激光喷丸强化铝合金的疲劳裂纹扩展特性及延寿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光喷丸强化技术利用高能短脉冲激光诱导的高幅冲击波压力实施表面改性,能有效改善金属材料中的应力分布和微观组织结构,从而有效延缓裂纹扩展速率、提高零件的疲劳寿命。目前对于裂纹件的激光喷丸延寿技术主要集中于试验研究,而对共性的机理研究相对匮乏,还未形成系统的激光喷丸诱导残余压应力场下裂纹扩展规律及其延寿机理的基本理论。本文对激光喷丸强化的裂纹扩展特性进行理论探讨,研究典型6061-T6铝合金单联中心孔试样和紧凑拉伸CT试样的激光喷丸强化处理工艺,分析表面完整性对疲劳特性的影响,结合疲劳裂纹扩展的宏观断裂力学性能和微观疲劳断口形貌,依据断裂发展的不同阶段,深入细致地描述激光喷丸强化工艺的延寿机理,且对激光喷丸诱导残余应力场下的疲劳裂纹扩展特性进行数值模拟,本文的主要内容有以下几个方面:
     (1)提出了激光喷丸强化后疲劳裂纹扩展寿命的计算方法及其估算式。基于断裂力学的基本理论,探索了激光喷丸工艺对含裂纹件疲劳裂纹扩展特性(包括疲劳裂纹扩展门槛值、应力强度因子、疲劳裂纹扩展速率、裂纹尖端张开位移及裂纹前沿塑性变形区尺寸)的影响;在综合考虑外加载荷及激光喷丸诱导的残余应力相互作用的基础上,基于Paris公式得出了激光喷丸前后疲劳裂纹扩展寿命的估算公式;基于金属物理的方法,通过对疲劳断口形貌特征的定量描述,分析了激光喷丸作用下裂纹件的疲劳应力及疲劳寿命反推的主要方法,为宏微观结合揭示激光喷丸对金属材料的疲劳裂纹扩展特性及其疲劳寿命的增强机制提供理论依据。
     (2)系统研究了激光喷丸铝合金表面的完整性及其对疲劳特性的影响。进行了不同激光喷丸工艺参数下铝合金表面及沿深度方向的纳米压痕测试,分析了不同喷丸次数及激光能量对纳米压痕接触深度和接触面积的影响,研究了激光喷丸提高铝合金表层纳米硬度和弹性模量的机制;对激光喷丸后的表面形貌和表面粗糙度进行了测试,分析了表面凹坑形貌、线粗糙度及面粗糙度变化对铝合金疲劳性能的影响;研究了激光喷丸CT试样诱导的残余压应力大小及其分布,分析了不同激光工艺参数对铝合金表面及深度方向残余应力分布规律的影响;测试了不同激光能量下激光喷丸后的显微组织结构,获得了多次激光喷丸6061-T6铝合金的微观强化机制。
     (3)探索了激光喷丸强化工艺对工件残余应力和疲劳裂纹扩展的影响。以单联中心孔试样为对象,通过轴向载荷、轴向位移与疲劳寿命的关系曲线,分析了不同激光喷丸次数、喷丸轨迹和激光能量与试样疲劳寿命的关系;在此基础上,研究了含预制裂纹CT试样的激光喷丸强化工艺,通过da/dN-AK及a-N关系曲线,分析了不同激光能量和喷丸轨迹对CT试样疲劳裂纹扩展特性的影响;研究了裂纹尖端张开位移与疲劳裂纹扩展速率、疲劳寿命之间的关系曲线,验证了裂尖张开位移作为表征材料疲劳裂纹扩展特性参量的可行性,为激光喷丸参数的选取和工艺准则的制定提供基础实验数据。
     (4)深入分析了激光喷丸强化的疲劳断口形貌特征,实现了疲劳扩展寿命的断口定量反推。以典型单联中心孔试样和CT试样为例,依据断裂过程发展的不同阶段,系统分析了不同激光喷丸次数、激光能量和喷丸轨迹下,试样在疲劳裂纹萌生区、疲劳裂纹扩展早期、裂纹扩展中期、裂纹扩展区与最终瞬断区的过渡区以及最终瞬断区的宏微观疲劳断口形貌特征及其微观强化机制,研究了疲劳裂纹扩展过程中裂纹前端停止-继续微观断口形貌特征的产生机理;根据不同裂纹长度处测得的疲劳条带形貌,对比分析了宏观裂纹扩展速率和微观裂纹扩展速率,采用梯形法进行疲劳扩展寿命的断口定量反推,验证断口定量反推疲劳寿命的可行性;进行了典型试样疲劳断口的三维形貌重建及其粗糙度分析,得到了疲劳断口的高度差、线粗糙度及面粗糙度的变化趋势。
     (5)构建了以ABAQUS-MSC.Fatigue软件为平台的疲劳裂纹扩展的数字化分析方法。编制专用ABAQUS/CAE的激光冲击波加载模块,对6061-T6铝合金单联小孔试样及CT试样在不同激光能量和喷丸轨迹作用下产生的残余应力场进行了数值模拟,结合MSC.Fatigue疲劳分析中的数据无缝对接,进行了残余应力场下疲劳裂纹扩展过程的数字化分析,获得了da/dN-△K及a-N的关系曲线;研究了不同激光能量和喷丸轨迹下,疲劳裂纹扩展不同时期驱动力方向上的残余压应力分布对裂纹扩展的抑制性。表明模拟分析与实验结果的一致性较好,为激光喷丸诱导残余应力场下疲劳裂纹扩展特性的预测提供了一种有效的方法。
Laser peening (LP) is a new surface modification technology, during the process of LP, high amplitude shock wave pressure induced by high energy and short pulsed laser can effectively improve the stress distribution and micro-structures of metal materials, thus effectively delay the fatigue crack growth (FCG) rate and improve the fatigue life of metal parts. At present, the study of life-extending technology mainly focus on experiments, but the basic theory of FCG laws and life extension mechanism under residual stress field induced by LP are still pending.
