镉对大鼠海马CA1区神经元钾通道、甘氨酸受体的作用以及对AMPA受体介导的兴奋性突触传递的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cd~(2+))是一种常见的环境污染物,严重危害人类健康。慢性镉暴露会对肾、肺、胃肠道、骨骼以及中枢神经系统造成损伤。在中枢神经系统,特别是在发育期,镉会造成生化和形态学上的改变以及可能由此引起的认知功能障碍。在本论文中,我们运用电生理学的方法,从以下几个方面研究了镉在海马中的神经毒性机制。
     1)应用全细胞脑片膜片钳技术,我们研究了Cd~(2+)对海马雪氏侧枝到CA1区锥体神经元由AMPA受体介导的谷氨酸能突触传递的作用。
     AMPA受体在中枢神经系统的兴奋性突触传递及突触可塑性方面起着非常重要的作用。中枢神经系统一些正常的生理过程比如学习记忆,以及一些病理状态都可能涉及到AMPA受体所介导的突触传递的改变。Cd~(2+)以浓度依赖的方式抑制了诱发的兴奋性突触后电流(eEPSCs),并且增强了双脉冲易化效应和频率易化效应。Cd~(2+)降低了自发兴奋性突触后电流(sEPSCs)的频率和幅度,但是没有影响到微小兴奋性突触后电流(mEPSCs)的频率和幅度。这些作用可能是由于Cd~(2+)抑制了突触前电压依赖的钙离子流入诱发的谷氨酸释放。此外,Cd~(2+)延长了sEPSCs和mEPSCs的衰减相,提示Cd~(2+)的突触后作用位点。我们的结果表明Cd~(2+)影响了海马雪氏侧枝到CA1区锥体神经元由AMPA受体介导的谷氨酸能突触传递以及短时突触可塑性,这可能是镉神经毒性的一个可能机制。
     2)我们在急性分离的大鼠海马CA1区神经元上应用全细胞膜片钳技术研究了Cd~(2+)对瞬时外向钾电流I_A和延迟整流钾电流I_K的作用。
     在神经系统,电压门控钾电流对于神经元和神经网络的兴奋性有非常重要的作用,钾通道功能的改变可能会造成神经元发放特性的变化和异常放电。结果表明Cd~(2+)以浓度依赖的方式可逆地抑制了I_A和I_K的幅度,半数抑制浓度IC_(50)分别为546±59μM和749±53μM,并且Cd~(2+)的抑制作用是电压依赖性的。Cd~(2+)使I_A的稳态激活曲线和稳态失活曲线显著右移。与之相比,Cd~(2+)使I_K的稳态激活曲线也显著右移但移动程度较小,失活曲线未受到影响。Cd~(2+)延缓了I_K的复活,但对I_A的复活时间没影响。这些结果提示Cd~(2+)可能是通过与钾通道蛋白上某一特定位点的直接相互作用从而影响I_A和I_K,而不是通过对细胞膜表面电荷的屏蔽作用来产生效应。Cd~(2+)对电压门控钾电流的作用可能是其神经毒性机制的一个方面,另外本实验表明Cd~(2+)对钾电流的有效浓度与其作用于钙电流的浓度重叠,提示在将其作为钙通道阻断剂时要考虑到其对钾电流的作用是否会对实验结果带来影响。
     3)我们在急性分离的大鼠海马CA1区神经元上应用全细胞膜片钳技术研究了Cd~(2+)对甘氨酸诱导的氯电流(I_(Gly))的作用。
     甘氨酸受体(GlyR)可以调控CA1区海马神经元的发放以及兴奋性突触传递,GlyR功能的改变会影响到海马整个神经环路的信息处理。我们的结果表明Cd~(2+)以浓度依赖的方式可逆地抑制了I_(Gly),半数抑制浓度IC_(50)和Hill系数分别为1.27mM和0.45。在-60mV到+40mV范围内,Cd~(2+)对I_(Gly)的作用是非电压依赖的,并且其反转电位不受影响。对甘氨酸的剂量效应曲线进行双倒数作图,表明Cd~(2+)对I_(Gly)的抑制是非竞争性抑制。胞内透析3mM的Cd~(2+)对I_(Gly)没有影响表明其作用位点可能在胞外。3mM的Cd~(2+)不能影响Zn~(2+)对I_(Gly)的抑制作用,表明Zn~(2+)和Cd~(2+)在甘氨酸受体上的作用位点可能不同。这些结果表明镉抑制了海马CA1区神经元上甘氨酸受体介导的氯电流,有助于我们对镉神经毒性机制的进一步了解。
Cadmium (Cd~(2+)), a common environmental pollutant, is a nonphysiological metal potentially toxic to human. Cadmium exposure causes a variety of impairments to kidney, lung, gastrointestinal tract, bone and the central nervous system (CNS). In the CNS, especially during development, chronic cadmium exposure causes biochemical and morphological changes of the brain and results in cognitive function disabilities. In this study, using electrophysiological methods, we investigated the neurotoxic mechanisms of Cd~(2+) in hippocampus in the following directions.
     1) With whole-cell patch-clamp recording in rat hippocampal slices, we examined the effects of Cd~(2+) on AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor-mediated synaptic transmission and short-term synaptic plasticity in hippocampal CA1 area.
