非均匀介质积分正演及波场特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地震勘探技术的发展,地震勘探的应用范围越来越广泛。地震记录的波场也越来越复杂。这是因为,地震勘探的研究对象已非传统意义上的均匀介质(或层状均匀介质),而是非均匀介质,甚至复杂非均匀介质都越来越多的成为地震勘探的研究对象。所以,非均匀介质波场特征分析研究已经成为地震勘探研究的热门课题。在非均匀介质研究中,散射波场的研究对解决非均匀介质勘探问题具有很重要的指导意义。本文在总结前人对非均匀介质波场研究成果的基础上,讨论了非均匀介质正演方法的优缺点,给出了波动方程积分解的几种形式,讨论了它们的适用条件和限制。讨论了惠更斯-菲涅尔原理在克希霍夫积分中的应用。格林函数法解波动方程,作为一个较为广泛使用的波动方程积分解的方法,在文中作了详细讨论,并验证了它的使用效果,给定了边界曲面和边界条件的限制。通过几个简单模型试验,可以看出,波动方程的积分解在非均匀介质正演方面应该有其特有的优势:那就是能综合考虑非均匀地质体的边界影响,可以计算全波场效应。
     对非均匀介质波场的分析,本文是通过实际资料来完成的。文中根据栌枞金属矿区的一些资料,构造了几个不同的有关磁铁矿的地质模型。分析了非均匀地质体,在这里即是矿体的形态和组成等对散射波场的影响。
     针对复杂非均匀介质,论文介绍了随机介质的一些概念和理论。在此基础上,建立了一系列随机介质模型,分析模型特点,讨论了自相关函数、自相关长度和扰动标准差等对随机介质模型的影响。然后对随机介质进行了正演模拟及波场特征研究,通过变换参数,分析讨论了影响随机介质散射波场的因素,得出了关于随机介质的一些结论。但是,在研究过程中也遇到了很多问题,有待进一步解决,这些都在文中进行了详细介绍。
Wave field characteristics of non-homogeneous medium in seismic exploration has become a hot topic. Research on the scattered wave field has important significance on solving complex problems of non-homogeneous media. Based on the predecessors research results of the wave field in inhomogeneous media, discuss advantages and disadvantages of forward modeling in inhomogeneous media. We also give several forms of integral solutions of wave equation, discuss their conditions and restrictions. Given Huygens - Fresnel principle in the application of Kirchhoff integral. Green function method for solving wave equation, widely used as a more integral way wave equation, discussed in detail in the text, and verify the effect of its use, given the boundary surface and boundary conditions. Model through a few simple tests can be drawn, wave equation integral solutions forward modeling in the study of non-uniform characteristics of the wave field should have its unique advantages: it is able to take into account the different media in the role of the wave field position, the calculated wave field closer to the theoretical value.
     Research on the wave field in inhomogeneous media, this paper is accomplished through the actual data. In the paper, using the information of the Luzong arer, constructed several different geological model of magnetic iron ore. Through the analysis of the wave field characteristics in the forward modeling result, we obtained some conclusions about the scattering wave field in inhomogeneous media:
     First,non-homogeneous media play a important role in scattering wave field, to study non-uniform medium, scattering theory and scattering must have some benefit on understanding the wave field.
     Second, the distribution of underground metal mine in the non-homogeneous medium model is of a typical representative of non-homogeneous medium.We use Luzong metal mine to complete the forward modeling .
     Third, through the analysis of scattering wave field characteristics, draw some conclusions: the composition and the shape of the non-uniform media can influence wave field in inhomogeneous media, this is because the composition of non-uniform medium affect its physical properties, the velocity, density, etc., which determine the non-homogeneous medium with the surrounding medium wave impedance difference, then can affect the strength of the scatter wave field generated and distributed. The pattern is not uniform medium because it can affect the scattering of wave propagation path and the distribution of scattered waves, which affect the whole scattered wave field. However, these in this paper is a simple overview. Further study of specific correspondence should be searching.
     Fourth, the non-homogeneous media, construction also affect the scattered wave field of important factors. Massive ore body in isolation, steep dip, the fault of these geological structures such as dykes better response in the seismic record of the scattering profile can be reflected clearly. However, when these structures became more complex, and a variety of structures exist, the scattered wave field becomes very complex, non-uniform medium wave field in this record out on the difficult to distinguish.
