乳酸菌富集钙及发酵超微粉碎猪骨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物在生长繁殖过程中,不断进行着能量和物质的交换,其中金属离子既是生长所需的生长因子,也可能是生长干扰因素,尽管单个菌体吸收的金属量仅占菌体干物质的0.5%~1.0%左右,但是微生物繁殖量大,速度快,而且可以氧化还原金属的价态,通过自身代谢的高分子物质结合金属,利用这种特性,工业上首先在污水处理上出现了利用微生物降解重金属,进而在食品领域也出现了利用菌体富集人体所需的离子态金属元素,改变如铁、锌、硒等微量元素的化合态形式,据报道其更利于吸收和利用,而且食用安全性也提高了。
     根据查新现有的利用食品微生物富集金属的研究,创新采用乳酸菌采研究微生物富集钙,了解金属元素与微生物相互作用中的因素影响机制,掌握金属元素是如何进入微生物和富集量的大小及分布,不仅为开发利用微生物富集人体所需金属元素生产营养强化食品提供一定的理论参考,也为开发利用过剩、低附加值的畜骨生产补钙新型营养食品提供科学的基础理论和数据;根据目前市场上现有的产品特点、中国人饮食习惯中缺乏吸收性好的钙源的现状和钙吸收利用的相关影响因素,设计研究含活性乳酸菌的发酵超微粉碎骨粉咀嚼片,作为保健食品提供高质量的补钙天然食品。
     实验采用六种乳酸菌对微生物富集金属元素的机制和影响因素进行了实验,对富集钙量与菌株差异、生长培养时间、钙离子浓度的关系进行了研究,在本研究中创新根据生长曲线反映的个体增殖期(对数期)和物质代谢累积期(稳定期)来研究不同生长时段与钙离子富集量的关系研究方法,从而更深入地认识钙离子在整个菌体生长周期中富集的变化规律,推测菌体内外对钙离子的富集能力;通过对菌体破碎分离出细胞不溶成分和可溶成分,分别测定钙富集量,进一步验证乳酸菌与金属离子之间作用的关系;实验还对高浓度钙离子溶液是否影响乳酸菌生长代谢进行实验发现乳酸菌属中多数菌株之间的钙富集量无显著性差异;采用基础实验中获得的适宜菌株对超微粉碎骨粉发酵,对骨粉中钙和蛋白质的变化情况进行测定,优化发酵工艺参数;以生产含活菌体补钙食品为标准,研究真空干燥和制片工序的工艺,并进行了风味调试。最后对产品的理化特性和微生物指标进行了评定。
     实验发现同属的乳酸菌除LB.1钙富集量明显较低以外,其他菌株的钙富集量无显著性差异;富集钙的高峰期出现在对数期,占整个生长周期富集量的80%,菌体最高富集钙量达1.4μg/mg;微生物富集钙量的增加幅度随钙离子浓度的增加逐渐减小;乳酸菌富集钙部位主要在细胞膜上。根据实验结果推测钙的富集与菌体细胞的协同转运吸收机制和膜成分存在相关性,是金属离子富集研究的重要方面。
Our study can be separated into two parts, one is the basic research on lactic acid bacteria' bio-accumulating Calcium, the other is the applicable study on Super-microsmashing Hogjxme Particles fermented by the lactobacillus. The first one can supply the fundamental data on the interaction of lactobacillus growing in the Calcium-adding culture medium to the last one, which is our design of producing the fermented bone food with the lactobacillus, which would be more efficient for persons to digest and absorb Calcium than non-fermented bone food or pure organic Calcium synthesized by chemical industry. The experiments in the basic research mainly concern about selecting species of lactic acid bacteria (LAB);analyzing the factors influencing the amount of Calcium absorbed (ACA) by the LAB, which include ACA difference due to species , culturing time arid Calcium concentration; detecting the Calcium distributed site in the cell and whether the lactobacillus is restrained by high Calcium concentration or not With the results got from the basic research ,we will choose the right species of lactobacillus to ferment the super-microsmashing hog-bone particles, through the experiments on fermentation, preferable techniques and recipes would be found ,which include the fermenting parameters which concern the fermentation time and temperature, the culture compositions, the ratio of bone particles to the culture, becasue the fermentation products designed by us should have not only abundant Calcium but lactobacillus, the experiments also concentrate on the techniques to protect the livability of lactobacillus after fermentation. The final work deals with the technology of producing the compound pill with bone Ca and active lactobacillus.
    