     The subtype excitatory amino acid AMPA receptors play a central role in fast synaptic transmission and plasticity at most CNS excitatory synapses. Changes to the strength of AMPA receptor-mediated synaptic transmission are involved with normal physiological brain functions, including learning and memory, as well as with many neuropathological disorders. Cd~(2+) significantly inhibited the peak amplitude of evoked EPSCs (eEPSCs) in a concentration-dependent manner and enhanced the short-term synaptic plasticity including paired-pulse facilitation and frequency facilitation. Cd~(2+) also decreased the frequency and amplitude of spontaneous EPSCs (sEPSCs) but had no effect on those of miniature EPSCs (mEPSCs). These effects of Cd~(2+) may involve a presynaptic mechanism of blockade of action potential-sensitive, calcium-dependent release of glutamate. In addition, Cd~(2+) prolonged the decay time of both sEPSCs and mEPSCs, which suggested a postsynaptic action site of Cd~(2+). This study demonstrates that Cd~(2+) impairs the Schaffer collateral-commissural-CA1 glutamatergic synaptic transmission and short-term plasticity in rat hippocampal slices, which may be a possible mechanism underlying the Cd~(2+)-induced neurotoxic effects.
     2) The effects of Cd~(2+) on the transient outward potassium current (I_A) and delayed rectifier potassium current (I_K) were investigated in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch-clamp technique.
     In nervous system, Voltage-gated potassium currents play crucial roles in modifying neuronal cellular and network excitability, the regulation of potassium channels would make neurons display aberrant firing properties and abnormal neuronal discharge. The results showed that Cd~(2+) inhibited the amplitudes of I_A and I_Kin a reversible and concentration-dependent manner, with IC_(50) values of 546±59 and 749±53μM, and the inhibitory effect of Cd~(2+) was voltage-dependent. Cd~(2+) significantly shifted the steady-state activation and inactivation curve of I_A to more positive potentials. In contrast, Cd~(2+) caused a relatively less but still significant positive shift in the activation of I_K without effect on the inactivation curve. Cd~(2+) significantly slowed the recovery from inactivation of I_K but had no effect on the recovery time course of I_A. The results suggested that the modulation of I_A and I_K was most likely mediated by the interaction of Cd~(2+) with a specific site on the potassium channel protein, rather than by screening of bulk surface negative charge. The effects of Cd~(2+) on the voltage-gated potassium currents may be a possible contributing mechanism for the Cd~(2+)-induced neurotoxic damage. In addition, the effects of Cd~(2+) on the potassium currents at concentrations that overlap with its effects on calcium currents raise the concerns about its use in pharmacological or physiological studies.
     3) The effects of Cd~(2+) on glycine-induced Cl~- current (I_(Gly)) were investigated in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch-clamp technique in this study.
     In hippocampus, GlyR may participate in an inhibitory mechanism by affecting somatical firing and synaptic transmission, the modulation of GlyR may affect hippocampal information processing. We found that Cd~(2+) reversibly and concentration-dependently reduced the amplitudes of I_(Gly), with an IC_(50) of 1.27 mM and Hill coefficient of 0.45. The depression of I_(Gly) by Cd~(2+) was independent of membrane voltage between -60mV and +40mV and didn't involve a shift in the reversal potential of the current. A noncompetitive inhibition was suggested by a double reciprocal plot of the effects of Cd~(2+) on the concentration-response curve of the I_(Gly). Since intracellular dialysis with 3 mM Cd~(2+) failed to modify I_(Gly), it was suggested that the site of action of Cd~(2+) is extracellular. The suppression of I_(Gly) by Zn~(2+) was unaffected by 3 mM Cd~(2+), which indicated that Zn~(2+) and Cd~(2+) bind to independent sites on glycine receptor. The results show that Cd~(2+) decreases I_(Gly) in acutely dissociated rat hippocampal neurons and the present study may be helpful to understand the mechanisms of cadmium-induced neurotoxicity.
引文
Alford S, Frengurli BG, Schofield JG et al. (1993) Characterization of Ca~(2+) signalsinduced in hippocampal CA1 neurons by synaptic activation of NMDA receptors. JPhysiol(London)469:693-716
    Berger TW(1984) Long-term potentiation of hippocampal synaptic transmissionaffects rate of behavioral learning. Science 224: 627-630
    Bear MF, Dudek SM, Gold JT (1992) Homosynaptic long-term depression in CA1 ofrat hippocampus in vitro. Soc Neurosci Abstr 17: 533P
    Bliss TV (1973) Long-lasting potentiation of synaptic transmission in the dentate areaof the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-356
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-termpotentiation in the hippocampus. Nature 261:31-39
    Hebb DO (1949) The organization of behavior. Wiley, New YorkKirkwood A, Aizenman CD, Bear MF(1994) Common forms of plasticity inhippocampus and visual cortex in vitro. Soc Neurosci Abstr 18: 1499
    Kobayashi K, Manabe T, Takahashi T (1996) Presynaptic long-term depression at thehippocampal mossy fiber-CA3 synapse. Science 273: 648-650
    Malenka RC, Lancaster B, Zucker RS (1993) Temporal limits on the rise inpostsynaptic calcium required for the induction of long-term potentiation. Neuron 9:121-128.
