焊接裂纹的金属磁记忆信号定量化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接裂纹是导致油气管道焊接接头失效的最危险的因素之一,因此对焊接裂纹进行检测是无损检测技术的一个重要应用。金属磁记忆检测技术作为一种新型的无损检测方法,利用了材料内部应力集中与表面散射磁场的关系,在材料早期损伤的无损检测应用中具有很大的潜力。
     本文针对金属磁记忆检测技术中焊接裂纹定量化检测的技术难题,利用现代信号处理和神经网络技术,在理论分析和大量试验的基础上,对应力集中与金属磁记忆信号之间的关系以及焊接裂纹的金属磁记忆信号特征进行了深入的研究,取得的主要结论和创新成果如下。
     研究了材料内部应力集中与金属磁记忆信号之间的关系。引入了磁场梯度指数的概念,建立了铁磁材料内部应力集中极限状态的确定方法,并确定了X70管线钢的临界磁场梯度指数;通过金属磁记忆信号的幅值谱熵,研究了材料内部应力水平对幅值谱熵的影响,可以通过幅值谱熵与磁记忆信号的关系确定材料内部应力的状态;研究了材料内部的应力水平与其金属磁记忆信号的关联维数之间的关系,随着应力水平的增加,金属磁记忆信号的关联维数降低。当材料进入塑性状态时,其金属磁记忆信号的关联维数在1.3以下。
     提取了焊接裂纹的金属磁记忆信号特征。利用金属磁记忆信号的小波能量研究了焊接裂纹金属磁记忆信号的尺度谱线特征和空间谱线特征。利用小波分解的方法提取了金属磁记忆信号的细节分量,对细节分量进行离散傅里叶变换后,其幅值的大小可以作为反映材料应力集中程度的一个特征,可以将裂纹与一般应力集中区分开来;对焊接裂纹的金属磁记忆信号空间波形特征以及微分处理后的特征进行了研究,并利用这些特征率先实现了焊接裂纹的定量化检测。
     利用焊接裂纹的金属磁记忆信号特征作为输入量,建立了用于焊接裂纹的神经网络识别模型,实现了焊接裂纹的定量化智能识别;利用VB6.0和Matlab混合编程技术,通过ActiveX自动化技术实现了VB与Matlab的连接,成功开发了焊接裂纹的金属磁记忆定量化检测系统。
Welding crack is one of the most dangerous factors that caused the welding joint of oil and gas pipeline invalidation. It is an important application that non-destructive test (NDT) technology is used to test the welding crack. As a brand-new NDT method, Metal Magnetic Memory (MMM) testing technology, which used the relation between the stress concentration of inner material and the scattering magnetic field on the material surface, has a great potential in the NDT application of early damnification of material.
     This dissertation concentrates on the difficult problem that the quantitative inspection of welding crack, which used the contemporaneity signal processing and neural network technology, the relation of stress concentration and MMM signal based on theoretical analysis and experiments or testing is researched, and the MMM signal feature of welding crack is extracted at the same time. The main achievements of this dissertation are as follows:
     The connection of stress concentration and MMM signal has been researched. The concept of magnetic field gradient index is put forward, the method that determined the critical state of the ferromagnetic material inner stress concentration is established and the critical magnetic field gradient index of X70 pipeline steel is determined; the amplitude spectrum entropy effected by stress degree is studied, through the relation of amplitude spectrum entropy and MMM signal, the stress state can be determined; the relation between stress and correlation dimension of MMM signal is investigation. Research shows that with the stress degree increase, the correlation dimension of MMM signal decrease, when the material ate the state of plastic nature, the correlation dimension of MMM signal will under the value 1.3.
     The MMM signal feature of welding crack is extracted. The wavelet energy spectrum of MMM signal, which includes scale- wavelet energy spectrum and space wavelet energy spectrum, is employed to denote the welding crack. The wavelet analysis is employed to decomposition the detail section form MMM signal, and the spectrum amplitude is obtained through Fourier transformation. The spectrum amplitude reflects the degree of stress concentration which can distinguish crack from general stress concentration; the quantitative inspection of welding crack is implemented with the wave characteristic of MMM signal and with its differential coefficient.
     With the MMM signal characteristic of welding crack as input parameter, the neural network is established that is used to recognize the welding crack quantitative and intelligence. The MMM quantitative inspection system is development successful with the software VB6.0 and Matlab which contact with ActiveX.
引文
[1] 李生田,刘志远. 焊接结构现代无损检测技术[M]. 北京:机械工业出版社,2000.
