荒漠戈壁区深穿透地球化学的理论方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出露区经历了人类肉眼上千年的找矿历史和一个多世纪的系统地质勘查,现要通过传统的地球化学方法找到新的矿产地的可能性越来越小,寻找新的大型矿床的最大机遇是在隐伏区。隐伏矿勘查已经成为勘查地球化学的难题和研究前沿。
     在此背景下,提出了“深穿透地球化学”的概念。深穿透地球化学是通过研究成矿元素或伴生元素从隐伏矿向地表的迁移机理和分散模式,含矿信息在地表的存在形式和富集规律,发展含矿信息的采集、提取与分析、成果解释技术,以达到寻找隐伏矿的目的。它的理论基础由连续的几个要素构成:元素从深部向地表的迁移机理、元素迁移到地表以后在土壤中的存在形式和富集规律、所表现的异常模式特征。元素在土壤中的存在形式和富集规律以及异常模式特征是可以观测到的,而元素从深部向地表的迁移机理问题一直存在很大争议。
     本文在总结前人迁移机理的基础上,针对荒漠戈壁区元素的迁移机理研究入手,选择荒漠区的典型的金、铜、铀三种类型矿区,对其地表土壤中多个层位多个粒级的样品的元素活动态分析和研究发现:钙积层对大部分元素没有“隔挡”作用,元素主要富集在钙积层的上部弱胶结层中;孔泡结皮层之下石膏层以上的(10-40 cm)弱胶结层是最佳取样层位;与矿化有关的元素富集在细粒级粘土和铁锰氧化物膜中,细粒级是深部含矿信息的最有效载体。因此,分离和提取细粒级粘土和铁锰氧化物膜可以达到有效寻找深部隐伏矿的目的。
     本文在对他人所建立的8种地球化学迁移模型进行系统分析的基础上,通过以上在荒漠戈壁区含矿体上方的土壤层中含矿信息的研究提出了针对干旱荒漠区的元素迁移模型—以地气流为主的多营力迁移模型。这一模型概括为:矿床本身及其围岩中存在成矿元素或伴生元素的活动态形式,包括各种离子、络合物、原子团、胶体、超微细的亚微米至纳米金属颗粒。这些元素的活动态形式可以与气泡表面相结合,并被地气流携带至地表。到达接近地表时,蒸发作用、离子扩散等因素都可参与对元素的向地表迁移。由于地表地球化学障的存在,气体所携带的元素将被卸载下来,在地表形成地球化学异常。
     另外,在铀矿上方的研究表明铀在干旱氧化条件下主要呈活动态的铀酰络阳离子存在,铀酰络阳离子呈纺锤状、半径大,及易被粘土表面或层间结构所吸附。细粒物质可作为盆地砂岩型铀矿地球化学勘查的有效采样介质;
     而在铜矿上方的研究发现,铜与金和铀的分布有些不同,铜主要富集在风化残积层中,大量的Cu被挡在钙积层的下部。也就是说钙积层是活动态Cu迁移的一个地球化学障。
     这些发现,对荒漠戈壁区地球化学勘查的异常解释、采样介质的选择和荒漠戈壁区迁移机理的建立都具有重要意义。
     最后,利用3种深穿透地球化学方法——细粒级分离技术、元素活动态提取技术和电化学提取技术,在荒漠戈壁区上对3种类型(金、铜、铀)隐伏矿进行了从区域尺度-矿区尺度-到矿体定位尺度方法的应用,发现利用细粒级分析或铁锰氧化物提取分析可以快速、经济、有效地圈定矿田所引起的区域异常,为盆地周边大型金属矿和盆地砂岩型铀矿提供找矿线索。
     总之,本论文通过研究含矿元素在地表的赋存形式,粒度分布和层位分布,发展完善了从样品采集、样品处理、分析测试、质量监控、数据处理、图件制作的新方法,建立我国荒漠覆盖区景观元素从深层向地表的传输和分散机理,为大面积荒漠覆盖区地球化学调查和隐伏矿产勘查提供理论与方法支撑;为创建全新的深穿透直接信息找矿理念和方法都具有重大科学意义和实际意义。
Outcropping areas have been explored by naked-eye over a thousand years and explored by geological technology over a century. The biggest possibility to find the new large ore deposits is in covered areas. Exploration for buried ore deposits has become difficult.