     The aim of this paper was to provide some foundational researches on the macro-properties, micro-structure evolution and fatigue properties of6061-T6aluminum(Al) alloy subjected to LP. Base on the theoretical discussion of FCG properties, the LP processes on typical notched and compact tension (CT) samples were studied, and the influence of surface integrity on fatigue properties was analyzed. Combined with the macroscopic FCG performance and microscopic fatigue fracture morphology, thorough descriptions of life extension mechanism induced by LP were performed at the different fracture stages, meanwhile, numerical simulation of FCG properties under residual stress field induced by LP was carried out. The main contents of this paper include the following aspects,
     (1) The estimation formulas for FCG life of the untreated and LPed samples were put forward. Based on the fracture mechanics theory, the effects of LP process on FCG properties, including the FCG threshold, stress intensity factor (SIF), FCG rate, crack tip opening displacement(CTOD) and plastic deformation at the crack front were explored. With the comprehensive consideration of the applied load and the residual stress induced by LP, estimation formulas for FCG life of the untreated and LPed samples were obtained based on the Paris formula. Based on the metal physics theory, reverse calculation method for fatigue stress and fatigue life of samples subjected to LP was analyzed by the quantitative description of fatigue fracture morphology. It provided theoretical basis for revealing the enhancement mechanism of FCG properties and fatigue life of metal materials subjected to LP.
     (2) The surface integrity (nano-hardness, elastic modulus, surface roughness, surface profile, residual stress and micro-structure) of6061-T6Al alloy subjected to different LP process parameters was investigated systematically, and the influence of surface integrity on fatigue properties was researched. Nano-indentation test was performed, and the influence of different LP impact times and laser energy on contact depth and contact area of nano-indentation was studied. The improve mechanism of nano hardness and elastic modulus induced by LP was explored. Surface morphology and surface roughness were tested, and the effects of line roughness and surface roughness on fatigue performance were analyzed. Residual stress distribution of CT samples subjected to LP was investigated, and the effects of LP process parameters on the residual stress along surface and depth direction were explored. Micro-structures under different laser energy were observed, and microscopic strengthening mechanism of aluminum samples subjected to multiple LP treatment was obtained.
     (3) The effects of LP process on the residual stress and fatigue performance were investigated. The relations between LP impact times, peening paths, laser energy and fatigue life were obtained according to the relation curves of axial load, axial displacement and fatigue life on the notched samples. LP process of pre-crack CT samples was studied, and the FCG properties under different peening paths and laser energy were investigated by the curves of da/dN-ΔK and a-N. The relation curves of CTOD and FCG rate as well as fatigue life were analyzed, in order to verify the feasibility of using CTOD criterion to characterize the FCG performance. The above research can provide experimental datas for optimizing the process parameters and formulating technical criterion during LP.
     (4) The fatigue fracture morphology after LP was analyzed, and the fracture quantitative prediction of FCG life was achieved. The macro and micro fatigue fracture morphology and microscopic strengthening mechanism of the notched and CT samples during fatigue crack initiation period, the earlier and medium FCG period, as well as the instantaneous fracture period were systematically analyzed under different LP impact times, peening paths and laser energy. The micro fatigue fracture morphology of the stop-continue crack tip during FCG was investigated. According to the fatigue striations at different crack lengths, the comparison of macro and micro FCG rate was performed, and trapezoidal method was used to predict FCG life based on the quantitative analysis of fatigue fracture. The reconstruction of three dimensional morphology and the analysis of roughness on typical fatigue fracture of CT samples were carried out, and the variation tendency of altitude difference, line roughness and surface roughness were also investigated.
     (5) Based on the software platform of ABAUQS-MSC.Fatigue, a digital analysis method of FCG properties was established. Special loading module of laser shock wave was established in ABAQUS/CAE, and the residual stresses of the notched and CT6061-T6Al alloy samples subjected to different laser energy and coverage areas were simulated. Combined with MSC.Fatigue, the FCG performance under residual stress field was simulated, and the curves of da/dN-ΔK and a-N were obtained. The FCG inhibition induced by LP along the driving force direction during different FCG stages was investigated. It indicated that the simulation results were consistent with the experimental results, therefore, an effective method for predicting the FCG properties under the residual stress field induced by LP was provided.
引文
[1]钟志华,雷源忠.机械工程学科发展报告(机械制造)[M].北京:中国科学技术出版社,2009.
    [2]http://www.safetechnology.com,2007.
    [3]徐滨士,马世宁,刘世参,朱胜,王海斗.绿色再制造工程在军用装备中的应用[J].空军工程大学学报(自然科学版).2004,5(1):1-5.
    [4]姚振强,Y.Y. Lawrence,王飞,刘刚.先进激光制造技术研究新进展[J].机械工程学报,2003,39(12):57-61.
    [51柳东,王浩程,孙荣禄.铝及其合金表面改性技术的研究与发展[J].表面技术,2007,36(5):75-77.
    [6]白象忠,胡宁达,谭文锋.电磁热效应裂纹止裂研究的进展[J].力学进展,2000,30(4):546-557.
    [7]K. Dai, L. Shaw. Analysis of fatigue resistance improvements via surface severeplastic deformation[J]. International Journal of Fatigue,2008,30:1398-1408.
    [8]刘新灵,张峥,陶春虎.疲劳断口定量分析[M].北京:国防工业出版社,2010.