    Mulkey RM, Malenka RC (1992) Mechanisms underlying inductionof homosynapticlong-term depression in area CA1 of the hippocampus. Neuron 9: 967-975
    Muller W, Connor JA (1991) Synaptic Ca~(2+) responses in dendritic spines: the spine asan individual neuronal compartment. Nature 354: 73-76
    O'Mara SM, Rowan MJ, Anwyl R (1995) Dantrolene inhibits long-term depressionand depotentiation of synaptic transmission in the rat dentate gyrus. Neuroscience68:1-624
    Perkel DJ, Petrozzino JJ, Nicoll RA et al. (1993) The role of Ca~(2+) entry viasynaptically activated NMDA receptors in the induction of long-term potentiation.Neuron 11: 817-823
    Pozzo-Miller LD, Petrozzino JJ, Mahanty NK et al. (1993) Optical imaging ofcytosolic calcium, electrophysiology, and ultrastructure in pyramidal neurons oforganotypic slice cultures from rat hippocampus. Neuroimage 1:109-20
    Racine RJ, Milgram NW, Hafner S (1983) Long-term potentiation phenomena in therat limbic forebrain. Brain Res 260: 217-232.
    Regehr WG, Tank DW (1992) Calcium concentration dynamics produced by synapticactivation of CA1hippocampal pyramidal cells. J Neurosci 12:4202-4223
    韩太真、吴馥梅主编.(1998)学习与记忆的神经生物学 北京医科大学、中国协和医科大学联合出版社
    张敏敏(2004)丙戊酸钠对大鼠海马CA1区突触可塑性的影响及作用机制[博士]合肥:中国科学技术大学
    Chabbert C, Chambard JM, Sans A, Desmadryl G (2001) Three types of depolarization-activatedpotassium currents in acutely isolated mouse vestibular neurons. J Neurophysiol 85:1017-1026
    Clark DE, Nation JR, Bourgeois AJ, Hare MF, Baker DM, Hinderberger EJ (1985) The regionaldistribution of cadmium in the brains of orally exposed adult rats. Neurotoxicology 6: 109-114
    Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A,Pountney D, et al. (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868: 233-285
    Conti F, Neher E (1980) Single channel recordings of K+ currents in squid axons. Nature 285:140-143
    Erisir A, Lau D, Rudy B, Leonard CS (1999) Function of specific K(+) channels in sustainedhigh-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol 82: 2476-2489
    Everill B, Rizzo MA, Kocsis JD (1998) Morphologically identified cutaneous afferent DRGneurons express three different potassium currents in varying proportions. J Neurophysiol 79:1814-1824
    Ficker E, Heinemann U (1992) Slow and fast transient potassium currents in cultured rathippocampal cells. J Physiol 445: 431-455
    Foehring RC, Surmeier DJ (1993) Voltage-gated potassium currents in acutely dissociated ratcortical neurons. J Neurophysiol 70:51-63
    Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation andrepolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. JNeurosci 19: 8789-8798
    Gupta A, Murthy RC, Thakur SR, Dubey MP, Chandra SV (1990) Comparative neurotoxicity ofcadmium in growing and adult rats after repeated administration. Biochem Int 21:97-105
    Hill B (1992). Ionic channels of excitable membranes (Sunderland, MA, Sinauer Assoc. Inc).Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of avoltage-dependent K+ channel. Nature 423:33-41
    Katz B, Miledi R (1978) A re-examination of curare action at the motor endplate. Proc R SocLond B Biol Sci 203: 119-133
    Lafuente A, Marquez N, Perez-Lorenzo M, Pazo D, Esquifino Al(2001) Cadmium effects onhypothalamic-pituitary-testicular axis in male rats. Exp Biol Med (Maywood) 226: 605-611
    Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and moleculardifferences between voltage-gated K+ channels of fast-spiking interneurons and pyramidalneurons of rat hippocampus. J Neurosci 18: 8111-8125
    Meech RW, Standen NB (1974) Calcium-mediated potassium activation in Helix neurones. JPhysiol 237: 43P-44P
    Mendez-Armenta M, Barroso-Moguel R, Villeda-Hemandez J, Nava-Ruiz C, Rios C (2001)Histopathological alterations in the brain regions of rats after perinatal combined treatment withcadmium and dexamethasone. Toxicology 161:189-199
    Miller G (2003) Neuroscience. The puzzling portrait of a pore. Science 300: 2020-2022
    Numann RE, Wadman WJ, Wong RK. (1987) Outward currents of single hippocampal cellsobtained from the adult guinea-pig. J Physiol 393:331 -353
    Segal M, Barker JL (1984) Rat hippocampal neurons in culture: potassium conductances. JNeurophysiol 51:1409-1433
    Sigworth FJ (2003) Structural biology: Life's transistors. Nature 423:21-22
    Smith RD, Goldin AL (1997) Phosphorylation at a single site in the rat brain sodium channel isnecessary and sufficient for current reduction by protein kinase A. J Neurosci 17: 6086-6093
    Stansfeld C, Feltz A (1988) Dendrotoxin-sensitive K+ channels in dorsal root ganglion cells.Neurosci Lett 93:49-55
    Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons.Nature 336:379-381
    Sun TJ, Miller ML, Hastings L (1996) Effects of inhalation of cadmium on the rat olfactorysystem: behavior and morphology. Neurotoxicol Teratol 18: 89-98