     Through the study on random medium model and the wave field characteristics , we draw some conclusions on the complex heterogeneous medium and its wave field characteristics. Conclusions on the random medium are:
     First, elliptical Gaussian autocorrelation function describing the random medium with a single scale smooth features, and exponential and Von Karman-type autocorrelation function descripte the random media with multiple scales, self-similar characteristics, it seems more suitable to simulate the actual non-uniform medium;
     Second, the correlation length x and z descripte the scale in horizontal direction and depth direction of the random medium;
     Third, the standard deviation controls the disturbance speed range of the random medium .
     Conclusions on the scattering wave field characteristics of random media are:
     First,wave field in random medium is not a traditional reflection wave field, but a scattered wave field ,which need the scattering wave field theory to explain;
     Second, the size of the autocorrelation length of the random media medium impact the wave field, the bigger autocorrelation length, the more nearly uniform medium wave field. We also found that in the forward modeling, absorbing boundary conditions more conducive to random media, because the effects on the scattered wave field of the absorption boundary are smaller;
     Third, the source frequency in the random medium forward modeling play a very important role, to get the ideal random media scattering wave field, you must select the appropriate source frequency;
     Fourth, influence of random media in layered media is not only in the right random medium layer, but also the entire wave field, especially in the medium which under it .
     Overall, these findings for our study of complex heterogeneous medium and scattering wave field has important significance.
     In the process of research projects and papers completing also encountered many problems:
     First, observing system design is unreasonable, because non-uniform body shape affect the scattered wave field, observing system design directly influenced the acceptance of scattered wave field, the traditional system has been observed seismic wave field recorded in the explanation may be heterogeneous geologic body to explain the wrong phenomenon.
     Second,there is not a perfect mathod to modeling the non-homogeneous medium, all existing methods are mostly based on the homogeneous medium (or layered homogeneous medium).It’s a limitation in study on non-homogeneous media,for the precision is not enough.
     Third, systematic research on the complex scattering field have not yet done, many studies are applicable for a particular situation, rather than the complex non-homogeneous medium .Use of the previous method is even possible misinterpretation.
     Fourth, no seismic simulation software for the non-uniform media. This greatly reduces the efficiency of seismic data acquisition and analysis.
引文
[1] K.Aki. Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves[J]. Geophysics, 1969, 74(4): 615-631.
    [2] Godfrey,etal. Modeling seismic impedance with Markov chains[J]. Geophysics, 1980, 45: 1351-1372.
    [3] Frankel, A., and Clayton,R.W. A finite-difference simulation of wave propagation in two-dimensional random media[J]. Seis.Soc.Am, 1984, 74: 2167-2186.
    [4] Frankel, A., and Clayton,R.W. A finite-difference simulation of wave propagation in two-dimensional random media[J]. Seis.Soc.Am, 1984, 74: 2167-2186.
    [5] Frankel, A., and Clayton,R.W. Finite-difference simulation of seismic scattering:Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity[J]. Geophys.Res, 1986, 91: 6465-6489.
    [6] Stanke, F.E., and Burridge,R. Comparison of spatial and ensemble averaging methods applied to wave propagation in finely layered media[J]. Soc.Expl.Geophys, 1990, Expanded Abstracts: 1062-1065.
    [7] de Hoop, M.V., Burridge,R.,and Chang,H.-W. The pseudoprimary field due to a point-source in a finely layered medium[J]. Geophysics, 1991, 104: 489-506.
    [8] Kerner, C. Anisotropy in sedimentary rocks modeled as random media[J]. Geophysics, 1992, 57: 564-576.
    [9] Levander, A.R., Gibson,B.S. Wide-angle seismic reflections from two-dimensional target zones[J]. Geophys.Res, 1991, 96: 10251-10260.
    [10] L.T.Ikele, S.K., Yung,and F.Daube. 2-D random media with ellipsoidal autocorrelation functions[J]. Geophysics, 1993, 58(9): 1359-1372.
