铁基金属玻璃动力学特性及断裂损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基金属玻璃具有优异的力学、磁学及电化学等性能,在结构、功能、环保等领域具有广泛的应用前景。运用动力学研究金属玻璃是当前力学领域的热点,对于认识铁基金属玻璃高强度、大塑性等性能的起源具有重要意义。本文通过对铁基金属玻璃形成、演化的动力学进行分析,结合高分辨电子显微镜、拉曼光谱及光电子能谱等实验,系统研究了铁基金属玻璃动力学特性及断裂损伤机理,主要工作包括:
     (1)利用动力学理论和能谱分析实验研究了(Fe0.71Dy0.05B0.24)96Nb4金属玻璃的玻璃转变行为,揭露其过冷液相区出现峰值的原因,发现组元混合焓和原子半径存在较大差异时,组分在局部聚集或者分散,系统处于较高能量状态,这种不均匀结构弛豫时释放能量,形成过冷液相区的峰;组分不均匀导致系统的熵增加,结晶驱动力降低,利于非晶形成能力的提高;它还能够促进剪切带繁殖、形成多重剪切带、改善金属玻璃室温压缩塑性。
     (2)从晶化动力学出发,建立晶核生长理论模型,揭示了铁基金属玻璃晶粒尺寸随退火温度的变化规律;研究了淬态铁基金属玻璃微观组织结构不均匀对软磁性能的影响;揭示了铁基金属玻璃磁导率、磁致伸缩系数等随退火条件变化的机理;利用元素添加实现了对铁基金属玻璃软磁性能的调控。
     (3)引入两个爱因斯坦振动模,提出了金属玻璃波色峰的动力学机制;发现金属玻璃溶剂原子、短程有序团簇和中程有序团簇的尺寸比例约为1:3:7;探究了金属玻璃具有大弹性极限的原因,认为金属玻璃团簇类似于橡胶分子,在外力作用下通过相对旋转耗散能量;发现金属玻璃杨氏模量和断裂强度与溶剂原子直径的三次方成反比。
     (4)发现铁基金属玻璃断裂形貌具有自相似特征,引入分形几何提出金属玻璃的强度理论;揭示了金属玻璃强度随样品尺寸增加而降低的机理;研发了塑性应变超过20%的Fe50Ni30P13C7金属玻璃,是目前室温压缩塑性最大的铁基金属玻璃;利用光电子能谱等实验提出可描述金属玻璃形变和断裂微观过程的原子键合模型,揭示了Fe-Ni-P-C体系的韧脆转变机制。
Owing to the combination of superior magnetic, mechanical, and electrochemicalproperties, Fe-based metallic glasses (MGs) are widely used in the structural,functional and environmental protection fields. Research on MGs by dynamics is apoorly understood fundamental problem in mechanics field. It is very important tounderstand the glass transition, soft magnetic properties and mechanism of brittle toductile transition of Fe-based MGs. In this dissertation, the dynamic characteristicsand fracture-damage mechanism of Fe-based MGs were systematically investigatedby integrating dynamic theory with high resolution transmission electron microscope,Raman scattering, photoelectron spectroscopy. The main works are given as follows:
     (1) The glass transition behavior of (Fe0.71Dy0.05B0.24)96Nb4MGs wasinvestigated by dynamics and energy-dispersive spectrometry. It is confirmed that thisabnormal behavior is attributed to the transition process of an amorphous state with ahigher energy to another amorphous state with a relative lower energy. Theamorphous state with higher energy comes from the uneven distribution ofcompositions in glasses, which is mainly caused by the component with significantdifference in atomic size and nonnegative values of enthalpy of mixing. This kind ofstructural heterogeneity can lead to entropy increase, which results in decreasing ofdriving force of crystallization and improving the glass-forming ability. The structuralheterogeneity can also lead to the initiation of shear bands, which results in anincreasing number of shear bands, thus enhancing the ductility of MGs.
     (2) The grain growth dynamic model was proposed by crystallization dynamics.The relationships between grain size and annealing temperature for Fe-based MGswere investigated. The effects of structural heterogeneity on soft magnetic propertiesof as quenched Fe-based MGs were studied. The mechanism of permeability andeffective magnetostriction change with annealing time and temperature was analyzed.The effects of partial substitution of Fe by Ni, Co, Cu in Fe-based MGs on theirmagnetic properties were also studied.
     (3) The mechanism of low-frequency dynamic characteristics was investigated. Itwas found that the Boson peak (BP) originates from two local harmonic vibrationmodes that are associated with the lengths of short-range order (SRO) andmedium-range order (MRO) in MGs. The atomic packing in MGs was also found tofollow a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are3and7, respectively, which exact match with length ratios of BPvibration frequencies to Debye frequency for the studied MGs. The clusters andsuperclusters in MGs may rotate slightly with respect to solute atoms like internalrotation in rubber, which is the origin of the MGs with large elastic strain limits. TheYoung’s moduli and fracture strength are inversely proportional to the cube ofdiameter of solvent atoms in MGs.
     (4) The self-similar characteristics of fracture surface in MGs were found. Thestrength theory of MGs was proposed by the fractal geometry. The fracture energy andstrength of brittle MGs are not only related to the plastic zone size, the length scalesof atomic order range and the surface energy, but also have significant relationshipwith the fractal dimension in fracture surface. Fe50Ni30P13C7MG which can be bendedwithout fracturing with unprecedented plasticity (~20%) at room temperature wasalso found. The atomic bonding model which can be described micro process ofdeformation and fracture was proposed by photoelectron spectroscopy, etc.experiments. The mechanism of brittle to ductile transition for Fe-based MGs wasrevealed.
引文
[1] Kramer J. Produced the first amorphous metals through vapor deposition [J]. Annalen derPhysik,1934,19:37.
    [2] Brenner A., Riddell G. Deposition of Nickel and Cobalt by chemical reduction [J]. Journal ofResearch of the National Bureau of Standards,1947,39:386-395.
    [3] Turnbull D., Fisher J.C. Rate of nucleation condensed systems [J]. Journal of Chemical andPhysics,1949,17:71-73.
    [4] Clement W., Willens R.H., Duwez P. Non-crystalline structure in solidified Gold-Silicon alloys[J]. Nature,1960,187:869-870.
    [5] Pond R., Maddin R. A method of producing rapidly solidified filamentary castings [J].Transactions of the Metallurgical Society of AIME,1969,245:2475-2476.
    [6] Chen H.S. Thermodynamic considerations on formation and stability of metallic glasses [J].Acta Materialia,1974,22:1501-1511.
    [7] Chen H.S. Glass-transition temperature in glassy alloys-effects of atomic sizes and heats ofmixing [J]. Acta Materialia,1974,22:897-900.
    [8] Drehman A.J., Greer A.L., Turnbull D. Bulk formation of a metallic glasses Pd40Ni40P20[J].Applied Physics Letters,1982,41:716-717.
    [9] Inoue A., Zhang T., Masumoto T. Al-La-Ni amorphous-alloys with a wide supercooled liquidregion [J]. Materials Transactions JIM,1989,30:965-972.
    [10] Inoue A., Nakamura T., Nishiyama N. Mg-Cu-Y bulk amorphous alloys with high tensilestrenghet produced by a high pressure die-casting method.[J]. Materials Transactions JIM,1992,33:937-945.
    [11] Inoue A., Zhang T., Nishiyama N. Preparation of16mm diameter rod of amorphousZr65Al7.5Ni10Cu17.5alloy [J]. Materials Transactions JIM,1993,34:1234-1237.
    [12] Waniuk T.A., Schroers J., Johnson W.L. Critical cooling rate and thermal stability ofZr-Ti-Cu-Ni-Be alloys [J]. Applied Physics Letters,2001,78:1213-1215.
    [13] Men H., Hu Z.Q., Xu J. Bulk metallic glass formation in the Mg-Cu-Zn-Y system [J]. ScriptaMaterialia,2002,46:699-703.
    [14] Gilbert C.J., Ritchie R.O., Johnson W.L. Fracture toughness and fatigue-crack propagation ina Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Applied Physics Letters,1997,71:476-478.
    [15] Ponnambalam V., Poon S.J., Shiflet G.J. Fe-based bulk metallic glasses with diameterthickness larger than one centimeter [J]. Journal of Materials Research,2004,19:1320-1323.
    [16] Lu Z.P., Liu C.T., Thompson J.R., Porter W.D. Structural amorphous steels [J]. PhysicalReview Letters,2004,92:245503.
    [17] Nishiyama N., Takenaka K., Miura H., Saidoh N., Zeng Y.Q., Inoue A. The world's biggestglassy alloy ever made [J]. Intermetallics,2012,30:19-24.
    [18] Men H., Pang S.J., Zhang T. Effect of Er doping on glass-forming ability ofCo50Cr15Mo14C15B6alloy [J]. Journal of Materials Research,2006,21:958-961.