    Yang N, George AL, Jr., Horn R (1996) Molecular basis of charge movement in voltage-gatedsodium channels. Neuron 16: 113-122
    牛志电(2006)铜对大鼠海马CA1区神经元A-电流和延迟整流钾电流的影响[博士]合肥:中国科学技术大学
    Baker AJ, Zornow MH, Scheller MS, Yaksh TL, Skilling SR, Smullin DH, Larson AA, Kuczenski R (1991) Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem 57: 1370-1379
    Becker CM, Betz H, Schroder H (1993) Expression of inhibitory glycine receptors in postnatal rat cerebral cortex. Brain Res 606: 220-226
    Betz H (1991) Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci 14:458-461
    Bormann J, Rundstrom N, Betz H, Langosch D (1993) Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. Embo J 12: 3729-3737
    Caraiscos VB, Mihic SJ, MacDonald JF, Orser BA (2002) Tyrosine kinases enhance the function of glycine receptors in rat hippocampal neurons and human alpha(1)beta glycine receptors. JPhysiol 539: 495-502
    Chattipakorn SC, McMahon LL (2002) Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol 87:1515-1525
    Danglot L, Rostaing P, Triller A, Bessis A (2004) Morphologically identified glycinergic synapses in the hippocampus. Mol Cell Neurosci 27:394-403
    Flint AC, Liu X, Kriegstein AR (1998) Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20:43-53
    Fucile S, De Saint Jan D, de Carvalho LP, Bregestovski P (2000) Fast potentiation of glycine receptor channels of intracellular calcium in neurons and transfected cells. Neuron 28: 571-583
    Grenningloh G, Pribilla I, Prior P, Multhaup G, Beyreuther K, Taleb O, Betz H (1990) Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4: 963-970
    Grenningloh G, Rienitz A, Schmitt B, Methfessel C, Zensen M, Beyreuther K, Gundelfinger ED, Betz H (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215-220
    Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L (2006) Delta9-tetrahydrocannabinoi and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 69: 991-997
    Kondratskaya EL, Betz H, Krishtal OA, Laube B (2005) The beta subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors. Neuropharmacology 49: 945-951
    Langosch D, Becker CM, Betz H (1990) The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur J Biochem 194: 1 -8
    Langosch D, Hoch W, Betz H (1992) The 93 kDa protein gephyrin and tubulin associated with the inhibitory glycine receptor are phosphorylated by an endogenous protein kinase. FEBS Lett 298: 113-117
    Langosch D, Laube B, Rundstrom N, Schmieden V, Bormann J, Betz H (1994) Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. Embo J 13: 4223-4228
    Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A 85: 7394-7398
    Laube B, Kuhse J, Betz H (2000) Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors. J Physiol 522 Pt 2:215-230
    Laube B, Kuhse J, Rundstrom N, Kirsch J, Schmieden V, Betz H (1995) Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol 483 ( Pt 3): 613-619
    Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58: 760-793
    Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N (2005) Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci 25: 7499-7506
    Lynch JW, Jacques R Pierce KD, Schofield PR (1998) Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. J Neurochem 71: 2159-2168
    Malosio ML, Grenningloh G, Kuhse J, Schmieden V, Schmitt B, Prior P, Betz H (1991a) Alternative splicing generates two variants of the alpha 1 subunit of the inhibitory glycine receptor. J Biol Chem 266:2048-2053
    Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H (1991b) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. Embo J 10:2401-2409
    Marvizon JC, Vazquez J, Garcia Calvo M, Mayor F, Jr., Ruiz Gomez A, Valdivieso F, Benavides J (1986) The glycine receptor: pharmacological studies and mathematical modeling of the allosteric interaction between the glycine- and strychnine-binding sites. Mol Pharmacol 30: 590-597
    Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit Neuron 15: 563-572
    Mori M, Gahwiler BH, Gerber U (2002) Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol 539:191-200
    Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, Beyreuther K, Maulet Y, Werner P, Langosch D, Kirsch J, et al. (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8: 1161-1170
    Ruiz-Gomez A, Vaello ML, Valdivieso F, Mayor F, Jr. (1991) Phosphorylation of the 48-kDa subunit of the glycine receptor by protein kinase C. J Biol Chem 266: 559-566
    Saransaari P, Oja SS (1997) Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus. Neuroscience 79: 847-854
    Saransaari P, Oja SS (1999) Characteristics of ischemia-induced taurine release in the developing mouse hippocampus. Neuroscience 94: 949-954
    Sato K, Kiyama H, Tohyama M (1992) Regional distribution of cells expressing glycine receptoralpha 2 subunit mRNA in the rat brain. Brain Res 590:95-108
    Song W, Chattipakorn SC, McMahon LL (2006) Glycine-gated chloride channels depress synaptictransmission in rat hippocampus. J Neurophysiol 95: 2366-2379