     In this background the concept of 'deep-penetrating geochemistry' has been begun to be present. The deep-penetrating geochemistry is to find the buried ore deposits by studying the migrating mechanism and dispersion patterns of mineralization elements or associated elements from ore body to the surface, the elemental forms and distribution in the regolith and development of technology of sampling and analysis in seek for buried ore body.
     Desert terrains in northern China are covered by widespread regolith sediments, which mask geochemical signals from ore bodies, and are major obstacles to mineral exploration. There is a critical need to study the vertical distribution of elements in the regolith, and to determine potential mechanisms for transferring elements from the ore body upwards through regolith cover to the surface, to establish appropriate sampling media and analytical methods.
     At the conclusion of this migration of our predecessors on the basis of the migration mechanism of elements the paper starts with a typical choice desert area of gold, copper and uranium mine—three types of its surface soil layer over multiple tablets class samples mobile element analysis and research and found: calcium plot elements not to the majority of the "screened", the main elements of plot calcium concentration in the upper layer of weak cement layer; pore foam cortex node under plaster layer above (10-40 cm) weakly cemented layer is the best sampling horizon; mineralization related elements and enrichment level in the fine-grained clay and iron-manganese oxide film, the fine-ore-bearing deep is the most effective vector information . Therefore, separation and extraction of clay and fine-grained level of iron and manganese oxide film can achieve an effective search for deep concealed ore purposes.
     In this thesis the migration and technology have been present as followed according to the research of mineral information over ore body based former 8 machenism of transferring:
     Deposits itself and associated element or its mobile forms in the mineralization, including various ions, complex atoms, colloid, sub-micron, ultra-fine to nanometer metal particles.
     These elements can live with the mobile form of combining the bubble surface, and was carried to the surface to air currents. When them reach close to the surface, evaporation, ion diffusion, and other factors may be involved in the relocation of elements to the surface. Because gas carried the elements geochemical barrier on the surface will be unloaded down.
     Using three kinds of deep-penetrating geochemical methods - Fine-separation technology, the elements of mobile extraction technology and electrochemical extraction techniques, in the desert terrains on three types (gold, copper, uranium) were concealed from the regional mine scale to mine scale - to scale methods for ore body positioning. It is found that extraction of iron-manganese oxide can be delineated ore field caused by regional anomaly rapidly, economically, effectively providing clues for prospecting the uranium deposits in basin sandstone-type and surrounding basin large ore body.
     These discovery, geochemical exploration anomalies explaination in desert terrains and the choice of sampling granularity and establishment of migration mechanism in desert terrains is of the great significance. By researching the forms of elements in the ore-bearing surface, particle size distribution and level of distribution this paper developed and improved sample collection, sample processing, analysis and testing, quality control, data processing, map production of a new method, build transmission mechanism for the large area covered by desert geochemical surveys and concealed mineral exploration theory and method to provide support for the creation of a new deep-penetrating direct information in China's desert area with covered landscape elements to the surface from deep, which has the significant scientific meaning and important practical significance in building the wholly-new concept of deep-penetrating with direct information.