    [19] Zhang Q.S., Zhang W., Inoue A. Preparation of Cu36Zn48Ag8Al8bulk metallic glass with adiameter of25mm by copper mold casting [J]. Materials Transactions JIM,2007,48:629-631.
    [20] Li R., Pang S.J., Ma C.L., Zhang T. Influence of similar atom substitution on glass formationin (La-Ce)-Al-Co bulk metallic glasses [J]. Acta Materialia,2007,55:3719-3726.
    [21] Lin X.H., Johnson W.L. Formation of Ti-Zr-Cu-Ni bulk metallic glasses [J]. Journal ofApplied Physics,1997,78:6514-6519.
    [22] Xia L., Li W.H., Fang S.S., Wei B.C., Dong Y.D. Binary Ni-Nb bulk metallic glasses [J].Journal of Applied Physics,2006,99:026103.
    [23] Zhang B., Zhao D.Q., Pan M., Wang R.J., Wang W.H. Formation of cerium-based bulkmetallic glasses [J]. Acta Materialia,2006,54:3025-3032.
    [24] Shen J., Chen Q.J., Sun J.F., Fan H.B., Wang G. Exceptionally high glass-forming ability ofan FeCoCrMoCBY alloy [J]. Applied Physics Letters,2005,86:151907.
    [25] Yao K.F., Ruan F., Yang Y.Q., Chen N. Superductile bulk metallic glass [J]. Applied PhysicsLetters,2006,88:122106.
    [26]余鹏,孙保安,白海洋,汪卫华.探索塑性金属玻璃[J].物理,2008,37:421-425.
    [27] Zheng Q., Xu J., Ma E. High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gdalloys [J]. Journal of Applied Physics,2007,102:113519.
    [28] He Q., Shang J.K., Ma E., Xu J. Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glasswith extraordinary fracture toughness [J]. Acta Materialia,2012,60:4940-4949.
    [29] Lou H.B., Wang X.D., Xu F., Ding S.Q., Cao Q.P., Hono K., et al.73mm-diameter bulkmetallic glass rod by copper mould casting [J]. Applied Physics Letters,2011,99:051910.
    [30] Zhang M., Wang A., Shen B. Enhancement of glass-forming ability of Fe-based bulk metallicglasses with high saturation magnetic flux density [J]. AIP Advances,2012,2:022169.
    [31] Li J.W., He A.N., Shen B.L. Effect of Tb addition on the thermal stability, glass-formingability and magnetic properties of Fe-B-Si-Nb bulk metallic glass [J]. Journal of Alloys andCompounds,2014,586: S46-S49.
    [32] Dong Y., Man Q., Sun H., Shen B., Pang S., Zhang T., et al. Glass-forming ability and softmagnetic properties of (Co0.6Fe0.3Ni0.1)67B22+xSi6xNb5bulk glassy alloys [J]. Journal ofAlloys and Compounds,2011,509: S206-S209.
    [33] Chang C., Shen B., Inoue A. Co–Fe–B–Si–Nb bulk glassy alloys with superhigh strength andextremely low magnetostriction [J]. Applied Physics Letters,2006,88:011901.
    [34]黎嘉威.重稀土元素对Fe基块体金属玻璃性能的影响研究[D].北京:中国科学院,2013.
    [35] Kui H.W., Greer A.L., Turnbull D. Formation of bulk metallic glass by fluxing [J]. AppliedPhysics Letters,1984,45:615-616.
    [36] Inoue A., Nishiyama N. Extremely low critical cooling rates of new Pd-Cu-P base amorphousalloys [J]. Materials Science and Engineering: A,1997,226:401-405.
    [37] Peker A., Johnson W.L. A highly processable metallic glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J].Applied Physics Letters,1993,63:2342-2344.
    [38] Inoue A., Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30alloy of30mm in diameter bya suction casting method [J]. Materials Transactions JIM,1996,37:185-187.
    [39] Xu D.H., Duan G., Johnson W.L. Unusual glass-forming ability of bulk amorphous alloysbased on ordinary metal copper [J]. Physical Review Letters,2004,92:245504.
    [40] Dai C.L., Guo H., Shen Y., Li Y., Ma E., Xu J. A new centimeter-diameter Cu-based bulkmetallic glass [J]. Scripta Materialia,2006,54:1403-1408.
    [41] Zhang T., Inoue A. Bulk glassy alloys with low liquidus temperature in Pt-Cu-P system [J].Materials Transactions JIM,2003,44:1143-1146.
    [42] Schroers J., Johnson W.L. Highly processable bulk metallic glass-forming alloys in thePt-Co-Ni-Cu-P system [J]. Applied Physics Letters,2004,84:3666-3668.
    [43] Ma H., Shi L.L., Xu J., Li Y., Ma E. Discovering inch-diameter metallic glasses inthree-dimensional composition space [J]. Applied Physics Letters,2005,87:181915.
    [44] Park E.S., Kim D.H. Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shapedcopper mold [J]. Journal of Materials Research,2004,19:685-688.
    [45] Guo F.Q., Wang H.J., Poon S.J., Shiflet G.J. Ductile titanium-based glassy alloy ingots [J].Applied Physics Letters,2005,86:091907.
    [46] Zhang L., Ma E., Xu J. Hf-based bulk metallic glasses with critical diameter on centimeterscale [J]. Intermetallics,2008,16:584-586.
    [47] Kim D.H., Park J.M., Kim D.H., Kim W.T. Development of quaternary Fe-B-Y-Nb bulkglassy alloys with high glass-forming ability [J]. Journal of Materials Research,2007,22:471-477.
    [48] Yang X.H., Ma X.H., Li Q., Guo S.F. The effect of Mo on the glass forming ability,mechanical and magnetic properties of FePC ternary bulk metallic glasses [J]. Journal ofAlloys and Compounds,2013,554:446-449.
    [49] Yuqiao Z., Nishiyama N., Inoue A. Formation of a Ni-based glassy alloy in centimeter scale[J]. Materials Transactions JIM,2007,48:1355-1358.
    [50] Tan H., Zhang Y., Ma D., Feng Y.P., Li Y. Optimum glass formation at off-eutecticcomposition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni)pseudo ternary system [J]. Acta Materialia,2003,51:4551-4561.
    [51] Jiang Q.K., Zhang G.Q., Yang L., Wang X.D., Saksl K., Franz H., et al. La-based bulkmetallic glasses with critical diameter up to30mm [J]. Acta Materialia,2007,55:4409-4418.
    [52] Guo F.Q., Poon S.J., Shiflet G.J. Metallic glass ingots based on yttrium [J]. Applied PhysicsLetters,2003,83:2575-2577.
    [53]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007.
    [54] Greer A.L. Materials science-confusion by design [J]. Nature,1993,366:303-304.
    [55] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. ActaMaterialia,2000,48:279-306.
    [56] Takeuchi A., Inoue A. Classification of bulk metallic glasses by atomic size difference, heatof mixing and period of constituent elements and its application to characterization of themain alloying element [J]. Materials Transactions JIM,2005,46:2817-2829.
    [57]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社,1984.
    [58] Suryanarayana C., Inoue A. Bulk metallic glasses: CRC Press,2011.
    [59] Davies H.A. The kinetics of formation of a Au-Ge-Si metallic glass [J]. Journal ofNon-Crystalline Solids,1975,17:266-272.
    [60] Park E.S., Kim D.H. Effect of atomic configuration and liquid stability on the glass-formingability of Ca-based metallic glasses [J]. Applied Physics Letters,2005,86:201912.
    [61] Wang W.H., Lewandowski J.J., Greer A.L. Understanding the glass-forming ability ofCu50Zr50alloys in terms of a metastable eutectic [J]. Journal of Materials Research,2005,20:2307-2313.
    [62] Zhang Q.S., Zhang W., Inoue A. New Cu-Zr-based bulk metallic glasses with large diametersof up to1.5cm [J]. Scripta Materialia,2006,55:711-713.
    [63] Pang S.J., Zhang T., Asami K., Inoue A. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasseswith high corrosion resistance [J]. Acta Materialia.2002,50:489-497.
    [64] Anderson III P.M., Jr. A.E.L. Viscosity of METGLAS2826near the glass transition usingrapid heating.[J]. Journal of Non-Crystalline Solids,1980,37:219-229.
    [65] Louzguine-Luzgin D.V., Louzguina-Luzgina L.V., Yavari A.R., Ota K., Vaughan G., Inoue A.Devitrification of Hf-Pd-Ni glassy alloy on heating [J]. Thin Solid Films,2006,509:75-80.
    [66] Inoue A., Nakamura T., Sugita T., Zhang T., Masumoto T. Bulky La-Al-TM (TM=transitionmetal) amorphous alloys with high tensile strength produced by a high-pressure die castingmethod [J]. Materials Transactions JIM,1993,34:351-358.
    [67] Men H., Kim D.H. Fabrication of ternary Mg-Cu-Gd bulk metallic glass with highglass-forming ability under air atmosphere [J]. Journal of Materials Research,2003,18:1502-1504.