    Vandenberg RJ, French CR, Barry PH, Shine J, Schofield PR (1992a) Antagonism of ligand-gatedion channel receptors: two domains of the glycine receptor alpha subunit form thestrychnine-binding site. Proc Natl Acad Sci U S A 89:1765-1769
    Vandenberg RJ, Handford CA, Schofield PR (1992b) Distinct agonist- and antagonist-bindingsites on the glycine receptor. Neuron 9:491-496
    Xu TL, Dong XP, Wang DS (2000) N-methyl-D-aspartate enhancement of the glycine response inthe rat sacral dorsal commissural neurons. Eur J Neurosci 12: 1647-1653
    Xu TL, Li JS, Jin YH, Akaike N (1999) Modulation of the glycine response by Ca2+-permeableAMPA receptors in rat spinal neurones. J Physiol 514 ( Pt 3): 701-711
    Yevenes GE, Peoples RW, Tapia JC, Parodi J, Soto X, Olate J, Aguayo LG (2003) Modulation ofglycine-activated ion channel function by G-protein betagamma subunits. Nat Neurosci 6:819-824
    李萍,徐祥敏,杨雄里(2001)甘氨酸受体的研究进展.生物化学与生物物理进展28(5):609-614
    徐天乐(2000)中枢甘氨酸受体分子特性的研究.生理科学进展31(4):373-380
    Alfven T, Elinder CG, Carlsson MD, Grubb A, Hellstrom L, Persson B, Pettersson C, Spang G,Schutz A, Jarup L (2000) Low-level cadmium exposure and osteoporosis. J Bone Miner Res 15:1579-1586
    Ali MM, Mathur N, Chandra SV (1990) Effect of chronic cadmium exposure on locomotorbehaviour of rats. Indian J Exp Biol 28:653-656
    Andersson H, Petersson-Grawe K, Lindqvist E, Luthman J, Oskarsson A, Olson L (1997)Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in theoffspring. Neurotoxicol Teratol 19: 105-115
    Antonio MT, Benito MJ, Leret ML, Corpas I (1998) Gestational administration of cadmium altersthe neurotransmitter levels in newborn rat brains. J Appl Toxicol 18: 83-88
    Arito H, Sudo A, Suzuki Y (1981) Aggressive behavior of the rat induced by repeatedadministration of cadmium. Toxicol Lett 7:457-461
    Arvidson B (1985) Retrograde axonal transport of cadmium in the rat hypoglossal nerve. NeurosciLett 62:45-49
    Beyersmann D, Block C, Malviya AN (1994) Effects of cadmium on nuclear protein kinase C.Environ Health Perspect 102 Suppl 3:177-180
    Bonithon-Kopp C, Huel G, Moreau T, Wendling R (1986) Prenatal exposure to lead and cadmiumand psychomotor development of the child at 6 years. Neurobehav Toxicol Teratol 8: 307-310
    Chandra SV, Murthy RC, Ali MM (1985) Cadmium-induced behavioral changes in growing rats.Ind Health 23: 159-162
    Clark DE, Nation JR, Bourgeois AJ, Hare MF, Baker DM, Hinderberger EJ (1985) The regionaldistribution of cadmium in the brains of orally exposed adult rats. Neurotoxicology 6: 109-114
    Cooper GP, Manalis RS (1984a) Cadmium: effects on transmitter release at the frog neuromuscular junction. Eur J Pharmacol 99: 251-256
    Cooper GP, Manalis RS (1984b) Interactions of lead and cadmium on acetylcholine release at the frog neuromuscular junction. Toxicol Appl Pharmacol 74:411-416
    Das KP, Das PC, Dasgupta S, Dey CD (1993) Serotonergic-cholinergic neurotransmitters' function in brain during cadmium exposure in protein restricted rat. Biol Trace Elem Res 36:119-127
    De Castro ESE, Ferreira H, Cunha M, Bulcao C, Sarmento C, De Oliveira I, Fregoneze JB (1996) Effect of central acute administration of cadmium on drinking behavior. Pharmacol Biochem Behav 53:687-693
    Esquifino AI, Seara R, Fernandez-Rey E, Lafuente A (2001) Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Arch Toxicol 75: 127-133
    Evans J, Hastings L (1992) Accumulation of Cd(II) in the CNS depending on the route of administration: intraperitoneal, intratracheal, or intranasal. Fundam Appl Toxicol 19:275-278
    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8: 567-573
    Guan YY, Quastel DM, Saint DA (1987) Multiple actions of cadmium on transmitter release at the mouse neuromuscular junction. Can J Physiol Pharmacol 65:2131-2136
    Gupta A, Murthy RC, Thakur SR, Dubey MP, Chandra SV (1990) Comparative neurotoxicity of cadmium in growing and adult rats after repeated administration. Biochem Int 21:97-105
    Gupta A, Murthy RC, Ali MM, Chandra SV (1993) Neurobehavioral and neurochemical changes in growing rats after cadmium exposure. Toxicological and Environmental Chemistry 39:153-160
    Hastings L, Evans JE (1991) Olfactory primary neurons as a route of entry for toxic agents into the CNS. Neurotoxicology 12: 707-714
    Kim YO, Ahn YK, Kim JH (2000) Influence of melatonin on immunotoxicity of cadmium. Int J lmmunopharmacol 22:275-284
    Lafuente A, Fenandez-Rey E, Seara R, Perez-Lorenzo M, Esquifino AI (2001a) Alternate cadmium exposure differentially affects amino acid metabolism within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Neurochem Int 39: 187-192
    Lafuente A, Marquez N, Perez-Lorenzo M, Pazo D, Esquifino AI (2001b) Cadmium effects on hypothalamic-pituitary-testicular axis in male rats. Exp Biol Med (Maywood) 226: 605-611