    [2] 薛振奎,隋永莉. 国内外油气管道焊接技术发展综述[EB/OL].(2003-01-27) [2006-12-25].http://www.china-weldnet.com/chinese/ 2003012707.htm.
    [3] 李午申,董建明,张炳范. 焊接裂纹预测及诊断专家系统[J].中国机械工程,1994,5(2):38-40.
    [4] 石宇熙. 天然气管道焊缝缺陷原因及防治技术[J]. 上海煤气,2002(5):37~39.
    [5] 王玉,高大路,廖明夫. 焊接领域无损检测技术应用现状及发展[J],无损检测,2003,25(3):140~142.
    [6] Hellier C J. Handbook of nondestructive evaluation[M]. McGraw-Hill Companies,New York, 2001.
    [7] 郑中兴. 材料无损检测与安全评估[M]. 北京:中国标准出版社,2004.
    [8] 曹刚,朱思民. 焊缝超声波检测回波信号分析[J]. 无损检测,2004,26(10):533~536.
    [9] 李家伟,陈积懋. 无损检测手册[M]. 北京:机械工业出版社,2002.
    [10] 美国无损检测学会编. 美国无损检测手册-超声卷[M]. 上海:世界图书出版公司,1999.
    [11] 梁启涵. 焊接检验[M]. 北京:机械工程出版社,1980.
    [12] 陈伯蠡. 焊接工程缺陷分析与对策[M]. 北京:机械工业出版社 ,2006.
    [13] 美国无损检测学会编. 美国无损检测手册-电磁卷[M]. 上海:世界图书出版公司,1999.
    [14] 任吉林,林俊明,高春法. 电磁无损检测[M]. 北京:机械工业出版社,2000.
    [15] 于凤云,陈玉玲.金属磁记忆技术在设备检测中的应用与前景分析[J].矿山机械,2004,32(6):69~71.
    [16] 张卫民,董韶平,张之敬. 金属磁记忆技术的现状与发展[J]. 中国机械工程,2003,14(10):892~896.
    [17] Doubov A A. Diagnostics of equipment and construction strength with usage of magnetic memory [J]. Inspection Diagnostics, 2001,(6):19~29.
    [18] Doubov A A. Screening of weld quality using the Metal Magnetic Memory [J].Welding in the world, 1998, 41(3): 196~199.
    [19] Goritsky V M, Doubov A A ,Demin E A. Exploration of structural damaging of steel specimens by the Metal Magnetic Memory Method [J]. Monitoring & Diagnostics,2000,(7): 547~551.
    [20] 邸新杰,李午申,梁志芳. 焊接缺陷早期探伤诊断的新方法[J].焊管,2004,27(3):34~36.
    [21] 潘荣宝,袁溶. 管道压力容器磁粉检测技术[J].中国锅炉压力容器安全,2003,19(4):33~36.
    [22] 徐章遂,徐英,王建斌,等. 裂纹漏磁定量检测原理与应用[M]. 北京:国防工业出版社,2005.
    [23] Yasumitsu T,Kiyoshi H,Naoki O. Nondestructive estimation of fatigue damage for steel by Barkhausen noise analysis[J]. NDT&E International,1996,29(5):275~280.
    [24] Tomohio Y,Shinji Y,Masshiko H. Effect of applied stresses on magnetostriction of low carbon steel[J]. NDT&E International,1996,29(5):263~268.
    [25] Yam A S,Furuga Y,Watamabe T. The effect of grain boundary microstructure on Barkhausen noise in ferromagnetic materials[J].Acta Mater,2001,49:3019~027.
    [26] Moorthy V,Choudhary B K,Vaidyanathan S,et a1. An assessment of low cycle fatigue damage using magnetic Barkhausen emission in 9Cr-1Mo ferritic-steel[J]. International journal of fatigue,1999,21:263~269.
    [27] 陈娟,祈欣. 应力的磁声发射检测方法[J]. 电测与仪表,1997,34(3):3~4.
    [28] 姜寿亭,李卫. 凝聚态磁性物理[M]. 北京:科学出版社,2003.
    [29] 钟文定. 铁磁学(中)[M]. 北京:科学技术出版社,1987.
    [30] 冯端. 金属物理学(第四卷)[M]. 北京:科学出版社,1998.
    [31] 温伟刚,萨殊利. 金属磁记忆检测的原理及实现[J].北方交通大学学报,2002,26(4):67~70.
    [32] Dubov A A. The method of metal magnetic memory - The new trend in engineering diagnostics[J]. Welding in the word,2005,49(9):314~319.