    [68] Men H., Kim W.T., Kim D.H. Fabrication and mechanical properties of Mg65Cu15Ag5Pd5Gd10bulk metallic glass [J]. Materials Transactions JIM,2003,44:2141-2144.
    [69] Park E.S., Kim D.H. Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting intocone-shaped copper mold in air atmosphere [J]. Journal of Materials Research,2005,20:1465-1469.
    [70] Inoue A., Zhang T. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys.[J]. Materials Science and Engineering: A,1997,226-228:393-396.
    [71] Nishiyama N., Inoue A. Glass-forming ability of bulk Pd40Ni10Cu30P20alloy [J]. MaterialsTransactions JIM,1996,37:1531-1539.
    [72] Nishiyama N., Inoue A. Direct comparison between critical cooling rate and somequantitative parameters for evaluation of glass-forming ability in Pd-Cu-Ni-P alloys [J].Materials Transactions JIM,2002,43:1913-1917.
    [73] Nishiyama N., Takenaka K., Inoue A. Pd30Pt17.5Cu32.5P20alloy with low critical cooling rateof0.067K/s [J]. Applied Physics Letters,2006,88:121908.
    [74] Drehman A.J., Turnbull D. Solidification behavior of undercooled Pd83Si17and Pd82Si18liquiddroplets [J]. Scripta Materialia,1981,15:543-548.
    [75] Yao K.F., Ruan F. Pd-Si binary bulk metallic glass prepared at low cooling rate [J]. ChinesePhysics Letters,2005,22:1481-1483.
    [76] Mukherjee S., Schroers J., Zhou Z., Johnson W.L., Rhim W.K. Viscosity and specific volumeof bulk metallic glass-forming alloys and their correlation with glass forming ability [J]. ActaMaterialia,2004,52:3689-3695.
    [77] Cargill III G.S. Dense random packing of hard spheres as a structural model for noncrystallinemetallic solids [J]. Journal of Applied Physics,1970,41:2248.
    [78] Cohen M.H., Turnbull D. Metastability of amorphous structures [J]. Nature,1964,203:964.
    [79] Flood S.H., Knapp W.J. Structural characteristics of liquid mixtures of feldspar and silica [J].Journal of the American Ceramic Society,1968,51:259-263.
    [80] Miracle D.B. A structural model for metallic glasses [J]. Nature Materials,2004,3:697-702.
    [81] Sheng H.W., Luo W.K., Alamgir F.M., Bai J.M., Ma E. Atomic packing andshort-to-medium-range order in metallic glasses [J]. Nature,2006,439:419-425.
    [82] Wang X.L., Almer J., Liu C.T., Wang Y.D., Zhao J.K., Stoica A.D., et al. In situ synchrotronstudy of phase transformation behaviors in bulk metallic glass by simultaneous diffractionand small angle scattering [J]. Physical Review Letters,2003,91:265501.
    [83] Sheng H.W., Liu H.Z., Cheng Y.Q., Wen J., Lee P.L., Luo W.K., et al. Polyamorphism in ametallic glass [J]. Nature Materials,2007,6:192-197.
    [84] Hirata A., Guan P., Fujita T., Hirotsu Y., Inoue A., Yavari A.R., et al. Direct observation oflocal atomic order in a metallic glass [J]. Nature Materials,2011,10:28-33.
    [85] Liu A.C.Y., Neish M.J., Stokol G., Buckley G.A., Smillie L.A., de Jonge M.D., et al.Systematic mapping of icosahedral short-range order in a melt-spun Zr36Cu64metallic glass[J]. Physical Review Letters,2013,110:205505.
    [86] Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys [J].Acta Materialia.2011,59:2243-2267.
    [87] Hirata A., Chen M. Angstrom-beam electron diffraction of amorphous materials [J]. Journalof Non-Crystalline Solids,2014,383:52-58.
    [88] Hirata A., Kang L.J., Fujita T., Klumov B., Matsue K., Kotani M., et al. Geometric frustrationof icosahedron in metallic glasses [J]. Science,2013,341:376-379.
    [89] Liu Y.H., Wang G., Pan M.X., Yu P., Zhao D.Q., Wang W.H. Deformation behaviors andmechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J].Journal of Materials Research,2007,22:869-875.
    [90] Chang C.T., Shen B.L., Inoue A. FeNi-based bulk glassy alloys with superhigh mechanicalstrength and excellent soft-magnetic properties [J]. Applied Physics Letters,2006,89:051912.
    [91] Inoue A., Shen B., Koshiba H., Kato H., Yavari A.R. Cobalt-based bulk glassy alloy withultrahigh strength and soft magnetic properties [J]. Nature Materials,2003,2:661-663.
    [92] Wang J.F., Li R., Hua N.B., Zhang T. Co-based ternary bulk metallic glasses with ultrahighstrength and plasticity [J]. Journal of Materials Research,2011,26:2072-2079.
    [3] Yuan C.C., Xi X..4n the correlation of Young’s modulus and the fracture strength ofmetallic glasses [J]. Journal of Applied Physics,2011,109:033515.
    [94] Jiang Q.K., Liu P., Ma Y., Cao Q.P., Wang X.D., Zhang D.X., et al. Super elastic strain limitin metallic glass films [J]. Scientific Reports,2012,2:852.
    [95] Johnson W.L. Fundamental aspects of bulk metallic glass formation in multicomponent alloys[J]. Materials Science Forum,1996,225:35-225.
    [96] Xi X., Zhao D., Pan M., Wang W., Wu Y., Lewandowski J. Fracture of Brittle MetallicGlasses: Brittleness or Plasticity [J]. Physical Review Letters,2005,94:125510.
    [97] Demetriou M.D., Launey M.E., Garrett G., Schramm J.P., Hofmann D.C., Johnson W.L., et al.A damage-tolerant glass [J]. Nature Materials,2011,10:123-128.
    [98] Inoue A., Shen B. Soft magnetic bulk glassy Fe-B-Si-Nb alloys with high saturationmagnetization above1.5T [J]. Materials Transactions JIM,2002,43:766-769.
    [99] Fornell J., Gonzalez S., Rossinyol E., Surinach S., Baro M.D., Louzguine-Luzgin D.V., et al.Enhanced mechanical properties due to structural changes induced by devitrification inFe-Co-B-Si-Nb bulk metallic glass [J]. Acta Materialia,2010,58:6256-6266.
    [100] Wang A., Zhang M., Zhang J., Men H., Shen B., Pang S., et al. FeNiPBNb bulk glassyalloys with good soft-magnetic properties [J]. Journal of Alloys and Compounds,2012,536:S354-S358.
    [101] Wang A.D., Man Q.K., Zhang M.X., Men H., Shen B.L., Pang S.J., et al. Effect of B to Pconcentration ratio on glass-forming ability and soft-magnetic properties in
    [(Fe0.5Ni0.5)0.78B0.22-xPx]97Nb3glassy alloys [J]. Intermetallics,2012,20:93-97.
    [102] Chen S.Q., Man Q.K., Dun C.C., Shen B.L. Giant magnetoimpedance effect instress-joule-heated Co-based amorphous ribbons [J]. Science China-Physics Mechanics&Astronomy,2012,55:2372-2377.
    [103] Wang A., Chang X.C., Hou W.L., Wang J.Q. Corrosion behavior of Ni-based amorphousalloys and their crystalline counterparts [J]. Corrosion Science,2007,49:2628-2635.
    [104] Wang J.Q., Liu Y.H., Chen M.W., Xie G.Q., Louzguine-Luzgin D.V., Inoue A., et al. Rapiddegradation of Azo Dye by Fe-based metallic glass powder [J]. Advanced FunctionalMaterials,2012,22:2567-2570.
    [105] Sistiaga M., Pierna A.R. Application of amorphous materials for fuel cells [J]. Journal ofNon-Crystalline Solids,2003,329:184-187.
    [106] Duwez P., Lin S.C.H. Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys [J].Journal of Applied Physics,1967,38:4096-4097.
    [107] Inoue A., Shinohara Y., Gook J.S. Thermal and magnetic properties of bulk Fe-based glassyalloys prepared by copper mold casting.[J]. Materials Transactions JIM,1995,36:1427-1433.
    [108] Inoue A., Zhang T., Takeuchi A. Bulk amorphous alloys with high mechanical strength andgood soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system [J].Applied Physics Letters,1997,71:464-466.
    [109] Zhang T., Inoue A. Bulk glassy alloys in (Fe, Co, Ni)-Si-B system [J]. MaterialsTransactions JIM,2001,42:1015-1018.
    [110] Chang C., Shen B., Inoue A. Synthesis of bulk glassy alloys in the (Fe,Co,Ni)-B-Si-Nbsystem [J]. Materials Science and Engineering: A,2007,449-451:239-242.
    [111] Shen B., Akiba M., Inoue A. Excellent soft-ferromagnetic bulk glassy alloys with highsaturation magnetization [J]. Applied Physics Letters,2006,88:131907.