    Lewis M, Worobey J, Ramsay DS, McCormack MK (1992) Prenatal exposure to heavy metals: effect on childhood cognitive skills and health status. Pediatrics 89: 1010-1015
    Long GJ (1997) Cadmium perturbs calcium homeostasis in rat osteosarcoma (ROS 17/2.8) cells; a possible role for protein kinase C. Toxicol Lett 91:91-97
    Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138:901-911
    Lynn S, Lai HT, Kao SM, Lai J, Jan KY (1997) Cadmium inhibits DNA strand break rejoining in methyl methanesulfonate-treated CHO-K1 cells. Toxicol Appl Pharmacol 144: 171-176
    Lyu RM, Smith JB (1993) Genistein inhibits calcium release by platelet-derived growth factor but not bradykinin or cadmium in human fibroblasts. Cell Biol Toxicol 9: 141-148
    Marlowe M, Errera J, Jacobs J (1983) Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. Am J Ment Defic 87: 477-483
    Mendez-Armenta M, Barroso-Moguel R, Villeda-Hemandez J, Nava-Ruiz C, Rios C (2001) Histopathological alterations in the brain regions of rats after perinatal combined treatment with cadmium and dexamethasone. Toxicology 161:189-199
    Minami A, Takeda A, Nishibaba D, Takefuta S, Oku N (2001) Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res 894:336-339
    Petanova J, Eucikova T, Bencko V (2000) Influence of cadmium and zinc sulphates on the function of human T lymphocytes in vitro. Cent Eur J Public Health 8: 137-140
    Shen X, Lee K, Konig R (2001) Effects of heavy metal ions on resting and antigen-activated CD4(+) T cells. Toxicology 169:67-80
    Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400-405
    Skoczynska A, Poreba R, Sieradzki A, Andrzejak R, Sieradzka (J (2002) [The impact of lead and cadmium on the immune system]. Med Pr 53: 259-264
    Smith JB, Dwyer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem 264: 7115-7118
    Sun TJ, Miller ML, Hastings L (1996) Effects of inhalation of cadmium on the rat olfactory system: behavior and morphology. Neurotoxicol Teratol 18: 89-98
    Thatcher RW, Lester ML, McAlaster R, Horst R (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37: 159-166
    Valois AA, Webster WS (1989) The choroid plexus as a target site for cadmium toxicity following chronic exposure in the adult mouse: an ultrastructural study. Toxicology 55: 193-205
    Wang S, Hu P, Wang HL, Wang M, Chen JT, Tang JL, Ruan DY (2008) Effects of Cd(2+) on AMPA receptor-mediated synaptic transmission in rat hippocampal CA1 area. Toxicol Lett 176:??215-222
    Wang Z, Templeton DM (1998) Induction of c-fos proto-oncogene in mesangial cells by cadmium.J Biol Chem 273: 73-79
    Yoshida S (2001) Re-evaluation of acute neurotoxic effects of Cd2+ on mesencephalic trigeminalneurons of the adult rat. Brain Res 892:102-110
    安红敏,郑伟,高扬(2007)镉的健康危害及干预治疗研究进展.环境与健康杂志24(9):739-742
    崔玉静,黄益宗,朱永官(2006)镉对人类健康的危害及其影响因子的研究进展.卫生研究35(5):656-659
    刁书永,张立志,袁慧(2005)镉中毒机理研究进展.动物医学进展26(5):49-51
    金泰訥,孔庆瑚,叶葶葶,等(2002)镉致人体健康损害的环境流行病学研究.环境与职业医学19(1):10-16
    蒋英子,陈龙,高伟,等(2002)镉暴露大鼠血中白细胞介素-2和皮质醇及白细胞免疫功能的变化.环境与健康杂志19(5):364-366
    刘杰(1998)用转基因动物研究金属硫蛋白对镉毒性的作用.中华劳动卫生职业病杂志16(1):57-60
    刘伟成,李明云(2005)镉毒性毒理学研究进展.广东微量元素科学12(12):1-5
    李金龙,徐世文,李术(2006)镉的免疫毒性.中国兽医杂志42(5):39-41
    李顺清,舒柏华,包克光(1997)镉对骨形态发生的蛋白诱导软骨和骨形成的影响.职业卫生与病伤12(2):65-67
    裴秀丛,徐兆发(2003)镉的慢性毒作用及其远期效应.环境与职业医学20(1):58-61
    吴静,张琳,程学敏(1999)镉对巨噬细胞分泌功能影响的研究.环境与健康杂志16(2):106-107
    许舸,徐晨(2005)镉对中枢神经系统影响的研究进展.国外医学卫生学分册32(1):19-24
    谢黎虹,许梓荣.(2003)重金属镉对动物及人类的毒性研究进展.浙江农业学报15(6):376-381
    杨学斌,肖萍,潘喜华,等(2002)镉染毒去卵巢大鼠模型的骨量丢失.环境与健康杂志 19(5):367-369
    Antonio MT, Benito MJ, Leret ML, Corpas I (1998) Gestational administration of cadmium altersthe neurotransmitter levels in newborn rat brains. J Appl Toxicol 18: 83-88
    Asztely F, Xiao MY, Gustafsson B (1996) Long-term potentiation and paired-pulse facilitation inthe hippocampal CA1 region. Neuroreport 7:1609-1612
    Atassi B, Glavinovic MI (1999) Effect of cyclothiazide on spontaneous miniature excitatorypostsynaptic currents in rat hippocampal pyramidal cells. Pflugers Arch 437:471-478
    Babitch JA (1988) Cadmium neurotoxicity. In: Bondy SC, Prasad KN (Eds.), Metal neurotoxicity,CRC Press, Boca Raton, 141-166
    Bennett JA, Dingledine R (1995) Topology profile for a glutamate receptor: three transmembranedomains and a channel-lining reentrant membrane loop. Neuron 14: 373-384
    Bonithon-Kopp C, Huel G, Moreau T, Wendling R (1986) Prenatal exposure to lead and cadmiumand psychomotor development of the child at 6 years. Neurobehav Toxicol Teratol 8: 307-310
    Bresink I, Ebert B, Parsons CG, Mutschler E (1996) Zinc changes AMPA receptor properties:results of binding studies and patch clamp recordings. Neuropharmacology 35:503-509
    Chow RH (1991) Cadmium block of squid calcium currents. Macroscopic data and a kineticmodel. J Gen Physiol 98:751-770
    Colquhoun D, Jonas P, Sakmann B (1992) Action of brief pulses of glutamate on AMPA/kainatereceptors in patches from different neurones of rat hippocampal slices. J Physiol 458: 261-287