    [9]C.A. Rodopoulos, S.A. Curtis, E.R. de los Rios, J. SolisRomero. Optimization of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening-methodology, results and analysis[J]. International Journal of Fatigue,2004,26:849-856.
    [10]W.Z. Zhuang, G.R. Halford. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue,2001,23:S31-37.
    [11]A. Evans, G. Johnson, A. King, P.J. Withers. Characterization of laser peening residual stresses in Al 7075 by synchrotron diffraction and the contour method[J]. Journal of Neutron Research,2007,15(2):147-154.
    [12]Y. Sano, M. Obata, T. Kubo, N. Mukaia, M. Yoda, K. Masaki, Y. Ochi. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering A,2006,417:334-340.
    [13]A. King, A. Steuwer, C. Woodward, P.J. Withers. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering A,2006, 435-436:12-18.
    [14]C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai. Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J]. International Journal of Fatigue, 2002,24:1021-1036.
    [15]L.A. Hackel, H.L. Chen. Laser peening-A processing tool to strengthen metals or alloys to improve fatigue lifetime and retard stress-induced corrosion cracking[R]. Newyork, Laser Science and Technology,2003,1-8.
    [16]J.E. Rankin, M.R. Hill, L.A. Hackel. The effects of process variations on residual stress in laser peened 7049 T73 aluminum alloy[J]. Materials Science and Engineering A,2003, 349:279-291.
    [17]U. Sanchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, J. Porro, M. Morales. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear,2006,260:847-854.
    [18]J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng, L. Zhang. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010,58(16):5354-5362.
    [19]D. S. Dugdale. Yielding in steel sheets containing slits[J]. Journal of Mechanics Physical Solids,1960,8:100-108.
    [20]P.C. Paris, M.P. Gomez, W.P. Anderson. A rational analytic theory of fatigue[J]. The Trend in Engineering,1961,13:9-14.
    [21]B.A. Bilby, A.H. Cottrell, K.H. Swinden. The spread of plastic yield from a notch[J]. Proc. Roy. Soc. London, Ser. A,1963,272:304-314.
    [22]傅国如.疲劳夫效件断口定量计算初探[C].全国第二届航空装备失效分析会议论文集.北京:中国航空学会,1997,347-355.
    [23]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    [24]陶春虎.疲劳断裂失效分析的新进展[J].飞行事故与失效分析,2001,4:10-13.
    [25]B.P. Fairand, B.A. Wilcox, W.J. Gallaghtr. Laser shock induced microstructual and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics,1972, 43(9):3893-3895.
    [26]Army Research Laboratory. Laser Peening for U.S. Army Helicopters[R]. Technology Overview, contract No. W911NF-06-2-0034,2010.
    [27]J.J. Ruschau, R. John, S.R. Thompson, T. Nicholas. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue,1999, 21:S199-209.
    [28]L. Mike. Fatigue Lifetime Improvement of Arrestment Hook Shank by Application of Laser. Peening[C].25th ICAF Symposium Rotterdam,2009,5:27-29.
    [29]Y. Sano, N. Mukai, I. Chida,T. Uehara, M. Yoda. Applications of laser peening without protective coating to enhance structural integrity of metallic components[C]. The 2nd International Conference on Laser Peening. San Francisco,2010,1-26.
    [30]F. Wang, Z.Q. Yao, J. Hu, Q.L. Deng. Experimental research numerical simulation of laser shock forming of TA2 titanium sheet[J]. Acta Metallurgica Sinica,2006,19(5):347-354.
    [31]J.Z. Lu, L. Zhang, A.X. Feng, Y.F. Jiang, G.G. Cheng. Effects of laser shock processing on mechanical properties of Fe-Ni alloy[J]. Materials and Design,2009,30(9):3673-3678.
    [32]J.Z. Lu, C.J. Yang, L. Zhang, Y.F. Jiang. Mechanical properties and microstructural features of the bionic non-smooth stainless steel surface by laser multiple processing[J]. Journal of Bionic Engineering,2009,6(2):180-185.
    [33]C.A. Lavender, S. Hong, M.T. Smith, R.T. Johnson, D. Lahrman. The effect of laser shock peening on the life and failure mode of a cold pilger die[J]. Journal of Materials Processing Technology,2008,204:486-491.
    [34]M.R. Hill, A.T. Dewald, J.E. Rankin, M.J. Lee. The Role of Residual Stress Measurement in the Development of Laser Peening[J]. Journal of Neutron Research,2003, 11(4):195-200.
    [35]M.R. Hill, A.T. DeWald, J.E. Rankin, M.J. Lee. Measurement of laser peening residual stresses[J]. Materials Science and Technology,2005,21:3-9.
    [36]G. Gomez-Rosas, C. Rubio-Gonzalez, J.L Ocana, C. Molpeceres, J.A. Porro, W. Chi-Moreno, M. Morales. High level compressive residual stresses produced in aluminum alloys by laser shock processing[J]. Applied Surface Science,2005,252:883-887.
    [37]H. Luong, M.R. Hill. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A,2010,527:699-707.
    [38]X.D. Ren, Y.K. Zhang, D.W. Jiang, T. Zhang, G.F. Sun. A model for reliability and confidence level in fatigue statistical calculation[J]. Theoretical and Applied Fracture Mechanics,2012,59:29-33.
    [39]Y.K. Zhang, J.Z. Lu, X.D. Ren, H.B. Yao. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design,2009,30(5):1697-1703.
    [40]L. Zhang, J.Z. Lu, Y.K. Zhang, K.Y. Luo, F.Z. Dai. Effects of processing parameters on the fatigue properties of LY2 Aluminum alloy subjected to laser shock processing[J]. Chinese Optics Letters,2011,9(6):061406-1-4.