    [112] Shen B., Akiba M., Inoue A. Effects of Si and Mo additions on glass-forming in FeGaPCBbulk glassy alloys with high saturation magnetization [J]. Physical Review B,2006,73:104204.
    [113] Lin C.Y., Tien H.Y., Chin T.S. Soft magnetic ternary iron-boron-based bulk metallic glasses[J]. Applied Physics Letters,2005,86:162501.
    [114] Yao K.F., Zhang C.Q. Fe-based bulk metallic glass with high plasticity [J]. Applied PhysicsLetters,2007,90:061901.
    [115] Yao J.H., Wang J.Q., Li Y. Ductile Fe-Nb-B bulk metallic glass with ultrahigh strength [J].Applied Physics Letters,2008,92:251906.
    [116] Park J.M., Wang G., Li R., Mattern N., Eckert J., Kim D.H. Enhancement of plasticdeformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Fe concentrationratio [J]. Applied Physics Letters,2010,96:031905.
    [117] Gu X.J., Poon S.J., Shiflet G.J., Widom M. Ductility improvement of amorphous steels:Roles of shear modulus and electronic structure [J]. Acta Materialia,2008,56:88-94.
    [118] Makino A., Kubota T., Chang C., Makabe M., Inoue A. FeSiBP bulk metallic glasses withunusual combination of high magnetization and high glass-forming ability [J]. MaterialsTransactions JIM,2007,48:3024-3027.
    [119] Li J., Yang W., Zhang M., Chen G., Shen B. Thermal stability and crystallization behavior of(Fe0.75-xDyxB0.2Si0.05)96Nb4(x=0.0-0.07) bulk metallic glasses [J]. Journal of Non-CrystallineSolids,2013,365:42-46.
    [120] Wang J., Li R., Hua N., Huang L., Zhang T. Ternary Fe-P-C bulk metallic glass with goodsoft-magnetic and mechanical properties [J]. Scripta Materialia,2011,65:536-539.
    [121] Shen B.L., Chang C.T., Inoue A. Formation, ductile deformation behavior and soft-magneticproperties of (Fe,Co,Ni)-B-Si-Nb bulk glassy alloys [J]. Intermetallics,2007,15:9-16.
    [122] Inoue A., Shen B.L., Chang C.T. Super-high strength of over4000MPa for Fe-based bulkglassy alloys in [(Fe1-x,Cox)0.75B0.2Si0.05]96Nb4system [J]. Acta Materialia,2004,52:4093-4099.
    [123] Zhang W., Jia F., Zhang X.G., Xie G.Q., Inoue A. Effect of Nb Concentration on thermalstability and glass-forming ability of soft magnetic (Fe,Co)-Gd-Nb-B glassy alloys [J].Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2010,41A:1685-1690.
    [124] Zhang T., Liu F., Pang S., Li R. Ductile Fe-based bulk metallic glass with goodsoft-magnetic properties [J]. Materials Transactions JIM,2007,48:1157-1160.
    [125] Seifoddini A., Stoica M., Nili-Ahmadabadi M., Heshmati-Manesh S., Kühn U., Eckert J.New (Fe0.9Ni0.1)77Mo5P9C7.5B1.5glassy alloys with enhanced glass-forming ability and largecompressive strain [J]. Materials Science and Engineering: A,2013,560:575-582.
    [126]汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33:177-351.
    [127] Couzin J. How much can human life span be extended [J]. Science,2005,309:83-83.
    [128] Mann S. Through the Glass, Lightly [J]. IEEE Technology and Society Magazine,2012,31:10-14.
    [129] Kawasaki K., Kim B. Exactly solvable toy model that mimics the mode coupling theory ofsupercooled liquid and glass transition [J]. Physical Review Letters,2001,86:3582-3585.
    [130] Debenedetti P.G., Stillinger F.H. Supercooled liquids and the glass transition [J]. Nature,2001,410:259-267.
    [131] Lu Z.P., Liu C.T. Glass formation criterion for various glass-forming systems [J]. PhysicalReview Letters,2003,91:115505.
    [132] Lu Z.P., Liu C.T. A new glass-forming ability criterion for bulk metallic glasses [J]. ActaMaterialia,2002,50:3501-3512.
    [133] Ke H.B., Wen P., Wang W.H. The inquiry of liquids and glass transition by heat capacity [J].AIP Advances,2012,2:041402.
    [134] Chen H.S., Turnbull D. Formation, stability and structure of palladium-silicon based alloyglasses [J]. Acta Metallurgica,1969,17:1021-1031.
    [135] Tanner L.E., Ray R. Phase separation in Zr-Ti-Be metallic glasses [J]. Scripta Metallurgica,1980,14:657-662.
    [136] Kumar G., Nagahama D., Ohnuma M., Ohkubo T., Hono K. Structural evolution in thesupercooled liquid of Zr36Ti24Be40metallic glass [J]. Scripta Materialia,2006,54:801-805.
    [137] Huang X.M., Wang X.D., He Y., Cao Q.P., Jiang J.Z. Are there two glass transitions inFe-M-Y-B (M=Mo, W, Nb) bulk metallic glasses?[J]. Scripta Materialia,2009,60:152-155.
    [138] Zhang W., Jia F., Zhang X.G., Xie G.Q., Kimura H., Inoue A. Two-stage-like glass transitionand the glass-forming ability of a soft magnetic Fe-based glassy alloy [J]. Journal of AppliedPhysics,2009,105:053818.
    [139] Park E.S., Na J.H., Kim D.H. Abnormal behavior of supercooled liquid region inbulk-forming metallic glasses [J]. Journal of Applied Physics,2010,108:053515.
    [140] Wang W.H. Correlation between relaxations and plastic deformation, and elastic model offlow in metallic glasses and glass-forming liquids [J]. Journal of Applied Physics,2011,110:053521.
    [141] Lou H.B., Wang X.D., Cao Q.P., Zhang D.X., Zhang J., Hu T.D., et al. Negative expansionsof interatomic distances in metallic melts [J]. Proceedings of the National Academy ofSciences of the United States of America,2013,110:10068-10072.
    [142] Ye F., Lu K. Crystallization kinetics of amorphous solids under pressure [J]. PhysicalReview B,1999,60:7018-7024.
    [143] Zhuang Y.X., Jiang J.Z., Zhou T.J., Rasmussen H., Gerward L., Mezouar M., et al. Pressureeffects on Al89La6Ni5amorphous alloy crystallization [J]. Applied Physics Letters,2000,77:4133-4135.
    [144] Inoue A., Kimura H.M., Sasamori K., Masumoto T. Microstructure and novel properties ofnanocrystalline and nanoquasicrystalline alloys prepared in Al-based systems by rapidsolidification [J]. Science reports of the Research Institutes, Tohoku University Ser A,Physics, chemistry and metallurgy,1996,42:165-178.
    [145] Lu J., Ding B.Z., Wang J.T. On the anistropy of soft amorphous magnetic alloys [J]. ActaMetallurgica Sinica,1992,27:931-935.
    [146] Yinnon H., Uhlmann D.R. Applications of thermoanalytical techniques to the study ofcrystallization kinetics in glass-forming liquids, part I: Theory [J]. Journal of Non-CrystallineSolids,1983,54:253-275.
    [147] Zheng N., Qu R.T., Pauly S., Calin M., Gemming T., Zhang Z.F., et al. Design of ductilebulk metallic glasses by adding "soft" atoms [J]. Applied Physics Letters,2012,100:141901.
    [148] Speight J.G. Lang's Handbook of chemistry [M]. London,2005.
    [149] Madge S.V., R sner H., Wilde G. Transformations in supercooled Pd40.5Ni40.5P19[J]. ScriptaMaterialia,2005,53:1147-1151.
    [150] Li Y., Qiu S.B., Shao Y., Yao K.F. Effects of the cooling rate on the plasticity ofPd40.5Ni40.5P19bulk metallic glasses [J]. Chinese Physics Letters,2011,28:116104.
    [151] Lee S., Kato H., Kubota T., Yubuta K., Makino A., Inoue A. Excellent thermal stability andbulk glass forming ability of Fe-B-Nb-Y soft magnetic metallic glass [J]. MaterialsTransactions JIM,2008,49:506-512.
    [152] Na J.H., Sohn S.W., Kim W.T., Kim D.H. Two-step-like anomalous glass transition behaviorin Ni-Zr-Nb-Al-Ta metallic glass alloys [J]. Scripta Materialia,2007,57:225-228.
    [153] Park E.S., Ohnuma M., Kim D.H. Anomalous glass transition behavior in Cu-Zr-Sn alloysystem [J]. Journal of Alloys and Compounds,2011,509: S52-S55.
    [154] Wu Q., Yan A.R., Ge H.L., Zhang P.Y., Hu X.K., Liu Y.H. Synthesis, structure, and magneticproperties of Nd-Y-Fe-Mo-B bulk nanocomposite magnets [J]. Journal of Applied Physics.2011,109:07A739.