    Cooper GP, Manalis RS (1984a) Cadmium: effects on transmitter release at the frogneuromuscular junction. Eur J Pharmacol 99: 251-256
    Cooper GP, Manalis RS (1984b) Interactions of lead and cadmium on acetylcholine release at thefrog neuromuscular junction. Toxicol Appl Pharmacol 74:411-416
    Das KP, Das PC, Dasgupta S, Dey CD (1993) Serotonergic-cholinergic neurotransmitters' functionin brain during cadmium exposure in protein restricted rat. Biol Trace Elem Res 36: 119-127
    De Castro ESE, Ferreira H, Cunha M, Bulcao C, Sarmento C, De Oliveira I, Fregoneze JB (1996)Effect of central acute administration of cadmium on drinking behavior. Pharmacol Biochem Behav 53:687-693
    Guan YY, Quastel DM, Saint DA (1987) Multiple actions of cadmium on transmitter release at the mouse neuromuscular junction. Can J Physiol Pharmacol 65:2131-2136
    Hastings L, Choudhury H, Petering HG, Cooper GP (1978) Behavioral and biochemical effects of low-level prenatal cadmium exposure in rats. Bull Environ Contam Toxicol 20: 96-101
    Hollmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13:1331-1343
    Katz B, Miledi R (1973) The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol 231: .549-574
    Korn H, Bausela F, Charpier S, Faber DS (1993) Synaptic noise and multiquantal release at dendritic synapses. J Neurophysiol 70:1249-1254
    Lehman LD, Klaassen CD (1986) Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol 84:159-167
    Lei S, MacDonald JF (2001) Gadolinium reduces AMPA receptor desensitization and deactivation in hippocampal neurons. J Neurophysiol 86:173-182
    Lewis M, Worobey J, Ramsay DS, McCormack MK (1992) Prenatal exposure to heavy metals: effect on childhood cognitive skills and health status. Pediatrics 89: 1010-1015
    Lin DD, Cohen AS, Coulter DA (2001) Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. J Neurophysiol 85: 1185-1196
    Lynch G (2004) AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 4: 4-11
    Magleby KL, Stevens CF (1972) A quantitative description of end-plate currents. J Physiol 223: 173-197
    Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70: 1451-1459
    Marlowe M, Errera J, Jacobs J (1983) Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. Am J Ment Defic 87: 477-483
    Mayer ML, Vyklicky L, Jr., Westbrook GL (1989) Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J Physiol 415: 329-350
    Minami A, Takeda A, Nishibaba D, Takefuta S, Oku N (2001) Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res 894: 336-339
    Murphy VA (1997) Cadmium: acute and chronic neurological disorders. In: Yasui M, Strong MJ, Ota K, et al (Eds.), Mineral and metal: neurotoxicology, CRC Press, Boca Raton, 229-240
    Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18: 599-612
    Nordberg M (1984) General aspects of cadmium: transport, uptake and metabolism by the kidney. Environ Health Perspect 54:13-20
    Rastogi RB, Merali Z, Singhal RL (1977) Cadmium alters behaviour and the biosynthetic capacity for catecholamines and serotonin in neonatal rat brain. J Neurochem 28:789-794
    Scholz KP, Miller RJ (1992) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139-1150
    Schulz PE, Cook EP, Johnston D (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14: 5325-5337
    Shen Y, Yang XL (1999) Zinc modulation of AMPA receptors may be relevant to splice variants in carp retina. Neurosci Lett 259: 177-180
    Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400-405
    Stellern J, Marlowe M, Cossairt A, Errera J (1983) Low lead and cadmium levels and childhood visual-perception development. Percept Mot Skills 56: 539-544
    Struempler RE, Larson GE, Rimland B (1985) Hair mineral analysis and disruptive behavior in clinically normal young men. J Learn Disabil 18:609-612
    Swandulla D, Armstrong CM (1989) Calcium channel block by cadmium in chicken sensory neurons. Proc Natl Acad Sci U S A 86:1736-1740
    Thatcher RW, Lester ML, McAlaster R, Horst R (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37:159-166
    Viaene MK, Masschelein R, Leenders J, De Groof M, Swerts LJ, Roels HA (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 57: 19-27
    Wang S, Gu Y, Wang HL, Li XM, Wang M, Sun LG, Ruan DY (2006) Inhibitory effect of Cd2+ on glycine-induced chloride current in rat hippocampal neurons. Brain Res Bull 69: 680-686
    Webster WS, Valois AA (1981) The toxic effects of cadmium on the neonatal mouse CNS. J Neuropathol Exp Neurol 40: 247-257
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64: 355-405
    Chow RH (1991) Cadmium block of squid calcium currents. Macroscopic data and a kineticmodel.J Gen Physiol 98:751-770
    Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from voltage clamp dataon an isolated neurone soma. J Physiol 213:31-53