    [11] Lena Frenje and Christopher, J. Scattering of seismic waves simulated by finitedifference modelling in random media[J]. Tectonophysics, 1998, 293: 61-68.
    [12] Matsuoka, R. Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration[J]. Exploration Geophysics, 2005, 36: 41-49.
    [13]张光萤,曾新吾.二维随机裂纹介质模型[J].国防科技大学学报, 2003, 25(2): 1-4.
    [14]奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探, 2001, 36(5): 546-552.
    [15]奚先,姚姚.随机介质模型的模拟与混合型随机介质[J].地球科学-中国地质大学学报, 2002, 27(1).
    [16]姚姚,奚先.区域多尺度随机介质模型及其波场分析[J].石油物探, 2004, 43(1): 1-7.
    [17]奚先,姚姚.随机介质模型波场的有效统计特征[J].华中科技大学学报, 2005, 33(9).
    [18] Miles, J.W. Scattering of Elastic Waves by Small Inhomogeneities[J]. Geophysics, 1960, 15: 642-648.
    [19] Herreral, I.a.M., A.K. A Perturbation Method for Elastic Wave Propagation in Small Inhomogeneities[J]. Geophys.Res, 1965, 70: 871-873.
    [20] K.Aki. Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves[J]. Geophysics, 1969, 74(4): 615-631.
    [21] Haddon,R.A.W. Corrugations on the CMB or transition layers between inner and outer cores[J]. Geophysics, 1972, Union: 600.
    [22] Husdon, J.A. Scattered Waves in the Coda of P[J]. Geophysics, 1977, 43: 359-374.
    [23] Gubernatis, J.E. Formal Aspects of the Theory of the Scattering of Ultrasound by Flows in Elastic Materials[J]. APPLIED GEOPHYSICS, 1977, 48: 2804-2811.
    [24] Aki,K., P., Richards Quantitative Seismology[J]. Geophysics, 1980, 2.
    [25] R.Wu , K.Aki. Scattering characteristics of elastic waves by an elastic heterogeneity[J]. GEOPHYSICS, 1985, 50(4): 582-595.
    [26] Flatte, S.M.a.W., R.S. Small scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR[J]. Geophys.Res, 1988, 93: 6601-6614.
    [27] Wu,R.S.,Huang,L.J.and Xie,X.B. Backscattered Wave calculation using the DE Wolf approximation and a phase-screen propagator:Expanded Abstracts of the Technical Program[J]. SEG’65th Annual Meeting, 1995, 1995: 1293-1296.
    [28]符力耘,杨慧珠,牟永光.非均匀介质散射问题的体积分方程数值解法[J].力学学报, 1998, 04.
    [29]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探, 2001, 37(4): 68-70.
    [30]李小凡.大延伸非均匀介质中地震波全弹性散射理论I--弹性波单次散射理论[J].力学学报, 2002, 34(4): 559-568.
    [31]黄雪继.地震波散射场相位移法波动方程正演模拟[D].中国地质大学(北京)博士学位论文, 2003.
    [32] Twersky, V. Propagation Parameters in Random Distributions of Scatterers[J]. Anal.Math., 1976, 30
    [33]黄联捷,吴如山.垂向非均匀背景多频背向散射层析成像[J].地球物理学报, 1994, 37(1): 87-100.
    [34]刁顺,杨慧珠,许云.裂缝及介质非均匀散射[J].石油物探, 1994, 33(4): 49-55.
    [35]徐明才,高景华,柴铭涛等.金属矿地震勘查的方法技术[J].有色金属矿产与勘查, 1997, 6(4): 232-237.
    [36] Tobias M.Muller. Green's function construction for 2D and 3D elastic random media[J]. SEG Expanded Abstracts, 1999.
    [37]徐明才,高景华,刘建勋.东秦岭地震剖面上莫霍基本特征的研究[J].地质与勘探, 2000, 36(1): 40-43.
    [38]王勇,朱亚平,杨慧珠.共散射点成像及其在低信噪比三维地震数据处理中的应用[J].石油地球物理勘探, 2000, 35(1).