    [155] Greer A.L., Cheng Y.Q., Ma E. Shear bands in metallic glasses [J]. Materials Science andEngineering: R: Reports,2013,74:71-132.
    [156] Park E.S., Chang H.J., Kim D.H. Effect of addition of Be on glass-forming ability, plasticityand structural change in Cu–Zr bulk metallic glasses [J]. Acta Materialia,2008,56:3120-3131.
    [157] Park E.S., Chang H.J., Kim D.H. Effect of addition of Be on glass-forming ability, plasticityand structural change in Cu-Zr bulk metallic glasses [J]. Acta Materialia,2008,56:3120-3131.
    [158] Gubanov A. Physics of solids [M]. Moscow,1960.
    [159] Inoue A., Gook J.S. Effect of additional elements (M) on the thermal stability of supercooledliquid in Fe72-xAl5Ga2P11C6B4Mxglassy alloys [J]. Materials Transactions JIM,1996,1:32-38.
    [160] Inoue A., Zhang T., Itoi T., Takeuchi A. New Fe-Co-Ni-Zr-B amorphous alloys with widesupercooled liquid regions and good soft magnetic properties [J]. Materials Transactions JIM,1997,38:359-362.
    [161] Inoue A., Zhang T., Koshiba H., Makino A. New bulk amorphous Fe-(Co, Ni)-M-B (M=Zr,Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties [J]. Journal of Applied Physics,1998,83:6326-6328.
    [162] Zhang W., Inoue A. Thermal and magnetic properties of Fe-Co-Ln-B (Ln=Nd, Sm, Tb orDy) amorphous alloys with high magnetostriction [J]. Materials Transactions JIM,1999,40:78-81.
    [163] Pang S.J., Zhang T., Asami K., Inoue A. New Fe-Cr-Mo-(Nb, Ta)-C-B glassy alloys withhigh glass-forming ability and good corrosion resistance [J]. Materials Transactions JIM,2001,42:376-379.
    [164] Zhang Y., Hono K., Inoue A., Sakurai T. Partitioning of Si in a Fe87Zr7Si4B2nanocrystallinesoft magnetic alloy [J]. Applied Physics Letters,1996,69:2128-2130.
    [165] Simpsom A.W., Brambley D.R. The magnetic and structural properties of bulk amorphousand crystalline Co-P alloys [J]. Physical Status Solidi,1971,43:291.
    [166] Luborsky F.E., Becker J.J., McCary R.O. Magnetic annealing of amorphous alloys [J].Magnetics, IEEE Transactions,1975,11:1644.
    [167] Zhang M., Wang A., Yang W., Shen B. Effect of Fe to P concentration ratio on structures,crystallization behavior, and magnetic properties in (Fe0.79+xP0.1-xC0.04B0.04Si0.03)99Cu1alloys[J]. Journal of Applied Physics,2013,113:17A337.
    [168] Stankov S., Yue Y., Miglierini M., Sepiol B., Sergueev I., Chumakov A., et al. Vibrationalproperties of nanograins and interfaces in nanocrystalline materials [J]. Physical ReviewLetters,2008,100:235503.
    [169] Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials [J]. ActaMaterialia,2013,61:718-734.
    [170] Yoshizawa Y., Oguma S., Yamauchi K. New Fe-based soft magnetic alloys composed ofultrafine grain structure [J]. Journal of Applied Physics,1988,64:6044-6046.
    [171] Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets [J]. Magnetics,IEEE Transactions,1989,25:3327-3329.
    [172] Kong F., Wang A., Fan X., Men H., Shen B., Xie G., et al. High Bs Fe84-xSi4B8P4Cux(x=0-1.5) nanocrystalline alloys with excellent magnetic softness [J]. Journal of Applied Physics,2011,109:07A303-3.
    [173] Yang W., Liu H., Dun C., Zhao Y., Dou L., Dou L. Variations of the permeability withannealing conditions for Fe-based nanocrystalline alloys [J]. Materials&Design,2012,36:428-431.
    [174] Yang W., Liu H., Xue L., Li J., Dun C., Zhang J., et al. Magnetic properties of(Fe1-xNix)72B20Si4Nb4(x=0.0-0.5) bulk metallic glasses [J]. Journal of Magnetism andMagnetic Materials,2013,335:172-176.
    [15]8toica2., olesar., ednar ic., Roth S., Franz H., Eckert J. Thermal stability andmagnetic properties of partially Co-substituted (Fe71.2B24Y4.8)96Nb4bulk metallic glasses [J].Journal of Applied Physics,2011,109:054901.
    [176] Yang W.M., Liu H.S., Dun C.C., Zhao Y.C., Dou L.M. Determine optimal annealingtemperature of Fe based nanocrystalline alloys from their melting point [J]. Materials Scienceand Technology,2012,28:1465-1469.
    [177] Clavaguera-Mora M.T., Clavaguera N., Crespo D., Pradell T. Crystallisation kinetics andmicrostructure development in metallic systems [J]. Progress in Materials Science,2002,47:559-619.
    [178]王一禾,杨膺善.非晶态合金[M].北京:冶金工业出版社,1989.
    [179]卢柯.非晶态合金向纳米晶体的相转变[J].金属学报,1994,30: B1-21.
    [180] Klugkist P., R tzke K., Rehders S., Troche P., Faupel F. Activation volume of57Co diffusionin amorphous Co81Zr19[J]. Physical Review Letters,1998,80:3288-3291.
    [181] Liu H.H., Yang W.M., Dun C.C., Zhao Y.C., Dou L.M. Unusual grain growth duringannealing process: from amorphous to nanocrystalline [J]. Optoelectronics and AdvancedMaterials-Rapid Communications,2012,6:95-98.
    [182] Xue L., Liu H., Dou L., Yang W., Chang C., Inoue A., et al. Soft magnetic properties andmicrostructure of Fe84-xNb2B14Cuxnanocrystalline alloys [J]. Materials&Design,2014,56:227-231.
    [183] Jiang J.Z. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Si13.5B9alloys [J].Nanostructured Materials,1997,9:245-248.
    [184] Hermann H., Mattern N., Roth S., Uebele P. Simulation of crystallization processes inamorphous iron-based alloys [J]. Physical Review B,1997,56:13888.
    [185] Tong H., Ding B., Jiang H., Lu K., Wang J., Hu Z. Formation kinetics of nanocrystallineFeBSi alloy by crystallization of the metallic glass [J]. Journal of Applied Physics,1994,75:654-656.
    [186] Herzer G. Nanocrystalline soft magnetic alloys [J]. Handbook of magnetic materials,1997,10:415-462.
    [187] Kulik T., Hernando A. Magnetic properties of two-phase nanocrystalline alloy determinedby anisotropy and exchange interactions through amorphous matrix [J]. Journal ofMagnetism and Magnetic Materials,1994,138:270-280.
    [188] Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization,structure, and properties [J]. Materials Science and Engineering: R: Reports,1996,16:161-221.
    [189] Tong H.Y., Ding B.Z., Jiang H.G., Hu Z.Q., Dong L., Zhou Q. An in situ TEM observationon the thermal stability of a nanocrystalline FeBSi alloy [J]. Materials Letters,1993,16:260-264.
    [190] Herzer G. Soft magnetic nanocrystalline materials [J]. Scripta Metallurgica et Materialia,1995,33:1741-1756.
    [191] Shahri F., Beitollahi A., Shabestari S., Kamali S. Effects of heat treatment on the structureand magnetic properties of Al-Ge added Fe73.5-xSi13.5B9Nb3Cu1alloys [J]. Physical Review B,2007,76:024434.
    [12]8zumiata9., rzózka., Gawroński2., Górka., lázquez-Gámez J.S., Kulik T., et al.M ssbauer and magnetoelastic investigations of the surface effects in Fe72Cu1.5Nb4Si13.5B9nanocrystalline alloy [J]. Journal of Magnetism and Magnetic Materials,2004,272-276:1443-1444.
    [193] Dunlop A., Jaskierowicz G., Rizza G., Kopcewicz M. Partial crystallization of an amorphousalloy by electronic energy deposition [J]. Physical Review Letters,2003,90:015503.
    [194] Han Y.M., Wang Z., Che X.H., Chen X.G., Li W.R., Li Y.L. Influence of Co content on thestructure and magnetic permeability of nanocrystalline (Fe1-xCox)73.5Cu1Nb3Si13.5B9alloys [J].Materials Science and Engineering: B,2009,156:57-61.
    [195] Yang W., Liu H., Dun C., Zhao Y., Dou L. Variations of the effective magnetostriction withannealing conditions for nanocrystalline magnetic alloys [J]. Journal of Low TemperaturePhysics,2011,164:272-278.
    [196] Ramanujan R., Zhang Y. Quantitative transmission electron microscopy analysis of thenanocrystallization kinetics of soft magnetic alloys [J]. Physical Review B,2006,74:224408.