引文
[1]Woodall,R.The multidisciplinary team approach to successful mineral exploration[J].Society of Economic Geologists,1993,14:1-7
    [2]Goldberg,I.S.,Ivanova,A.V.,Ryss,Yu.S.,et al.Exploration for ore deposits by the CHIM method[J].Method and Technique,Onti,Vitr,Leningrad,1978,84:5-19
    [3]Antropova,L.V.,Goldberg,I.S.,Voroshilov,N.A.et al.New methods of regional exploration for blind mineralization:application in the US SR[J].J.Geochem.Explor.,1992,43:157-166
    [4]Kristiansson,K.and Malmqvist,L..Evidence for no diffusive transport of Rn in the ground and a new physical model for the transport[J].Geophysics,1982,47(10):1444-1452
    [5]Clark,J.R.,Meier,A.L.and Riddle.Enzyme leaching of surficial geochemical samples for defecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota[A].In:GOLD '90[C],Austrilia,1990:189-207
    [6]Mann,A.W.,Birrell,R.D.,Gay,L.M.,et al.Partial extractions and mobile metal ions[A].K.S.Camuti.Extended abstracts of the 17th IGES[C],1995:31-34
    [7]王学求,程志中.元素活动态测量技术的发展及其意义[J].国外地质勘探技术,1996,2:17-22
    [8]Wang Xueqiu.Leaching of mobile forms of metals in overburden:development and applications[J]. J.Geochem.Explor.1998,61:1-3
    [9]王学求,谢学锦,卢荫庥.地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J].物探与化探,1995,19(3):161-170
    [10]Clark,J.R.,Yeager,J.R.,Rogers,P.et al.Innovative enzyme leach provides cost-effective overburden/bedrock penetration[A].A.G.Gubins.Geophysics and Geochemistry at the Millenium,Proceedings of Exploration 97,1997:371-374
    [11]Cameron,E.M.,Deep-penetrating Geochemistry [M].CAMIRO-Exploration Division,1998:117
    [12]王学求.18届国际化探会议述评.物化探译丛,1997,5:31-33
    [13]王学求.深穿透地球化学.物探与化探:1998,22(3):166-169
    [14]Goldberg,I.S.,Abramson,G.J.,Haslam,C.O.et al.Geoelectrochemical exploration:principles,practices and performance[A].The proceedings of The AuslMM 1997 Annual Conference[C],Ballarat,Australia.1997:32-45
    [15]Alekseev,S.G,Dukhanin,A.S.,Veshev,S.A.et al.Some aspects of practical use of geoelectrochemical methods of exploration for deep-seated mineralization[J].J.Geochem.Explor.,1996,56:79-86
    [16]Smith,D.B.,Hoover,D.B.,Sanzalone,R.F.Preliminarz studies of the CHIM electrogeochemical method at the Kokomo Mine,Russell Gulch,Colorado [J],J.Geochem.Explor.,1993,46:257-278.
    [17]刘占元.电地球化学勘查的理论与方法[A].谢学锦,邵跃,王学求主编.走向21世纪矿产勘查地球化学[C],地质出版社,1999:160-167
    [18]Rulf.GEO of Federal Republic of Germany and GEOFYZKA of Czechoslovakia[A].GEOMFE:a new way to an effective survey of gold and some other elements[C].1991:87-91
    [19]Klusman,R.W.Soil gas and related methods for natural resource exploration[M],printed by John Wily & Sons,New York.1993:123-134
    [20]童莼菡,梁兴中和李巨初.地气测量研究及在东季金矿的试验[J].物探与化探:1992,16(6):445-451
    [21]Wang Xueqiu,Xie Xuejing and Ye Shengyong.Concepts for gold exploration based on the abundance and distribution of ultrafine gold.J.Geochem.Explor.1995:55 (1-3):93-102
    [22]伍宗华,金仰芬,郭英杰等.地气测量在叶县-邓县-南漳地学剖面研究中的应用[J].岩石学报,1995,11(3):333-342
    [23]任天祥,刘应汉,汪明启.纳米科学与隐伏矿床—一种寻找隐伏矿的新方法新技术[J].科技导报,1995,95年8期。
    [24]Mann,A.W.,Birrell,R.D.,Gay,L.M.,Mann,A.T.,Perdrix,J.L.and Gardner,K.R.,1995.Partial extractions and mobile metal ions.In:K.S.Camuti (Editor),Extended abstracts of the 17th IGES,pp. 31-34
    [25]Goldberg,I.S.,Abramson,G.J.,Haslam,C.O.and Los,V.L.,1997.Geoelectrochemical exploration:principles,practices and performance.In:the proceedings of The AusIMM 1997 Annual Conference,Ballarat,Australia.