    [41]A. Chahardehi, F.P. Brennan, A. Steuwer. The effect of residual stresses arising from laser shot peening on fatigue crack growth[J]. Engineering Fracture Mechanics,2010, 77(2):2033-2039.
    [42]D.J. Buchanan, R. John, M.J. Shepard Thermal relaxation of shot peened and laser shock peened residual stresses[C].2ndInternational Conference on Laser Peening, San Francisco, 2010.
    [43]X.D. Ren, D.W. Jiang, Y.K. Zhang, T. Zhang, H.B. Guan, X.M. Qian. Effects of laser shock processing on 00Cr12 mechanical properties in the temperature range from 25℃ to 600℃[J]. Applied Surface Science,2010,257:1712-1715.
    [44]X.D. Ren, T. Zhang, Y.K. Zhang, D.W. Jiang, H.F. Yongzhuo, H.B. Guan, X.M. Qian. Mechanical properties and residual stresses changing on 00Cr12 alloy by nanoseconds laser shock processing at high temperatures[J]. Materials Science and Engineering A,2011, 528:1949-1953.
    [45]Y.W Fang, Y.H. Li, W.F. He, Y.J Lu, P.Y Li. Numerical simulation of residual stresses fields of DD6 blade during laser shock processing[J]. Materials and Design,2013,43:170-176.
    [46]K.S. Chan. Roles of microstructure in fatigue crack initiation [J]. International Journal of Fatigue,2010,32:1428-1447.
    [47]E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier, Ch. Genzel. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys[J]. Materials Science and Engineering A,2012,536:82-91.
    [48]J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia,2010,58(11):3984-3994.
    [49]J.Z. Lu, J.W. Zhong, K.Y. Luo, L. Zhang, F.Z. Dai, K.M. Chen, Q.W. Wang, J.S. Zhong, Y.K. Zhang. Micro-structural strengthening mechanism of multiple laser shock processing impacts on AISI 8620 steel[J]. Materials Science and Engineering:A,2011,528(19-20):6128-6133.
    [50]Z.W. Cao, H.Y. Xu, S.K. Zou, Z.G. Che. Investigation of surface integrity on TC17 titanium alloy treated by square-spot laser shock peening[J]. Chinese Journal of Aeronautics,2012, 25:650-656.
    [51]J.M. Yang, Y.C. Her, N.L. Han, A. Clauer. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes[J]. Materials Science and Engineering A, 2001,298:296-299.
    [52]K. Ding, L. Ye. FEM simulation of two sided laser shock peening of thin sections of Ti-6A1-4V alloy[J]. Surface Engineering,2003,19(2):127-133.
    [53]C. Rubio-Gonzalez, J.L. Ocana, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, M. Morales. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science and Engineering A,2004,386: 291-295.
    [54]C. Rubio-Gonzalez, C. Felix-Martinez, G. Gomez-Rosas, J.L. Ocana, M. Morales, J.A. Porro. Effect of laser shock processing on fatigue crack growth of duplex stainless steel[J]. Materials Science and Engineering A,2011,528:914-919.
    [55]O. Hatamleh, J. Lyons, R. Forman. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007,29:421-434.
    [56]O. Hatamleh, A. DeWald. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints[J]. Journal of Materials Processing Technology,2009,209:4822-4829.
    [57]U.C.Heckenberger, E. Hombergsmeier. LSP to improve the fatigue resistance of highly stressed AA7050 components[C].2nd International Conference on Laser Peening,2010.
    [58]G. Ivetic, I. Meneghin, E. Troiani. Fatigue in laser shock peened open-hole thin aluminium specimens[J]. Materials Science and Engineering A,2012,534:573-579.
    [59]O. Hatamleh. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints[J]. International Journal of Fatigue,2009,31:974-988.
    [60]S.D. Cuellar, M.R. Hill, A.T. DeWald, J.E. Rankin. Residual stress and fatigue life in laser shock peened open hole samples[J]. International Journal of Fatigue,2012,44:8-13.
    [61]邹世坤,王健,王华明,韩海军,王春生.激光冲击处理降低铝合金裂纹扩展速率的研究[J].航空制造技术,2002,9:37-39.
    [62]马壮.激光冲击强化技术在航空发动机部件上的应用[D].西安:空军工程大学,2007.
    [63]任旭东.基于激光冲击机理的裂纹面闭合与疲劳性能改善特性研究[D].镇江:江苏大学,2009.
    [64]L. Zhang, J.Z. Lu, Y.K. Zhang, K.Y. Luo, J.W. Zhong, C.Y. Cui, D.J. Kong, H.B. Guan, X.M. Qian. Effects of different shocked paths on fatigue property of 7050-T7451 aluminum alloy during two-sided laser shock processing[J]. Materials and Design,2011,32(2):480-486.
    [65]S. Spanrad, J. Tong. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6A1-4V aerofoil specimens[J]. Materials Science and Engineering A,2011,528:2128-2136.
    [66]P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari, G. Raghavendra. Studies on laser peening of spring steel for automotive applications[J]. Optics and Lasers in Engineering,2012,50:678-686.
    [67]A.M. Korsunsky. On the modelling of residual stresses due to surface peening using eigenstrain distributions[J]. Journal of Strain Analysis,2005,40(8):817-824.
    [68]Y.X. Hu, Z.Q. Yao. Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell[J]. International Journal of Machine Tools and Manufacture, 2008,48,152-162.
    [69]K. Ding and L. Ye. Three dimensional dynamic finite element analysis of multiple laser shock peening processes[J]. Surface Engineering,2003,19:351-358.