    [197] Cserei A., Jiang J., Aubertin F., Gonser U. Study of the crystallization kinetics in amorphousFe73.5Cu1Nb3Si13.5B9alloy [J]. Journal of Materials Science,1994,29:1213-1216.
    [1] lawska-Waniewska A., Lachowicz H. Magnetostriction in soft magnetic nanocrystallinematerials [J]. Scripta Materialia,2003,48:889-894.
    [1]9warowski., u miński2., lawska-Waniewska A., Lachowicz H., Herzer G.Magnetostriction and its temperature dependence in FeCuNbSiB nanocrystalline alloy [J].Journal of Magnetism and Magnetic Materials,1995,150:85-92.
    [200] Herzer G. Anisotropies in soft magnetic nanocrystalline alloys [J]. Journal of Magnetism andMagnetic Materials,2005,294:99-106.
    [201] Badura G., Rasek J., Stoklosa Z., Kwapulinski P., Haneczok G., Lelatko J., et al. Softmagnetic properties enhancement effect and crystallization processes in Fe78-xNbxSi13B9(x=0,2,4) amorphous alloys [J]. Journal of Alloys and Compounds,2007,436:43-50.
    [202] Torrejón J., Badini-Confalonieri G., Vázquez M. Multipeak ferromagnetic resonancebehaviour tailored by magnetoelastic coupling in FeSiB/CoNi layered microwires [J]. Journalof Physics D: Applied Physics,2010,43:145001.
    [203]8tok osa Z., wapuliński5.,7asek., adura G., Haneczok G.,5aj k., et al.8tructuralrelaxation, crystallization and improvement of magnetic properties in FeXSiB (X=Cr,Nb)-type amorphous alloys [J]. Journal of Magnetism and Magnetic Materials,2008,320:e762-e765.
    [204] wapuliński5.,8tok osa Z.,7asek., adura G., Haneczok G.,5aj k., et al. Influence ofalloying additions and annealing time on magnetic properties in amorphous alloys based oniron [J]. Journal of Magnetism and Magnetic Materials,2008,320: e778-e782.
    [205] Stoklosa Z., Rasek J., Kwapulinski P., Badura G., Haneczok G., Pajak L., et al. Magnetic,electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9and Fe75Cu1Nb2Si13B9amorphous alloys [J]. Journal of Alloys and Compounds,2011,509:9050-9054.
    [206] Ngo D.T., Mahmud M.S., Nguyen H.H., Duong H.G., Nguyen Q.H., McVitie S., et al.Crystallisation progress in Si-rich ultra-soft nanocomposite alloy fabricated by melt spinning[J]. Journal of Magnetism and Magnetic Materials,2010,322:342-347.
    [207] Hoque S.M., Hakim M.A., Khan F.A., Chau N. Ultra-soft magnetic properties of devitrifiedFe75.5Cu0.6Nb2.4Si13B8.5alloy.[J]. Materials Chemistry and Physics,2007,101:112-117.
    [208] Hoque S.M., Dhar U., Hakim M.A., Saha D.K., Das H.N. Evolution of nanograins and softmagnetic properties of Fe74Cu0.8Nb2.7Si15.5B7by isothermal annealing [J]. Modern PhysicsLetters B,2011,25:1241-1251.
    [209] Chudnovsky E.M. Magnetic properties of amorphous ferromagnets [J]. Journal of AppliedPhysics,1988,64:5770-5775.
    [210] Lassri H., Tlem ani M., Slimani M., Sayouri S., Abid M., Hamouda H., et al. Randomanisotropy studies in amorphous Fe80-xNixB12Si8alloys [J]. Physica B,1997,239:274-277.
    [211] Hasegawa R. Static bubble domain properties of amorphous Gd single bond sign Co films[J]. Journal of Applied Physics,1974,47:3109-3112.
    [212] Heiman N., Lee K., Potter R.I., Kirkpatrick S. Modified mean-field model forrare-earth-iron amorphous alloys [J]. Journal of Applied Physics,1976,47:2634-2638.
    [213] Kronmüller H. Theory of magnetic after-effects in ferromagnetic amorphous alloys [J].Philosophical Magazine B,1983,48:127-150.
    [214] Gao J.E., Li H.X., Jiao Z.B., Wu Y., Chen Y.H., Yu T., et al. Effects of nanocrystal formationon the soft magnetic properties of Fe-based bulk metallic glasses [J]. Applied Physics Letters,2011,99:052504.
    [215] Li H.X., Gao J.E., Wu Y., Jiao Z.B., Ma D., Stoica A.D., et al. Enhancing glass-formingability via frustration of nano-clustering in alloys with a high solvent content [J]. ScientificReports,2013,3:1983.
    [216] Jiao Z.B., Li H.X., Gao J.E., Wu Y., Lu Z.P. Effects of alloying elements on glass formation,mechanical and soft-magnetic properties of Fe-based metallic glasses [J]. Intermetallics,2011,19:1502-1508.
    [217] Ma D., Stoica A.D., Wang X.L. Power-law scaling and fractal nature of medium-range orderin metallic glasses [J]. Nature Materials,2009,8:30-34.
    [218] Johnson W., Samwer K. A universal criterion for plastic yielding of metallic glasses with a(T/T2g)/3temperature dependence [J]. Physical Review Letters,2005,95:195501.
    [219] Yang B., Liu C.T., Nieh T. Unified equation for the strength of bulk metallic glasses [J].Applied Physics Letters,2006,88:221911-221913.
    [220] Liu Y., Liu C., Wang W., Inoue A., Sakurai T., Chen M. Thermodynamic origins of shearband formation and the universal scaling law of metallic glass strength [J]. Physical ReviewLetters,2009,103:065504.
    [221] Anderson P.W., Halperin B., Varma C.M. Anomalous low-temperature thermal properties ofglasses and spin glasses [J]. Philosophical Magazine,1972,25:1-9.
    [222] Buchenau U., Nücker N., Dianoux A. Neutron scattering study of the low-frequencyvibrations in vitreous silica [J]. Physical Review Letters,1984,53:2316.
    [223] Sokolov A., Calemczuk R., Salce B., Kisliuk A., Quitmann D., Duval E. Low-temperatureanomalies in strong and fragile glass formers [J]. Physical Review Letters,1997,78:2405.
    [224] Schirmacher W., Diezemann G., Ganter C. Harmonic vibrational excitations in disorderedsolids and the “boson peak”[].5hysical7eview etters,1,1136.
    [225] Shintani H., Tanaka H. Universal link between the boson peak and transverse phonons inglass [J]. Nature Materials,2008,7:870-877.
    [226] Kittel C. Introduction to solid state physics [M]. Beijing: Chemical Industry Press,2005.
    [227] Bai H.Y., Luo J.L., Chen Z.J., Wang W.H. Low temperature specific heat of bulk glassy andcrystalline Zr41Ti14Cu12.5Ni10Be22.5alloys [J]. Applied Physics Letters,2001,78:2697.
    [228] Granato A. Interstitial resonance modes as a source of the boson peak in glasses and liquids[J]. Physica B: Condensed Matter,1996,219:270-272.
    [229] Carini G., Carini G., D'Angelo G., Tripodo G., Di Marco G.,Vasi C.,Gilioli E. Influence ofpacking on low energy vibrations of densified glasses [J]. Physical Review Letters,2013,111:245502.
    [230] Zhou Z. H., Uher C., Xu D. H., Johnson W. L., Gannon W., Aronson M. C. On the existenceof Einstein oscillators and thermal conductivity in bulk metallic glass [J]. Applied PhysicsLetters,2006,89:031924.
    [231] Tang M., Bai H., Pan M., Zhao D., Wang W. Einstein oscillator in highly-random-packedbulk metallic glass [J]. Applied Physics Letters,2005,86:021910-021913.
    [232] Li Y., Bai H., Wang W., Samwer K. Low-temperature specific-heat anomalies associatedwith the boson peak in CuZr-based bulk metallic glasses [J]. Physical Review B,2006,74:052201.
    [233] Granato A. Interstitialcy model for condensed matter states of face-centered-cubic metals [J].Physical Review Letters,1992,68:974-977.
    [234] Granato A.V. A Comparison with empirical results of the interstitialcy theory of condensedmatter [J]. Journal of Non-Crystalline Solids,2006,352:4821-4825.
    [235] Uchino T., Yoko T. Localized low-frequency dynamics in SiO glass [J]. The Journal ofChemical Physics,1998,108:8130.
    [236] Elliott S. A unified model for the low-energy vibrational behaviour of amorphous solids [J].Europhysics Letters,1992,19:201.
    [237] Chen Y., Huang Y., Fan H., Wang D., Shen J. The local structure nature for a Ti-based bulkmetallic glass [J]. Materials Science and Engineering: B,2013,178:117-121.
    [238] Malinovsky V., Sokolov A. The nature of boson peak in Raman scattering in glasses [J].Solid State Communications,1986,57:757-761.
    [239] Wang W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science,2012,57:487-656.