    [26]王学求,程志中.元素活动态测量技术的发展及其意义[J].国外地质勘探技术:1996,.2:17-22
    [27]Wang Xueqiu,.Leaching of mobile forms of metals in overburden:development and applications. J.Geochem.Explor.:1998,61:1-3
    [28]Wang Xueqiu,Cheng Zhizhong,Liu Dawen,Xu Li and Xie Xuejing,1997.Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant ore deposits in overburden terrains.J.Geochem.Explor.58(1):63-72
    [29]Wang Xueqiu,1998.Leaching of mobile forms of metals in overburden:development and applications.J.Geochem.Explor.61:1-3
    [30]Wang Xueqiu,Cheng Zhizhong,Liu Dawen,Xu Li and Xie Xuejing,1997.Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant ore deposits in overburden terrains.J.Geochem.Explor.58(1):63-72.
    [31]Xie Xuejing,Wang Xueqiu,Xu Li,Krementetsky A.A.and Kheifets,V.K Orientation study of strategic deep penetration geochemical methods in the central Kyzzylkum desert terrain,Uzbekistan [J].J.Geochem.Explor., 1999,66:135-143
    [32]Wang Xueqiu,Xie Xuejing,Cheng Zhizhong and Liu Dawen.Penetrating through thick covers and delineation of regional geochemical anomalies in concealed terrains - a case history from Olympic Dam [J].J.Geochem.Explor.,1999,66:85-94
    [33]Xie Xuejing.Surficial and superimposed geochemical expressions for giant ore deposits[A],Clark,A.H.(editor).Giant Ore Deposits II [C],Kingston,Canada,1995,475-485
    [34]Wang Xueqiu,Liu Dawen,Cheng Zhizhong,Xie Xuejing,Wide-Spaced geochemical mapping for mineral exploration in concealed terrenes [A].Xie Xuejing (ed):The Proc.30th Int.Geol.Cong.[C],1996,19:127-140
    [35]谢学锦.战略性与战术性的深穿透地球化学方法[J].地学前缘,1998,5(1-2),171-183
    [36]王学求.寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J],物探与化探,1998.22(2),81-89
    [37]王学求,迟清华编写.东天山荒漠戈壁区深穿透地球化学调查与研究[R],2001:55-68
    [38]王学求,迟清华,孙宏伟.荒漠戈壁区超低密度地球化学调查与评价-以东天山为例[J].新疆地质,2001,19(3):200-206
    [39]王学求,程志中,迟清华等.吐哈盆地砂岩性铀矿战略性地球化学调查与评价[J].地质与勘探,3(10):148-157
    [40]CRC LEME.Annual Report 1995/96.Advance Press,1996,62
    [41]Cameron,E.M.Deep-penetrating Geochemistry [M].CAMIRO-Exploration Division,1998:117
    [42]谢学锦,王学求.深穿透地球化学新进展。地学前缘,2003,10(1):225-23
    [43]谢学锦,邵跃,王学求主编,1999.走向21世纪的勘查地球化学[C].地质出版社,256
    [44]Ryss Yu S,Goldberg I S.The partial extraction ofmetals(CHIM) method in mineral exploration--Method and Technique,ONTI,VITR,Leningrad,1973,84:5-19.(In:Bloom—stein E.Tramlation by Earth Science Translation Services of section entitled CHIM surface set—up unipolar extraction. USGS Open—File Report,1990,90—462
    [45]Govett G J S,Dunlop A C,Atherden P R.Electrogeochemical techniques in deeply weathered terrain in Australia[J].Joumal of Geochemical Exploration,1984,21:311-331
    [46]Mehrooz F Aspandiar+,Ravi R Anand+,David Gray~+ et al.Mechahanisms of Metal Transfer Through Transported Overburden within the Austrilian Regolith[J].Explore,125,2004(10),9-12
    [47]Clark J R..Enzyme-induced leaching orB-horizon soil for mineral exploration in areas of glacial overburden[J].Trans.Instn.Min.Metall.(Sect.B:Appl.Earth Sci.) 1993,102:B19-B29
    [48]David Garnett.Element mobility in transported overburden-are we looking in the wrong direction[J].Explore.2005,127(4):3-5.