    [70]B. Wu, Y.C. Shin. A one-dimensional hydrodynamic model for pressures induced near the coating-water interface during laser shock peening[J]. Journal of Applied Physics,2007, 101:1-5.
    [71]J.X. Shi, D. Chopp, J. Lu, N. Sukumar, T. Belytschko. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions[J]. Engineering Fracture Mechanics,2010,77:2840-2863.
    [72]http://www.zentech.co.uk/zencrack.htm
    [73]http://www.cfg.cornell.edu/
    [74]S. K. Lu, X. H. Yi, L.Yu, Y.L Jiang, W. R. Wei. Comparison of the simulation and experimental fatigue crack behaviors in the aluminum alloy HS6061-T6[J]. Procedia Engineering,2011,12:242-247.
    [75]黄舒,周建忠,蒋素琴,朱银波,胡玲玲.激光连续喷丸强化过程中应力的动态分析[J].中国激光,2010,37(1):256-260.
    [76]周建忠,黄舒,赵建飞,蒋素琴,朱银波,杨建风.激光喷丸强化铝合金疲劳特性的数字化分析[J].中国激光,2008,35(11):1735-1740.
    [77]Y.K. Gao, X.R. Wu. Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses[J]. Acta Materialia, 2011,59:3737-3747.
    [78]X.D. Ren, Y.K. Zhang, J.Z. Zhou, J.Z.Lu, L.C. Zhou. Influence of Compressive Stress on Stress Intensity Factor of Hole Edge Crack by High Strain Rate Laser Shock Processing[J]. Materials and Design,2009,30(9):3512-3517.
    [79]Y.K. Zhang, X.D. Ren, J.Z. Zhou, J.Z. Lu, L.C. Zhou. Investigation of the stress intensity factor changing on the hole crack subject to laser shock processing[J]. Materials and Design, 2009,30(7):2769-2773.
    [80]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.
    [81]匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社,2001.
    [82]X.D. Ren, Y.K. Zhang, H.F. Yongzhuo, L. Ruan, D.W. Jiang, T. Zhang, K.M. Chen. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A,2011,528:2899-2903.
    [83]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.
    [84]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社,2006.
    [85]哈宽富.断裂物理基础[M].北京:科学出版社,2000.
    [86]G.R. Irwin. Analysis of stresses and strains near the end of a crack transversing a plate[J]. Journal of Applied Mechanics,1957,24:361-364.
    [87]A.A. Griffith. The phenomena of rupture and flow in solids[J]. Phil. Trans. Ser. A,1920, 221:163-198.
    [88]A.A. Griffith. The theory of rupture[J]. Applied Mechanics,1924:55-63.
    [89]R.A. Smith. Fatigue Crack Growth:30 Years of Progress[M]. Oxford:Pergamon Press,1986.
    [90]R.G. Forman, V.E. Kearney, R.M. Engle. Numerical analysis of crack propagation in cyclic-loaded structure[J]. Journal of Basic Engineering,1967,89:459-464.
    [91]K. Walker. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[C]. In:Effects of Environment and Complex Load History for Fatigue Life, Special Technical Publication 462, Philadelphia:ASTM,1970:1-14.
    [92]P.J.E. Forsyth. A two stage process of fatigue crack growth[C]. In:Crack Propagation: Proceedings of Cranfield Symposium, London:Her Majesty's Stationiery Office,1962:76-94.
    [93]C. Laird. The influence of metallurgical structure on mechanisms of fatigue crack propagation[R]. In:Fatigue crack Propagation, Special Technical Publication 415, Philadelphia:ASTM,1967:131-168.
    [94]P. Neumann. Coarse slip model of fatigue[J]. Acta. Metallurgica 1969,17:1219-1225.
    [95]M. Greager, P.C. Paris. Elastic field equations for blut cracks with reference to stress crosion cracking[J]. Fracture Mechanics.1967,3:27.
    [96]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [97]Q. Liu, C.H. Yang, K. Ding, S.A. Barter, L. Ye. The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy [J]. Fatigue Fracture Engineering Material Structure,2007,30:1110-1124.
    [98]P. Peyre, R. Fabbro. Laser shock processing:a review of the physics and applications[J]. Optical and Quantum Electronics,1995,27(12):1213-1229.
    [99]P. Ballard. Residual stress induced by rapid impact-application of laser shocking[D]. Ecole Polytechnique. France:Doctorial Thesis,1991.
    [100]P. Ballard, J. Fournier, R. Fabbro. Residual stresses induced by laser shocks[J]. Journal de Physique IV (France).1991,1(8, Suppl):C3-487-494.
    [101]J.N. Johnson, R.W. Rhode. Dynamic deformation twinning in shock-loaded iron[J]. Journal of Applied Physics,1971,42(11):4171-4182.
    [102]P.C. Paris, F. Erdogan. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering.1963,85(4):528-534.
    [103]王珉.抗疲劳制造原理与技术[M].南京:江苏科学技术出版社,1998.
    [104]A.A. Wells. Unstable crack propagation in metals:cleavage and fracture[C]. Proceedings of the Crack Propagation Symposium,1961,1:210.
    [105]A.H. Cottrel. Theoretical aspects of radiation damage and brittle facture in steel pressure vessels[R]. Iron Steel Institute Special Report,1961,69:281.
    [106]M.G. Dawes. Fracture control in high yield strength weldments[J]. Welding Journal Research Supplement,1974,53:3695.
    [107]M.G. Dawes. The COD design curve, in advances in elastic-plastic fracture mechanics[J]. Applied Science Publishers,1980,279.
    [108]R.J. Donahue, H. Clark, P. Atanmo, R. Kumble, A.J. McEvily. Crack opening displacement and the rate of fatigue crack growth[J]. International Journal of Fracture Mechanics,1972, 1:209-219.