    [240] Wang W.H., Wang R.J., Fan G.J., Eckert J. Formation and properties of Zr-(Ti,Nb)-Cu-Ni-Al bulk metallic glasses [J]. Materials Transactions JIM,2001,42:587-591.
    [241] Chen H., Krause J., Coleman E. Elastic constants, hardness and their implications to flowproperties of metallic glasses [J]. Journal of Non-Crystalline Solids,1975,18:157-171.
    [242] Lambson E., Lambson W., Macdonald J., Gibbs M., Saunders G., Turnbull D. Elasticbehavior and vibrational anharmonicity of a bulk Pd40Ni40P20metallic glass [J]. PhysicalReview B,1986,33:2380.
    [243] Eberhart M.E., Latanision R., Johnson K. Overview no.44: The chemistry of fracture: Abasis for analysis [J]. Acta Metallurgica.,1985,33:1769-1783.
    [244] Garoche P., Bigot J. Comparison between amorphous and crystalline phases ofcopper-zirconium alloys by specific-heat measurements [J]. Physical Review B,1983,28:6886.
    [245] Wang Z.X., Li F.Y., Pan M.X., Zhao D.Q., Wang W.H. Effects of high pressure on thenucleation of Cu60Zr20Hf10Ti10bulk metallic glass [J]. Journal of Alloys and Compounds,2005,388:262-265.
    [246] Zhao K., Li J.F., Zhao D.Q., Pan M.X., Wang W.H. Degradable Sr-based bulk metallicglasses [J]. Scripta Materialia,2009,61:1091-1094.
    [247] Wang Y., Pang Z., Wang R., Zhao D., Pan M., Han B., et al. Doping-induced formation ofbulk nanocrystalline alloy from metallic glass with controllable microstructure and properties[J]. Journal of Non-Crystalline Solids,2006,352:444-449.
    [248] Li S., Wang R., Pan M., Zhao D., Wang W. Bulk metallic glasses based on heavy rare earthdysprosium [J]. Scripta Materialia,2005,53:1489-1492.
    [249] Li S., Xi X., Wei Y., Luo Q., Wang Y., Tang M., et al. Formation and properties of newheavy rare-earth-based bulk metallic glasses [J]. Science and Technology of AdvancedMaterials,2005,6:823-827.
    [250] Li S., Wang R., Pan M., Zhao D., Wang W. Heavy rare earth based bulk metallic glasseswith high thermal stability [J]. Intermetallics,2006,14:592-595.
    [251] Li S., Wang R., Wang W. Bulk metallic glasses based on rare-earth elements in lanthanumseries [J]. Journal of Non-Crystalline Solids,2006,352:3942-3946.
    [252] Li S., Wang R., Pan M., Zhao D., Wang W. Formation and properties of RE55Al25Co20(RE=Y, Ce, La, Pr, Nd, Gd, Tb, Dy, Ho and Er) bulk metallic glasses [J]. Journal ofNon-Crystalline Solids,2008,354:1080-1088.
    [253] Yu H., Yu P., Bai H. Lutetium and thulium based rare earth bulk metallic glasses [J]. Journalof Non-Crystalline Solids,2008,354:4539-4542.
    [254] Wang J., Wang W., Bai H. Soft ytterbium-based bulk metallic glasses with strong liquidcharacteristic by design [J]. Applied Physics Letters,2009,94:041910-041913.
    [255] Ma D., Stoica A.D., Wang X.L., Lu Z.P., Clausen B., Brown D.W. Elastic Moduliinheritance and the weakest link in bulk metallic glasses [J]. Physical Review Letters,2012,108:085501.
    [256] Li G., Wang Y., Liaw P., Li Y., Liu R. Electronic structure inheritance and pressure-inducedpolyamorphism in lanthanide-based metallic glasses [J]. Physical Review Letters,2012,109:125501.
    [257] Wang W.H. Properties inheritance in metallic glasses [J]. Journal of Applied Physics,2012,111:123519.
    [258] Wang W.H. Metallic glasses: Family traits [J]. Nature Materials,2012,11:275-276.
    [259] Suzuki Y., Haimovich J., Egami T. Bond-orientational anisotropy in metallic glassesobserved by X-ray diffraction [J]. Physical Review B,1987,35:2162-2168.
    [260] Oreshkin A., Mantsevich V., Savinov S., Oreshkin S., Panov V., Yavari A., et al. In situvisualization of Ni-Nb bulk metallic glasses phase transition [J]. Acta Materialia,2013,61:5216-5222.
    [261] Wagner C., Light T., Halder N., Lukens W. Structure of a vapor-quenched AgCu alloy [J].Journal of Applied Physics,1968,39:3690-3693.
    [262] Zhang K., Li H., Li L., Bian X. Why does the second peak of pair correlation functions splitin quasi-two-dimensional disordered films?[J]. Applied Physics Letters,2013,102:071904-071907.
    [263] Liu X., Xu Y., Hui X., Lu Z., Li F., Chen G., et al. Metallic liquids and glasses: atomic orderand global packing [J]. Physical Review Letters,2010,105:155501.
    [264] Liu X., Xu Y., Lu Z., Hui X., Chen G., Zheng G., et al. Atomic packing symmetry in themetallic liquid and glass states [J]. Acta Materialia,2011,59:6480-6488.
    [265] Wang X., Jiang Q., Cao Q., Bednarcik J., Franz H., Jiang J. Atomic structure and glassforming ability of CuZrAl bulk metallic glass [J]. Journal of Applied Physics,2008,104:093519.
    [266] Mendelev M., Sordelet D., Kramer M. Using atomistic computer simulations to analyzeX-ray diffraction data from metallic glasses [J]. Journal of Applied Physics,2007,102:043501-043507.
    [267] Takeuchi A., Yubuta K., Yokoyama Y., Yavari A., Inoue A. Noncrystalline structure createdthrough ensemble of clusters in metastable cubic Zr2Ni structure by their random rotationsand subsequent annealing [J]. Intermetallics,2008,16:774-778.
    [268] Schumacher H., Herr U., Oelgeschlaeger D., Traverse A., Samwer K. Structural changes ofthe metallic glass ZrAlCu during glass transition and in the undercooled liquid region [J].Journal of Applied Physics,1997,82:155.
    [269] Fan C., Wilson T., Dmowski W., Choo H., Richardson J., Maxey E., et al. Quenched-inquasicrystal medium-range order and pair distribution function study on Zr55Cu35Al10bulkmetallic glass [J]. Intermetallics,2006,14:888-892.
    [270] Fan C., Liaw P., Wilson T., Choo H., Gao Y., Liu C., et al. Pair distribution function studyand mechanical behavior of as-cast and structurally relaxed Zr-based bulk metallic glasses [J].Applied Physics Letters,2006,89:231920-231923.
    [271] Mattern N., Kuhn U., Hermann H., Ehrenberg H., Neuefeind J., Eckert J. Short-range orderof Zr62-xTixAl10Cu20Ni8bulk metallic glasses [J]. Acta Materialia,2002,50:305-314.
    [272] Hui X., Fang H., Chen G., Shang S., Wang Y., Qin J., et al. Atomic structure ofZr41.2Ti13.8Cu12.5Ni10Be22.5bulk metallic glass alloy [J]. Acta Materialia,2009,57:376-391.
    [273] Sheng H., He J., Ma E. Molecular dynamics simulation studies of atomic-level structures inrapidly quenched Ag-Cu nonequilibrium alloys [J]. Physical Review B,2002,65:184203.
    [374] Han X., Teichler H. Liquid-to-glass transition in bulk glass-forming Cu60Ti20Zr20alloy bymolecular dynamics simulations [J]. Physical Review E,2007,75:061501.
    [275] Bednarcik J., Venkataraman S., Khvostikova O., Franz H., Sordelet D., Eckert J.Microstructural changes induced by thermal treatment in Cu47Ti33Zr11Ni8Si1metallic glass [J].Materials Science&Engineering A,2008,498:335-340.
    [276] Li H., Wang G., Ding F., Wang J., Shen W. Molecular dynamics computation of clusters inliquid Fe-Al alloy [J]. Physics Letters A,2001,280:325-332.
    [277] Sváb E.e.a.J.[J]. de Physiques,1985,46: C8-267.
    [278] Evteev A., Kosilov A., Levtchenko E. Atomic mechanisms of formation and structurerelaxation of Fe83M17(M: C, B, P) metallic glass [J]. Acta Materialia,2003,51:2665-2674.
    [279] Yamada M., Terashima Y., Tanaka K. X-ray diffraction study of local atomic structures inamorphous Nd-Fe-B alloys [J]. Materials Transactions JIM,1993,34:895-900.
    [280] Ohkubo T., Kai H., Makino A., Hirotsu Y. Structural change of amorphous Fe90Zr7B3alloyin the primary crystallization process studied by modern electron microscope techniques [J].Materials Science and Engineering: A,2001,312:274-283.