    [39]孟凡顺等.复杂地质体粘滞弹性波正演模拟的有限差分法[J],青岛海洋大学学报,2000,30(2):315~320
    [40]崔建军,何继善.粘弹性波动方程正演和偏移[J] .中南工业大学学报,2001, 32(5):.441~444
    [41]曾校丰,许维进,何文能.隐伏矿床的地震波动力学信息探测[J].矿床地质, 2002, 21(1): 91-96.
    [42]杨旭明,周熙襄,王克斌等.近地表地震散射噪声的正反演方法[J].石油物探, 2002, 41(3).
    [43]单延明,吴清岭,于承业等.复杂地质构造波动方程数值模拟[J].物探化探计算技术,2002,24 (1):22~26
    [44]高景华.金属矿勘查中的地震理论模型研究[J].物探与化探, 2002, 26(5): 350-356.
    [45]王润秋,耿伟峰,王尚旭.地震波正演模拟的任意差分精细积分方法[J].石油地球物理勘探, 2003, 38(3): 252-257.
    [46]尹成,伍志明,邓怀群.高阶统计量方法在地震勘探中的应用[J].地球物理学进展, 2003, 18(3).
    [47]曹军,盖增喜,张坚等.用于不规则界面多层介质的地震波方法比较研究:不规则地形问题[J].地球物理学报, 2004, 47(3): 495-503
    [48] Matsuoka, R. Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration[J]. Exploration Geophysics, 2005, 36: 41-49.
    [49]钟伟,杨宝俊,张智.复杂介质地震波场研究进展[J].世界地质, 2005, 24(4).
    [50]李灿苹,刘学伟,王祥春等.地震波的散射理论和散射特征及应用[J].勘探地球物理进展, 2005, 28(2): 81-89.
    [51]李灿苹,刘学伟,李敏峰等.非均匀地质体散射波特征初探[J].石油物探, 2006, 45(2): 134-140.
    [52]贾晓峰,胡天跃,王润秋.复杂介质中地震波模拟的无单元法[J].石油地球物理勘探, 2006, 41(1).
    [53]田仁飞,张固澜.基于时频误差分析法的随机介质波场特征分析[J].西安石油大学学报(自然科学版), 2008 23(6).
    [54]吴何珍,符力耘,兰晓雯.基于随机介质模型的储层非均质性分析[J].地球物理学进展, 2008, 23(3).
    [55]韩开锋,曾新吾.二维随机孔隙岩石模型及其波场分析[J].岩石力学与工程学报, 2008, 9(27).
    [56]郭继茹,冯晅等.最佳路径射线追踪算法研究[J].吉林大学学报(地球科学版), 2008, 38.
    [57]陈可洋,刘洪林等.随机介质模型的改进方法及应用[J].大庆石油地质与开发, 2008, 27(5).
    [58] Michael.I.Mishchenko, J.M.D. Accuracy of the scalar approximation in computations of diffuse and coherent backscatteringby discrete random media[J]. PHYSICAL REVIEW, 2008, A 78( 063822).
    [59] Jalali, D.D.a.B. Stochastic differential equation approach for waves in a random medium[J]. PHYSICAL REVIEW, 2009, E 79(036606).
    [60]李芳,曹思远,孙建国等. 2. 5D傅氏变换法声波方程数值模拟及精度分析[J].石油地球物理勘探, 2009, 44(3): 276.
    [61]王经民,刘亚相,刘迎州等.波动方程解的Poisson公式的降维问题[J].大学数学, 2009, 25(6): 152-154.
    [62]曾富英.复杂地质体三维建模[D].中国地质大学(北京)博士学位论文, 2004.
    [63]尹军杰.地震散射波场特征的数值模拟研究[D].中国地质大学(北京)博士学位论文, 2005.
    [64]李灿苹.散射波特征与非均匀地质体对应关系研究[D].中国地质大学(北京)博士学位论文, 2006.
    [65]田丽花.地震波散射场正演数值模拟[D].中国地质大学(北京)硕士学位论文, 2007.
    [66]曹守山.复杂地质体的地震波场成象方法研究[D].成都理工大学硕士学位论文, 2008.
    [67] [美]安艺敬一,P.G.理查兹.定量地震学理论和方法[J].北京:地震出版社, 1986.
    [68]杜世通.地震波动力学理论与方法[J].东营:中国石油大学出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700