    [109]A.A. Wells. Application of fracture mechanics at and the approximate analysis of strain concentration by notches and cracks[J]. Journal of applied Mechanics,1968,35:379-386.
    [110]BS5762. Method for crack opening displacement (COD) testing[M]. British Standards Institution, London,1979.
    [111]ASTM 1989. ASTM standard test method for crack tip opening displacement (CTOD) fracture toughness measurement[M]. E1290-89, Philadelphia, PA.
    [112]ASTM 2002, Annual book of ASTM standards[M], v.03.01 no. E399-97. Standard test method for plane stress fracture toughness of metallic materials.
    [113]K. Werner. The fatigue crack growth rate and crack opening displacement in 18G2A-steel under tension[J]. International Journal of Fatigue,2012,39:25-31.
    [114]A. Neimitz. Mechanika pekania. Wydawnictwo Naukowe PWN S.A. Warszawa,1998, 55-70.
    [115]A. Bochenek. Elementy mechaniki pekania. Wydawnictwo Politechniki Czestochowskiej, 1998,255.
    [116]American Society for Metals. Metals Handbook,9th ed., Vol 12, Fractography[M]. ASM, Metals Park, Ohio:1987.
    [117]M. Coster, J.L. Chermant. Recent development in quantitative fractography[J]. International Metals Reviews,1983,28(4):228-250.
    [118]赵子华,张峥,吴素君,钟群鹏.金属疲劳断口定量反推研究综述[J].机械强度,2008,30(3):508-514.
    [119]钟群鹏,张峥,武淮生,左尚志.金属疲劳扩展区和瞬断区的物理数学模型[J].航空学报,2000,21(4):11-14.
    [120]M. Sozanska, F. Iacoviello, J. Cwajna. Quantitative analysis of fatigue fracture surface in the duplex steel[J]. Image Analysis Stereologic,2002,21:55-59.
    [121]ASTM 2002, Annual book of ASTM standards[M], v.03.01 no. E647-00. Standard test method for measurement of fatigue crack growth rates.
    [122]刘吕奎,陈星,张兵,任吉林,董世运,陶春虎.构件低周疲劳损伤的金属磁记忆检测试验研究[J].航空材料学报,2010,30(1):72-77.
    [123]E.E. Underwood, Jr E.A. Starke. Quantitative stereological methods for analyzing important micro-structural features in fatigue of metals and alloys[R].In:Fong, J. T. Fatigue Mechanisms, STP675, ASM,1979,633-682.
    [124]Y.K. Gao, X.B. Li, Q.X. Yang, M. Yao. Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel[J]. Materials Letters,2007,61:466-469.
    [125]S. Smith, S.N. Melkote, E. Lara-Curzio, T.R. Watkins, L. Allard, L. Riester. Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance[J]. Materials Science and Engineering A,2007,459:337-346.
    [126]D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen. The effect of machined topography and integrity on fatigue life[J]. International Journal of Machine Tools and Manufacture,2004,44:125-134.
    [127]Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, G. Feng. A model of size effects in nano-indentation[J]. Journal of the Mechanics and Physics of Solids,2006,54:1668-1686.
    [128]Y.J. Park, G.M. Pharr. Nanoindentation with spherical indenters:finite element studies of deformation in the elastic-plastic transition regime[J]. Thin Solid Films,2004, 447-448:246-250.
    [129]J. Malzbender, G. de With. The use of the loading curve to assess soft coatings[J]. Surface and Coatings Technology,2000,127:266-273.
    [130]N. Chollacoop, M. Dao, S. Suresh. Depth-sensing instrumented indentation with dual sharp indenters[J]. Acta Materialia,2003,51(13):3713-3729.
    [131]Y.K. Zhang, Y.Y. Gu, X.Q. Zhang, J.G. Shi, J. Zhou. Study of mechanism of overlay acting on laser shock waves[J]. Journal of Applied Physics,2006,100:103517-1.
    [132]B.S. Yilbas, A.F.M. Arif. Laser shock processing of aluminium:model and experimental study[J]. Journal of Physics D:Applied Physics,2007,40:6740-6747.
    [133]K.Y. Luo, J.Z. Lu, Y.K. Zhang, J.Z. Zhou, L.F. Zhang, F.Z. Dai, L. Zhang, J.W. Zhong, C.Y. Cui. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science and Engineering A,2011, 528:4783-4788.
    [134]W.W. Zhang, L. Yao. Microscale laser shock peening of thin films, part 2:high spatial resolution material characterization[J]. Journal of Manufacturing Science and Engineering, 2004,126(2):18-24.
    [135]J. Fourier. Mechanical effects induced by shock waves generated by high-energy laser pulses[J]. Materials and Manufacturing Processes,1990,5:144-147.
    [136]K.Y. Luo, J.Z. Lu, L.F. Zhang, J.W. Zhong, H.B. Guan, X.M. Qian. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials and Design,2010,31(6):2599-2603.
    [137]M. Morales, J.L. Ocana, C. Molpeceres, J.A. Porro, A. Garcia-Beltran. Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing[J]. Surface and Coatings Technology,2008,202:2257-2262.
    [138]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社,1991年.
    [139]P.S. Maya. Geometrical characterization of surface roughness and its application to fatigue crack initiation[J]. Materials Science and Engineering,1975,21:57-62.
    [140]M. Suraratchai, J. Limido, C. Mabru, R. Chieragatti. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy [J]. International Journal of Fatigue, 2008,30(12):2119-2126.
    [141]S. Kyrre, B. Skallerud, B.W. Tveiten. Surface roughness characterization for fatigue life predictions using finite element analysis[J]. International Journal of Fatigue,2008, 30(12):2200-2209.