    [281] Cargill G. Structural investigation of noncrystalline Nickel-Phosphorus alloys [J]. Journal ofApplied Physics,1970,41:12-29.
    [282] Wang L., Bian X., Zhang J. Structural simulation of clusters in liquid Ni50Al50alloys [J].Modelling and Simulation in Materials Science and Engineering,2002,10:331.
    [283] Hui L., Feng D., Xiufang B., Guanghou W. Molecular dynamics study of icosahedralordering and defect in the Ni3Al liquid and glasses [J]. Chemical Physics Letters,2002,354:466-473.
    [284] Egami T., Dmowski W., He Y., Schwarz R. Structure of bulk amorphous Pd-Ni-P alloysdetermined by synchrotron radiation [J]. Metallurgical and Materials Transactions A,1998,29:1805-1809.
    [285] Mattern N., Kühn U., Eckert J. Structural behavior of amorphous and liquid metallic alloysat elevated temperatures [J]. Journal of Non-Crystalline Solids,2007,353:3327-3331.
    [286] Li G., Borisenko K.B., Chen Y., Nguyen-Manh D., Ma E., Cockayne D.J. Local structurevariations in Al89La6Ni5metallic glass [J]. Acta Materialia,2009,57:804-811.
    [287] Matsubara E., Harada K., Waseda Y., Chen H., Inoue A., Masumoto T. X-ray diffractionstudy of amorphous Al77.5Mn22.5and Al56Si30Mn14alloys [J]. Journal of Materials Science,1988,23:753-756.
    [288] Sinha A.K., Duwez P. Radial distribution function of amorphous NiPtP alloys [J]. Journal ofPhysics and Chemistry of Solids,1971,32:267-277.
    [289] armin Y.., ataronov I., ondarev.,5osmet’yev.9he fractal skeleton of the atomicstructure of amorphous metals [J]. Journal of Physics: Condensed Matter,2008,20:114117.
    [290]于长丰.金属单晶体杨氏模量的微观定量研究[J].吉林大学学报,2005,43:73-78.
    [291] Gao J.E., Chen Z.P., Du Q., Li H.X., Wu Y., Wang H., et al. Fe-based bulk metallic glasscomposites without any metalloid elements [J]. Acta Materialia,2013,61:3214-3223.
    [292]袁晨晨.金属玻璃电子结构和力学性能的固体核磁共振研究[D].北京:中国科学院,2012.
    [293]蒋敏强.块体金属玻璃的剪切带行为[D].北京:中国科学院,2009.
    [294] Mandelbrot B.B., Passoja D.E., Paullay A.J. Fractal character of fracture surfaces of metals[J]. Nature,1984,308:721.
    [295]谢和平.分形-岩石力学导论[M].北京:科学出版社,1995.
    [296] Yavari A., Khezrzadeh H. Estimating terminal velocity of rough cracks in the framework ofdiscrete fractal fracture mechanics [J]. Engineering Fracture Mechanics,2010,77:1516-1526.
    [297] Jiang M., Meng J., Gao J., Wang X.-L., Rouxel T., Keryvin V., et al. Fractal in fracture ofbulk metallic glass [J]. Intermetallics,2010,18:2468-2471.
    [298] Inoue A., Shen B., Yavari A., Greer A. Mechanical properties of Fe-based bulk glassy alloysin Fe-B-Si-Nb and Fe-Ga-PCB-Si systems [J]. Journal of Materials Research,2003,18:1487-1492.
    [299] Guo S., Li N., Zhang C., Liu L. Enhancement of plasticity of Fe-based bulk metallic glassby Ni substitution for Fe [J]. Journal of Alloys and Compounds,2010,504: S78-S81.
    [300] Ma X.H., Yang X.H., Li Q., Guo S.F. Quaternary magnetic FeNiPC bulk metallic glasseswith large plasticity [J]. Journal of Alloys and Compounds,2013,577:345-350.
    [301] Gu X.,2cDermott.,5oon8..,8hiflet G.. Critical5oisson’s ratio for plasticity inFe-Mo-C-B-Ln bulk amorphous steel [J]. Applied Physics Letters,2006,88:211903-211905.
    [302] Iida T., Guthrie R.I.L. The physical properties of liquid metals [M]. Clarendon: Oxfora,1988.
    [303] Shek C.H., Lin G.M., Lee K.L., Lai J.K.L. Fractal fracture of amorphous Fe46Ni32V2Si14B6alloy [J]. Journal of Non-Crystalline Solids,1998,224:244-248.
    [304] Charkaluk E., Bigerelle M., Iost A. Fractals and fracture [J]. Engineering FractureMechanics,1998,61:119-139.
    [305] Sun B., Wang W. Fractal nature of multiple shear bands in severely deformed metallic glass[J]. Applied Physics Letters,2011,98:201902-201903.
    [306] Lai Y., Lee C., Cheng Y., Chou H., Chen H., Du X., et al. Bulk and microscale compressivebehavior of a Zr-based metallic glass [J]. Scripta Materialia,2008,58:890-893.
    [307] Zheng Q., Cheng S., Strader J., Ma E., Xu J. Critical size and strength of the best bulkmetallic glass former in the Mg-Cu-Gd ternary system [J]. Scripta Materialia,2007,56:161-164.
    [308] Park E., Lee J., Kim D., Gebert A., Schultz L. Correlation between plasticity and fragility inMg-based bulk metallic glasses with modulated heterogeneity [J]. Journal of Applied Physics,2008,104:023510-023520.
    [309] Zhang W., Fang C., Li Y. Ferromagnetic Fe-based bulk metallic glasses with highthermoplastic formability [J]. Scripta Materialia,2013,69:77-80.
    [310] Guo S.F., Liu L., Li N., Li Y. Fe-based bulk metallic glass matrix composite with largeplasticity [J]. Scripta Materialia,2010,62:329-332.
    [311] Chen M., Inoue A., Zhang W., Sakurai T. Extraordinary plasticity of ductile bulk metallicglasses [J]. Physical Review Letters,2006,96:245502.
    [312] Liu Y.H., Wang G., Wang R.J., Zhao D.Q., Pan M.X., Wang W.H. Super plastic bulk metallicglasses at room temperature [J]. Science,2007,315:1385-1388.
    [313]柳延辉.块体金属玻璃室温变形机制和超大塑性[D].北京:中国科学院,2007.
    [314] Kim D., Kim W., Park E., Mattern N., Eckert J. Phase separation in metallic glasses [J].Progress in Materials Science,2013,58:1103-1172.
    [315] Katayama Y., Inamura Y., Mizutani T., Yamakata M., Utsumi W., Shimomura O.Macroscopic separation of dense fluid phase and liquid phase of phosphorus [J]. Science,2004,306:848-851.
    [316] Gschneidner Jr K.A., Ji M., Wang C.Z., Ho K.M., Russell A.M., Mudryk Y., et al. Influenceof the electronic structure on the ductile behavior of B2CsCl-type AB intermetallics [J]. ActaMaterialia,2009,57:5876-5881.
    [317] Niu H., Chen X.Q., Liu P., Xing W., Cheng X., Li D., et al. Extra-electron induced covalentstrengthening and generalization of intrinsic ductile-to-brittle criterion [J]. Scientific Reports,2012,2:718.
    [318] Yuan C.C., Xiang J.F., Xi X.K., Wang W.H. NMR signature of evolution of ductile-to-brittletransition in bulk metallic glasses [J]. Physical Review Letters,2011,107:236403.
    [319] Zhou S., Dong B., Qin J., Li D., Pan S., Bian X., et al. The relationship between the stabilityof glass-forming Fe-based liquid alloys and the metalloid-centered clusters [J]. Journal ofApplied Physics,2012,112:023514-023515.
    [320] Messmer R. Local electronic structure of amorphous metal alloys using cluster models.Evidence for specific metalloid-metal interactions [J]. Physical Review B,1981,23:1616.
    [321] Wang H., Hu T., Zhang T. Atomic, electronic and magnetic properties of Fe80P11C9amorphous alloy: A first-principles study [J]. Physica B: Condensed Matter,2013,411:161-165.
    [322] Yamauchi K., Mizoguchi T. The magnetic moments of amorphous metal-metalloid alloys [J].Journal of the Physical Society of Japan,1975,39:541-542.
    [323] Huffman G.P. Ferromagnetism of amorphous Iron alloys [M]. Newyork-London: PlenumPress,1973.
    [324] Hricovini K., Krempasky J. UPS and XPS studies of Fe80-xNixB20metallic glasses.[J].Journal of Physics F: Metal Physics,1985,15:1321-1329.
    [325] Fujiwara T. Electronic structure in amorphous Fe, FexP1-xand FexB1-x.[J]. Journal of PhysicsF: Metal Physics,1982,12:661-675.
    [326] Oelhafen P., Hauser E., Güntherodt H., Bennemann K. New type of d-band-metal alloys: the
    valence-band structure of the metallic glasses Pd-Zr and Cu-Zr [J]. Physical Review Letters,
    1979,43:1134-1137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700