利.电解金属锰废渣的综合利用.中国锰业,1998,16(4):34-36
    [104]姚俊,田宗平,吴文学,等.电解锰废水及水底沉积物中重金属元素对流域污染的研究.吉首大学学报,1999,20 (3):74-77
    [105]蔡固平,葛晓霞,曾光明.黄兴镇硫酸锰企业污染调查与评价.中国环境监测,2003,19 (4):56-59
    [106]陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2006:137-139
    [107]赵菲佚,翟禄新,陈荃,等.复合处理下对植物膜的伤害初探.兰州大学学报(自然科学版),2002,38(2):115-120
    [108]臧小平.土壤锰毒与植物锰的毒害.土壤通报,1999,30(3):139-141
    [109]施益华,刘鹏.锰在植物体内生理功能研究进展.江西林业科技,2003,(2):26-29
    [110]余苹中,廖柏寒,宋稳成.模拟酸雨和Cd对小白菜四季豆生理生化特性的影响.农业环境科学学报,2004,23(1):43-46
    [111]杜连彩.铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响.中国蔬菜,2008,(5):17-19
    [112]刘可慧,于方明,李明顺,等.镉胁迫对小白菜(Brassica campestris L.)抗氧化机理的影响.生态环境,2008,17(4):1466-1470
    [113]邵云,李春喜,李向力.灌浆期Cd、Cu、Zn胁迫对小麦旗叶生理活性的影响.西北农业学报,2006,15 (4):108-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700