    [33] Dubov A A. A rapid method of inspecting welded joints utilizing the magnetic memory of metal[J]. Welding International,1997,11(5):410-413.
    [34] Dubov A A,Gneushev A M,Veliyulin I I. Advanced diagnostics assists assessment of oil and gas pipeline remaining service life[J]. Energetik,2005,2:18~20.
    [35] Dubov A A. Diagnostics of metal items and equipment by means of metalmagnetic memory[C].CHSNDT 7th Conference on NDT and International Research Symposium,1999:181~187.
    [36] 哈宽富. 金属力学性质的微观理论[M]. 北京:科学出版社,1983.
    [37] Dubov A A,Demin E A,Milyaev A I,et al. The experience of gas pipeline stress-strain state control with usage of the metal magnetic memory method as compared with conventional methods and stress control means[J]. Welding in the World,2002,46(9):29~33.
    [38] Jiles D C,Devine, M K. Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials[J]. Journal of Applied Physics.1994,76(10):7015-7017.
    [39] Atherton D L, Barnes R,Donaldson M,et al. Effects of line pressure stress, magnetic properties and test conditions on magnetic flux leakage signals[J]. NDT & E International.1994,27(2):16~20.
    [40] Jiles D C,Li L. A new approach to modeling the magneto mechanical effect[J]. Journal of Applied Physics.2004,95(11):7058-7060.
    [41] Lo C C H. Paulsen J A. Jiles D C. Quantitative evaluation of stress distribution in magnetic materials by Barkhausen effect and magnetic hysteresis measurements[J]. IEEE Transactions on Magnetics,2004,40(4):2173~2175.
    [42] Atherton D L , Szpunar J A. Effect of stress on magnetization and magnetostrication steel[J]. IEEE Transactions on Magnetics,1986,22(5):514~516.
    [43] Garikepeti P,Cheng T T,Jiles D C. Theory of ferromagnetic hysteresis: evaluation of stress from hysteresis curves[J]. IEEE Transactions on Magnetics,1988,24(6):2922~2924.
    [44] Jiles D C,Hariharan M K,Devine M K. Magnescope: a portable magnetic inspection system for evaluation of steel structures and components[J]. IEEE Transactions on Magnetics,1990,26(5):2577~2579.
    [45] Li L M, Huang S L,Wang L F,et a1. Research on magnetic testing method of stress distribution[J]. Transactions of nonferrous metals society of China,2002,12(3):388-391.
    [46] Huang S L,Li L M, Shi K R,et al. Magnetic field properties caused by stress concentration[J]. Journal of central south university of technology,2004,11(1):23-26.
    [47] 黄松岭,李路明,王晓凤,等. 地磁场在应力致磁畸变产生过程中的影响[J].清华大学学报,2003,42(2):208~210.
    [48] 黄松岭,李路明,汪来富,等. 用金属磁记忆方法检测应力分布[J]. 无损检测,2002,24(5):212~214.
    [49] 张卫民,刘红光,孙海涛. 中低碳钢静拉伸时磁记忆效应的试验研究[J]. 北京理工大学学报,2004,24(7):571~574.
    [50] 任吉林,邬冠华,宋凯,等. 金属磁记忆检测机理的探讨[J]. 无损检测,2001,24(1):29~31.
    [51] 任吉林,宋凯,唐继红,等. 航空铁磁构件磁记忆检测技术的应用[J]. 航空制造技术,2005,1:80~83.
    [52] 耿荣生. 磁记忆检测技术在飞机结构件早期损伤监测的应用前景[J]. 无损检测,2004,26(7):349~351.
    [53] 张亦良,徐学东,葛森. 高压气瓶工艺残余应力测试和分析[J]. 实验力学,2004,19(2):194~199.
    [54] 梁志芳. 焊接裂纹的金属磁记忆特征研究[D]. 天津:天津大学,2005.
    [56] 梁志芳,李午申,王迎娜. 金属磁记忆信号的零点特征[J]. 天津大学学报,2006,39(7):847~850.
    [57] Chen W J. Micro-magnetic studies of small ferromagnetic particles using finite element method[D]. San Diego:University of California,1992.
    [58] 李国栋. 当代磁学[M]. 合肥:中国科学技术大学出版社,1999.
    [59] 蒋奇. 管道缺陷漏磁检测量化技术及其应用研究[D]. 天津:天津大学,2002.
    [60] 哈宽富. 断裂物理基础. 北京:科学出版社,2000.