    [142]J. Lindemann, C. Buque, F. Appel. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia,2006,54:1155-1164.
    [143]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2004.
    [144]B. Kampfe. Investigation of residual stresses in microsystems using X-ray diffraction [J]. Materials Science and Engineering A,2000,288:119-125.
    [145]周玉.材料分析方法[M].北京:机械工业出版社,2007年.
    [146]赵九江,张少实.材料力学[M].哈尔滨:哈尔滨工业大学出版社,2000年
    [147]P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering A,1996, 210:102-113.
    [148]X.C. Zhang, Y.K. Zhang, J.Z. Lu, F.Z. Xuan, Z.D. Wang, S.T. Tu. Improvement of fatigue life of Ti-6A1-4V alloy by laser shock peening[J]. Materials Science and Engineering A, 2010,527:3411-3415.
    [149]Y.X. Hu, Z.Q. Yao. Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser[J]. Surface and Coatings Technology, 2008,202(8):1517-1525.
    [150]C.J. Lammi, D.A. Lados. Effects of residual stresses on fatigue crack growth behavior of structural materials:Analytical corrections [J]. International Journal of Fatigue,2011, 33:858-867.
    [151]M. Farahani, I. Sattari-Far. Effects of residual stresses on crack-tip constraints[J]. Scientia Iranica B,2011,18(6):1267-1276.
    [152]S.R. Thompson, J.J. Ruschau, T. Nicholas. Influence of residual stresses on high cycle fatigue strength of Ti-6Al-4V subjected to foreign object damage[J]. International Journal of Fatigue,2001,23:S405-412.
    [153]M.A.S Torres, H.J.C Voorwald. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel[J]. International Journal of Fatigue,2002, 24(8):877-886.
    [154]H.H. Jin, H.D. Cho, S. Kwon, C. Shin, J. Kwon. Modified preparation technique of TEM sample for various TEM analyses of structural materials[J]. Materials Letters,2012, 89:133-136.
    [155]H.J. Li, G.J. Zhao, X.H. Zeng, G.Q. Zhou, Z.Y. Qian, S.M. Zhou, J. Xu. Study on cracking and low-angle grain boundary defects in YA103 crystal[J]. Materials Letters,2004, 58:3253-3256.
    [156]Z. Wang, W.Z. Luan, J.J. Huang, C.H. Jiang. XRD investigation of microstructure strengthening mechanism of shot peening on laser hardened 17-4PH[J]. Materials Science and Engineering A,2011,528:6417-6425.
    [157]王亚男,陈树江.位错理论及其应用[M]北京:冶金工业出版社,2007年
    [158]H.T. Ding, Y.C. Shin. Dislocation density-based modeling of subsurface grain refinement with laser-induced shock compression[J]. Computational Materials Science,2012, 53:79-88.
    [159]J.弗利埃德尔.位错[M].北京:科学出版社,1984年.
    [160]胡永祥.激光冲击处理工艺过程数值建模与冲击效应研究[D].上海:上海交通大学博士学位论文,2008年.
    [161]I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel[J]. Materials Science and Engineering A,2010,527:3552-3560.
    [162]F. Shen, J.Q. Zhou, Y.G. Liu, R.T. Zhu, S. Zhang, Y. Wang. Deformation twinning mechanism and its effects on the mechanical behaviors of ultrafine grained and nanocrystalline copper[J]. Computational Materials Science,2010,49:226-235.
    [163]V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nature Materials,2002,1:45-48.
    [164]航空制造工程手册总编委会.航空制造工程手册—表面处理[M].北京:航空工业出版社,1993.
    [165]X. Hong, S.B. Wang, D.H. Guo, H.X. Wu, J. Wang, Y.S. Dai, X.P. Xia, Y.N. Xie. Confining medium and absorptive overlay:Their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering,1998,29,(6):447-455.
    [166]C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, A. Banderas, J. Porro, M. Morales. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples[J]. Applied Surface Science,2006,252(18):6201-6205.
    [167]Y.K.Zhang, X.D. Ren, J.Z.Zhou, A.X.Feng, J.Z.LU. Coating effect on increasing mechanical property of 6061-T651 alloy during laser shock processing[J]. Materials Science Forum,2007,546-549:681-686.
    [168]R. Fabbro, P. Peyre, L. Berthe, X. Sherpereel. Physics and applications of laser-shock processing[J]. Journal of Laser Applications,1998,10:265-79.
    [169]Y.X. Hu and Z.Q. Yao. FEM Simulation of residual stresses induced by laser shock with overlapping laser spots[J]. Acta Metallurgica Sinica,2008,21:125-132.
    [170]J.Z. Zhou, S. Huang, J. Sheng, J.Z. Lu, C.D. Wang, K.M. Chen, H.Y. Ruan, H.S. Chen. Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening[J]. Materials Science and Engineering A, 2012,539:360-368.
    [171]黄舒,周建忠,蒋素琴,盛杰,徐增闯,阮鸿雁.AZ31B镁合金激光喷丸后的形变强化及疲劳断口分析[J].中国激光,2011,38(8):08030021-1-6.
    [172]L. Zhang, K.Y. Luo, J.Z. Lu, Y.K. Zhang, F.Z. Dai, J.W. Zhong. Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint[J]. Materials Science and Engineering:A,2011,528(13-14):4652-4657.
    [173]K. Werner. The fatigue crack growth rate and crack opening displacement in 18G2A-steel under tension[J]. International Journal of Fatigue,2012,39:25-31.
    [174]D. Azzam, C.C. Menzemer, T.S. Srivatsan. The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue[J]. Materials Science and Engineering A,2010,527:5341-5345.