    [49]Kristiansson,K.and Malmqvist,L..Evidence for no diffusive transport of Rn in the ground and a new physical model for the transport.Geophysics,1982,47(10):1444-1452
    [50]Malmqvist,L.,Kristiansson,K.,Experimental evidence for an ascending microflow of geogas in the ground[J].Earth and Planetary Science Letters,1984,70:407-416.
    [51]王学求.地气的研究现状与未来.国外地质勘探技术,96,5:12-18
    [52]Gold T,Soter S.The deep earthgas hypothesis [J].Science America,1980,242:130-138
    [53]Cameron E M,Hamilton S M H,Leyboume M I L,et al.Finding deeply-buried deposits using geochemistry[J].Geochemistry-Exploration,Environment,Analysis,2004,4(1):7-32.
    [54]张荣华.金铜在气相中的迁移实验及矿石的成因[J].矿床地质,2006.25(6),705-708
    [55]王学求.地球气纳微金属测量的概念理论与方法[A].谢学锦,邵跃,王学求主编.走向21世纪的矿产勘查地球化学[C].北京:地质出版社,1999.105-124
    [56]王学求,谢学锦,金的勘查地球化学,理论与方法,战略与战术[M].山东科学技术出版社,2000:309
    [57]Boyle R.W.The geochemistry overview.In:P.J.Hood (Editor),Geophysics and geochemistry in the search for metallic ores,Proceedings of Exploration '77,Ottawa,Canada.1979:87-91
    [58]Curtin,G.C.,Lakin,H.W.and Hubert,A.E.The mobility of gold in mull (forest humus layer)[J].U.S.Geol.Surv.Prof.Pap.1970,20:127-129
    [59]Gosling,A.W.,Jenne,E.A.and Chao,T.T.Gold content of natural waters in Colorado[J],Econ.Geol.,1971,66:309-311
    [60]Xie Xuejing.A decade of regional geochemistry in China - the National Reconnaissance project.Transaction of Mining and Metallurgy,Section B:Applied Earth Science,1991:B57-B65
    [61]任天祥,张华,杨少平等.1982,内蒙西部干旱荒漠区域化探方法研究[A].第三届勘查地球化学学术讨论会论文选编[C],冶金工业出版社,1982:82-101
    [62]任天祥,赵云,张华等.内蒙中西部干旱,半干旱区区域化探扫面方法技术研究[A].第三届勘查地球化学学术讨论会论文选编,冶金工业出版社,1988:155-167
    [63]李清,奚小环等.内蒙古东部半干旱区区域化探方法研究[A].第三届勘查地球化学学术讨论会论文选编[C],冶金工业出版社,1986,176-192
    [64]杜佩轩.新疆北部干旱荒漠区勘查地球化学的方法研究与应用效果[A].第四届勘查地球化学学术讨论会论文选编[C].中国地质大学出版社,1991:33-39.
    [65]Wang Xueqiu.Leaching of mobile forms of metals in overburden:Development and applications[J].J.Geochem.Explor.,1998,61:39-55
    [66]永文富.新疆哈密土墩基性-超基性岩体特征及其含矿性研究[J].新疆有色地质,2002,(3)1-6
    [67]Stevens D N,Rouse G E and De Voto R H.Radon In soil gas:three uranium exploration case histories in the western United States [C].Boyle R W.Geochemical Exploration,Proceedings of the 3rd International Geochemical Exploration Symposium[A].Toronto:Canadian Institute of Mining and Metallurgy,1971,11:258-264
    [68]王学求.荒漠戈壁区超低密度地球化学调查与评价—以东天山为例[J].新疆地质,2001,19:200-206
    [69]王学求,程志中,迟清华等.吐哈盆地砂岩型铀矿战略性地球化学调查与评价[J].地质与勘探,2002.38:148-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700