    [61] Brown W F. Magnetoelastic interactions[M]. New York:Springer-Verlag,1966.
    [62] Pao Y H,Yeh C S. A linear theory for soft ferromagnetic elastic solids[J]. International journal of engineering science,1973,11(4):415~436.
    [63] Maugin G A,Pouqet J. A continuum approach to magnon-phonon couplings[J]. International journal of engineering science,1981,19(4):479~493.
    [64] Zhou Y H,Zheng X J. A theoretical model of magnetoelastic buckling for soft ferromagnetic thin plates[J]. Acta Mechanics Sinica,1996,12(3):213~224.
    [65] 秦飞,闫冬梅. 弹性半平面问题的变形扰动磁场[J]. 北京工业大学学报,2006,32(4):295~300.
    [66] 梁伟,沈亚鹏,方岱宁. 软铁磁材料平面裂纹问题的耦合场[J]. 力学学报,2001,33(6):758~766.
    [67] 梁伟. 软铁磁性材料的裂纹问题和 SAW 传感器的声传播研究[D]. 西安:西安交通大学,2000.
    [68] 周又和,郑晓静.电磁固体结构力学[M]. 北京:科学出版社,1999.
    [69] Chen Q Z,Chu W Y,Wang Y B. TEM observations of nucleation and bluntness of nano-cracks in thin crystals of 310 stainless steel[J]. Acta metallurgica materialia,1995,43(12):4371~4376.
    [70] 邸新杰. 焊接裂纹金属磁记忆漏磁场特性的研究[D]. 天津 :天津大学,2004.
    [71] Stankovic,Alieva,Bastiaans. Time-frequency signal analysis based on the windowed fractional Fourier transform[J]. Signal Processing,2003,83(11):2459~2468.
    [72] Grossman A. Reading and understanding continuous wavelet transform[C]. Process First International Conference on Wavelet,Springer-Verlag,1989:1~14.
    [72] Zeng P. High-accuracy formula for discrete calculation of Fourier transform[J]. Applied Mathematics and Computation,1999,106(3):117~140.
    [73] 薛年喜. MATLAB在数字信号处理中的应用[M]. 北京:清华大学出版社,2003.
    [74] 彭玉华. 小波变换与工程应用[M]. 北京:科学出版社,1999.
    [75] 成礼智, 王红霞, 罗永. 小波的理论与应用[M]. 北京:科学出版社,2004.
    [76] 陈基明. 小波分析基础[M]. 上海:上海大学出版社,2002.
    [77] Jin J H. Feature extraction of waveform signals for stamping progress monitoring and fault diagnosis[D]. Michigan:The University of Michigan,1999.
    [78] Mallat S G. A theory for multi-resolution signal decomposition: the wavelet representation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989,11(7):1876~1885.
    [79] Mukhopadhyay S,Srivastava G P. Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform[J]. NDT&E International,2000,33:57~65.
    [80] George L,Anthony J M. Demonstration of new method for magnetic flux measurement in the interior of magnetic material[J]. Sensors and actuators,2003,106:104~107.
    [81] 应怀樵. 波形和频谱分析与随机数据处理[M]. 北京:中国铁道出版社,1983.
    [82] 张东来. 基于小波理论的钢丝绳断丝定量分析[D].哈尔滨:哈尔滨工业大学,2000.
    [83] 王阳生,师汉民,杨叔子,等. 钢丝绳断丝定量检测的原理与实现[J]. 中国科学(A 辑),1989,9:993~1000.
    [84] 张亚梅. 油气管道的磁记忆检测技术应用及其对比性定量的初探[D].天津:天津大学,2004.
    [85] Donoho D L. De-noising by soft-thresholding,IEEE Transactions on information theory,1995,41(3):713~627.
    [86] 何岭松. 小波函数性质及其对小波分析结果的影响[J]. 振动工程学报, 2000,13(1):143~146.
    [87] 飞思科技研发中心. MATLAB6.5 辅助小波分析与应用[M]. 北京:电子工业出版社,2003.
    [88] 胡昌华,张军波. 基于 Matlab 的系统分析与设计——小波分析[M]. 西安:电子科技大学出版社,2002.
    [89] Dubov A A. Way of definition of a limiting state of metal in zones of stress concentration by a gradient of a scattering magnetic field[A]. Diagnostics of pipelines, equipment and designs using metal magnetic memory[C],Moscow:Energodiagnostika Co. Ltd,2002.
    [90] 王彬. 熵与信息[M]. 西安:西北工业大学出版社,1994.