    Duan S, Cooke IM (1999) Selective inhibition of transient K+ current by La3+ in crabpeptide-secretory neurons. J Neurophysiol 81:1848-1855
    Ficker E, Heinemann U (1992) Slow and fast transient potassium currents in cultured rathippocampal cells. J Physiol 445: 431-455
    Follmer CH, Lodge NJ, Cullinan CA, Colatsky TJ (1992) Modulation of the delayed rectifier, IK,by cadmium in cat ventricular myocytes. Am J Physiol 262: C75-83
    Frankenhaeuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squidaxons.J Physiol 137:218-244
    Gilly WF, Armstrong CM (1982a) Divalent cations and the activation kinetics of potassiumchannels in squid giant axons. J Gen Physiol 79:965-996
    Gilly WF, Armstrong CM (1982b) Slowing of sodium channel opening kinetics in squid axon byextracellular zinc. J Gen Physiol 79: 935-964
    Hahin R, Campbell DT (1983) Simple shifts in the voltage dependence of sodium channel gatingcaused by divalent cations. J Gen Physiol 82: 785-805
    Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer Assoc.Inc, Sunderland,MA
    Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869-875
    Hu H, Yang D, Lin Z, Wu C, Zhou P, Dai D (1998) Blockade of bepridil on 1A and IK in acutely isolated hippocampal CA1 neurons. Brain Res 809:149-154
    Kay AR, Miles R, Wong RK (1986) Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J Neurosci 6: 2915-2920
    Kostyuk PG, Krishtal OA, Pidoplichko VI (1975) Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257:691-693
    Kostyuk PG, Veselovsky NS, Fedulova SA, Tsyndrenko AY (1981) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-Ill. Potassium currents. Neuroscience 6:2439-2444
    Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471-501
    Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18: 8111-8125
    Molnar G, Gyori J, Salanki J, Rozsa KS (2002) Cadmium ions modulate GABA induced currents in molluscan neurons. Acta Biol Hung 53:105-123
    Muller W, Bittner K (2002) Differential oxidative modulation of voltage-dependent K+ currents in rat hippocampal neurons. J Neurophysiol 87: 2990-2995
    Muller W, Misgeld U (1990) Inhibitory role of dentate hilus neurons in guinea pig hippocampal slice. J Neurophysiol 64:46-56
    Muller W, Misgeld U (1991) Picrotoxin- and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice. J Neurophysiol 65:141-147
    Wang F, Zhao G, Cheng L, Zhou HY, Fu LY, Yao WX (2004) Effects of berberine on potassium currents in acutely isolated CA1 pyramidal neurons of rat hippocampus. Brain Res 999: 91-97
    Wang S, Gu Y, Wang HL, Li XM, Wang M, Sun LG, Ruan DY (2006) Inhibitory effect of Cd2+ on glycine-induced chloride current in rat hippocampal neurons. Brain Res Bull 69:680-686
    Xu TX, Gong N, Xu TL (2005) Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila. J Neurogenet 19: 87-107
    Yamamoto Y, Fukuta H, Suzuki H (1993) Blockade of sodium channels by divalent cations in rat gastric smooth muscle. Jpn J Physiol 43: 785-796
    Zhang B, Nie A, Bai W, Meng Z (2004) Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons. Food Chem Toxicol 42: 1453-1462
    Becker CM, Betz H, Schroder H (1993) Expression of inhibitory glycine receptors in postnatal rat cerebral cortex. Brain Res 606:220-226
    Betz H (1991) Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci 14:458-461
    Chattipakorn SC, McMahon LL (2002) Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol 87:1515-1525
    Chow RH (1991) Cadmium block of squid calcium currents. Macroscopic data and a kinetic model. J Gen Physiol 98:751-770
    Follmer CH, Lodge NJ, Cullinan CA, Colatsky TJ (1992) Modulation of the delayed rectifier, IK, by cadmium in cat ventricular myocytes. Am J Physiol 262: C75-83
    Kuo CC, Lin TJ, Hsieh CP (2002) Effect of Na~+ flow on Cd2~+ block of tetrodotoxin-resistant Na(+) channels. J Gen Physiol 120: 159-172
    Langosch D, Becker CM, Betz H (1990) The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur J Biochem 194: 1-8
    Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. Embo J 10: 2401-2409
    Mori M, Gahwiler BH, Gerber U (2002) Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol 539: 191-200
    Sato K, Kiyama H, Tohyama M (1992) Regional distribution of cells expressing glycine receptor alpha 2 subunit mRNA in the rat brain. Brain Res 590:95-108
    Song W, Chattipakorn SC, McMahon LL (2006) Glycine-gated chloride channels depress synaptic transmission in rat hippocampus. J Neurophysiol 95: 2366-2379
    Swandulla D, Armstrong CM (1989) Calcium channel block by cadmium in chicken sensory neurons. Proc Natl Acad Sci U S A 86:1736-1740
    Yamamoto Y, Fukuta H, Suzuki H (1993) Blockade of sodium channels by divalent cations in rat gastric smooth muscle. Jpn J Physiol 43:785-796
    Ye JH (2008) Regulation of excitation by glycine receptors. Results Probl Cell Differ 44: 123-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700