    [175]L.P. Borrego, J.M. Costa, S. Silva, J.M. Ferreira. Microstructure dependent fatigue crack growth in aged hardened aluminium alloys[J]. International Journal of Fatigue,2004, 26:1321-1331.
    [176]T.S. Srivatsan, D. Kolar, P. Magnusen. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Materials and Design,2002,23:129-139.
    [177]T.S. Srivatsan, B.G. Ravi, M. Petraroli, T.S. Sudarshan. The microhardness and microstructural characteristics of bulk molybdenum samples obtained by consolidating nanopowders by plasma pressure compaction[J]. International Journal of Refractory Metals and Hard Materials,2002,20:181-186.
    [178]W.O. Soboyejo, W. Shen, T.S. Srivatsan. An investigation of fatigue crack nucleation and growth in a Ti-6Al-4V/TiB in situ composite[J]. Mechanics of Materials,2004,36:141-159.
    [179]S. Dubey, T.S. Srivatsan, W.O. Soboyejo. Fatigue crack propagation and fracture characteristics of in-situ titanium-matrix composites[J]. International Journal of Fatigue, 2000,22:161-174.
    [180]T.S. Srivatsan, G. Guruprasad, V.K. Vasudevan. The quasi static deformation and fracture behavior of aluminum alloy 7150[J]. Materials and Design,2008,29:742-751.
    [181]G.R. Yonder, L.A. Cooley, T.W. Crooker. Quantitative analysis of micro-structural effects on fatigue crack growth in Widmanstatter Ti-6A1-4V and Ti-8Al1-MolV[J]. Engineering Fracture Mechanics,1979(11):805-816.
    [182]Derek Hull断口形貌学:观察、测量和分析断口表面形貌的科学[M].北京:科学出版社,2009.
    [183]W. Zhang, Y. M. Liu. Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing[J]. International Journal of Fatigue,2012,42:14-23.
    [184]T.S. Srivatsan, Meslet Al-Hajri, W. Hannon, V.K. Vasudevan. The strain amplitude-controlled cyclic fatigue, defomationand fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates[J]. Materials Science and Engineering A, 2004,379:181-196.
    [185]T.S. Srivatsan, M. Al-Hajri. The fatigue and final fracture behavior of SiC particle reinforced 7034 aluminum matrix composites[J]. Composites:Part B,2002,33:391-404.
    [186]Y.X. Hu, R.V. Grandhi. Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology [J]. Surface and Coatings Technology,2012,206(15):3374-3385.
    [187]A.W. Warren, Y.B. Guo, S.C. Chen. Massive parallel laser shock peening:Simulation, analysis, and validation[J]. International Journal of Fatigue,2008,30:188-197.
    [188]Y.X. Hu, C.M. Gong, Z.Q. Yao, J. Hu. Investigation on the non-homogeneity of residual stress field induced by laser shock peening[J].Surface and Coatings Technology,2009, 203(23):3503-3508.
    [189]J.F. Zhao, J.Z. Zhou, S. Huang, S.Q. Jiang, Y.J. Fan. Numerical simulation on fatigue crack growth of metal sheet induced by laser shot peening[J]. International Journal of Modern Physics B,2009,23:1646-1651.
    [190]庄茁,由小川,廖剑晖.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社出版,2010.
    [191]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:北京汇林印务有限公司,2006.
    [192]刘展,祖景平,钱英莉.ALBAQUS6.6基础教材与实例详解[M].北京:中国水利水电出版社.2008.
    [193]G.R. Johnson, W.H. Cook. A constitutive model and data for metals subjected to large strains, high rates and high temperatures[J]. Proceedings of the 7th International Symposium on Ballistics, Hague, Netherlands,1983:541-547.
    [194]G.R. Johnson, T.J. Holmquist. Evaluation of cylinder-impact test data for constitutive model constants[J]. Journal of Applied Physics,1988,64(8):3901-3910.
    [195]W. Dabboussi, J.A. Nemes. Modeling of ductile fracture using the dynamic punch test[J]. International Journal of Mechanical Sciences,2005,47(8):1282-1299.
    [196]R. Fabbro, J. Fournier, P. Ballard. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics,1990,68(2):775-784.
    [197]Stanley P. Marsh. LASL shock Hugoniot data[M]. Berkeley, California:University of California Press.1980.
    [198]周南,乔登江.脉冲束辐照材料动力学[M].北京,国防工业出版社,2002.
    [199]J.L. Ocana, M. Morales, C. Molpeceres, J. Torres. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J]. Applied Surface Science,2004,238:242-248.
    [200]Z.Y. Li, W.H. Zhu, J.Y. Chen. Experimental study of high-power pulsed laser induced shock waves in aluminum targets[J]. Chinese journal of laser.1997,24(3):259-262.
    [201]K. Ding, L. Ye. Simulation of multiple laser shock peening of a 35CD4 steel alloy[J]. Journal of Materials Processing Technology,2006,178:162-169.
    [202]H.Q. Chen, Y.L. Yao. Modeling schemes, transiency, and strain measurement for microscale laser shock processing[J]. Journal of Manufacturing Processes,2004,6(2):155-169.
    [203]C.D. Wang, J.Z. Zhou, S. Huang, X.D. Yang, Z.C. Xu, H.Y. Ruan. Study on the improvement of fatigue crack growth performance of 6061-T6 aluminum alloy subject to laser shot peening[J]. Key Engineering Materials,2011,464:391-394.
    [204]B.F. Jogi, P.K. Brahmankar,V.S. Nanda, R.C. Prasad. Some studies on fatigue crack growth rate of aluminum alloy 6061[J]. Journal of Materials Processing Technology,2008,20(1): 380-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700