    [91] Shannon C E. A mathematical theory of communication[J]. Bell System Technology,1948,27:379~443.
    [92] 邸新杰,李午申,白世武,等. 金属磁记忆检测信号的二维谱熵特征[J]. 焊接学报,2006,27(11):69~72.
    [93] 龙期威. 金属中的分形与复杂性[M]. 上海:上海科学技术出版社,1999.
    [94] 李水根,吴纪桃. 分形与小波[M]. 北京:科学出版社,2002.
    [95] Foroutan K,Dutilleul P,Smith D L. Advances in the implementation of the box-counting method of fractal dimension[J]. Applied Mathematics and Computation,1999,105:195~210.
    [96] Bisoi A K,Mishra J. On calculation of fractal dimension of images[J]. Patten Recognition Letters,2001,22:631~637.
    [97] Buczkowski S,Hildgen P,Cartilier L. Measurements of fractal dimension by box-counting: a critical analysis of data scatter[J]. Physica A,1998,252:23~34.
    [98] 蒋延耀,李庆华,杨景华. 关联维数的并行求解算法[J]. 计算机科学,2004,31(7):169~170.
    [99] 秦前清,杨宗凯. 实用小波分析[M]. 西安:西安电子科技大学出版社,1995.
    [100] Wang W J, Mcfadden P D. Application of orthogonal wavelets to early gear detection[J]. Mechanical system and signal processing,1995,9(5):497~507.
    [101] Lin J,Qu L S. Feature extraction based on morlet wavelet and its application formechanical fault diagnosis[J]. Journal of sound and vibration,2000,234(1):135~148.
    [102] Li W S,Di X J,Bai S W,et al. Feature analysis of metal magnetic memory signal for welding crack: based on wavelet energy spectrum[J]. Insight,2006,48(7):426~429.
    [103] 邸新杰,李午申,严春妍,等. 焊接裂纹金属磁记忆信号的特征提取与应用[J]. 焊接学报,2006,27(2):19~22.
    [104] 严春妍. 焊接裂纹的金属磁记忆信号特征判据的研究[D]. 天津:天津大学,2005.
    [105] 胡阳,康宜华,杨叔子,等. 钢丝绳无损检测中的一些算法——信号的预处理和特征提取[J]. 无损检测,2000,22(11):483~488.
    [106] 邸新杰,李午申,黄炳炎,等. 基于微分方法的焊接裂纹金属磁记忆特征研究[J]. 焊接技术,2006,35(4):14~15.
    [107] 邸新杰,李午申,白世武,等. 焊接裂纹的金属磁记忆定量化评价研究[J]. 材料工程,2006,7:56~60.
    [108] Forster F. New findings in the field of nondestructive magnetic leakage field inspection[J]. NDT International,1986,19:657~673.
    [109] 蒋宗礼. 人工神经网络导论[M]. 北京:高等教育出版社,2001.
    [110] 闻新、周露、王丹力等. MATLAB 神经网络应用设计[M]. 北京:科学出版社,2001.
    [111] 施少敏 ,马彦恒,陈建泗. 基于BP神经网络的数字识别方法[J]. 兵工自动化,2006,25(10):40~41.
    [112] Neural network Toolbox. MathWorks,2004.
    [113] 从爽. 面向 Matlab 工具箱的神经网络理论与应用[M]. 合肥:中国科学技术大学出版社,1998.
    [114] 邸新杰,李午申,刘方明,等. 基于小波包能量的焊接裂纹金属磁记忆检测方法[J]. 兵器材料科学与工程,2006,29(4):105~108.
    [115] 李华飚,毕宗睿,李水根. Visual Basic 数据库编程[M]. 北京:人民邮电出版社,2004.
    [116] 刘新民,蔡琼,白康生. Visual Basic 6.0 程序设计[M]. 北京:清华大学出版社,2004.
    [117] 季海娟. Visual Basic 6.0 基础教程[M]. 北京:清华大学出版社,2005.
    [118] 卢秋蓝. VB 与 Matlab 混合编程的研究[J]. 计算机仿真,2003,20(12):115~117.
    [119] 王跃强,王纪龙,王云才. VB 程序中实现调用 MATLAB 的方法[J]. 计算机应用,2001,21(2):95-96.
    [120] 陈耀东. VB 应用程序与 Matlab 接口技术的实现[J]. 新余高专学报,2004, 9(3):11-13.
    [121] 王颍,胡宗军. ActiveX 从 VB6.0 中调用 Matlab 的实现方法[J]. 机电工程, 1999(5) :172-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700