    
    
    The results got from the basic research on factors influencing the amount of Calcium in the cells(ACC),determined by atom absorption spectrophotometer, indicate that: after 30hrs cultured with 1.2mgCa2+/ml MRS ,there is significant difference(p<0.05) in ACC between LB.l and other three species of LAB ,the highest ACC occurs in group LB.4(Ca 1.023 u g/mg Cell Weight); the main period for the LAB to accumulate the Calcium comes during logarithmic growth phase of microorganism, in which ACC adds to 80% of the whole period of culturing; the increase tendency of ACC by the increase of Ca2 Concentration doesn't appear linear ,and the slope decreasing till zero; the distribution of 41% ACC of cell binding Ca is in cell wall, 59% in the rest (cytoplasma etc.) , viewed by dry cell, the highest concentration of Ca occurs in cell wall;
    Based on former study, we choose LB.4 to be the inoculated species of LBA to ferment superjnicrosmashing hog-bone(SMHB), during the fermentation, the diameter of SMHB and the ratio of amount of SMHB to culture volume significantly affect the Ca2 amount ionized from bone, the preferable fermentation parameter is: SMHB(<4u m) 45g/100ml, LB.4 2%, 36hrs at 42C. With automatic amino acid analysis eqiripment(BECKMAN), there is 63% protein hi SMHB hydrolyzed by fermentation, creating two functional amino acids: taurine and omitbine ; by viewing the microscopic SMHB with electron microscopy , the decomposition of SMHB is obvious and verifies the effect of fermentation to ionize Ca and hydrolyzes the macromolecule substrates. The final fermented product with 600mg weight comprising: Calcium 28mg, protein 6Qmg>amino acids 72mg, the active bacteria amount above 8.8 X106 cfu/g
引文
1. Kot-E;Furmanov-S;Bezkorovainy-A Accumulation of iron in lactic acid bacteria and bifidobacteria.Journal-of-Food-Science.1995,60:3,547-550;14ref.
    2. Birch-L;Bachofen-R Complexing agents from microorganisms;Experientia.1990,46:8,827-834;116ref.
    3. Wong-PK;So-CM Copper accumulation by a strain of Pseudomonas putida.Microbios.1993,73:295,113-121;16ref.
    4. Baillet-F;Magnin-JP;Cheruy-A;Ozil-P Chromium precipitation by the acidopHilic bacterium Thiobacillus ferrooxidans.Biotechnology-Letters.1998,20:1,95-99;20ref.
    5. Zhou-JL Zn biosorption by Rhizopus arrhizus and other fungi.Applied-Microbiology-and-Biotechnology.1999,51:5,686-693;19ref.
    6. Cha,-J.S.;Cooksey,-D.A.Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon.AoolEnviron-Microbiol.Washington,D.C.:American Society for Microbiology.May 1993.v.59(5)p.1671-1674.
    7. Moeljopawiro,-S.;Gordon,-D.T.Bioavailability of iron in fermented soybeans.;Fields,-M.L.J-Food-Sci.Chicago,Ill.:Institute of Food technologists.Jan/Feb 1987.v.52(1)p.102-105.Charts.
    8.徐尔尼等 食用菌对Fe、Zn、Se的富集研究 食品科学 1999,11:44-46
    9.李洪军等 酵母对无机锌的富集及其影响因素的研究 食品与发酵工业Vol.24 No.4
    10.董文彦等 超微颗粒在大鼠体内的吸收和利用 营养学报 1998,20:1,31-36
    11. Wasserman The influence of amino acids and other organic compounds on the gastrointestinal absorption of Calcium and Strontium in the rat.J.Nutr,59,371-83
    12.于守洋《中国保健食品的进展》人民卫生出版社 2001.01 209-213
    13. Ingeborg M Dietary Phosphate Stimulates Intesinal Lactohacilli and Decreases the Severity of a Salmonella Infection in Rats Biochemical and Molecular Action of Nutrients 1998.11,607-611
    14.张柏林 乳酸菌及其产品:促进人体健康的功能性成分21世纪中国食品与农业科学技术讨论会论文集 198-210
    15.蒋挺大《胶原蛋白》化学工业出版社 北京 2001.01:16
    16.朱宏利 & E.T.Premnzic微生物对金属的作用上海环境科学 1988 Vol.7 No.5
    17.驹形和男[日]《微生物化学分类的实验方法》贵州人民出版社
    
    
    18. G.M.F.Rming Charactedsfic of bone particles from various poultry meant Products.Poultry Science,1979,58:1001
    19.林亚华 鲜骨资源在儿童食品中的开发和利用 食品工业科技,1988,1:41
    20. Mykkanen,H.M Enhanced absorption of calcium by casein phosphopoptides in rachitic and normal chicks.J.Nutr,110,2141-48
    21.片剂工艺处方2500例汇编 何裕如 广东省制药工业公司情报站 1987
    22. A.Bons Journal of Food Science 1998,63:1
    23.A.L.伦宁格(美) 吸收光谱[美]生物化学 北京:科学出版社 1981 p72
    24.杨桂平 论述骨味食品的开发[J]中国畜产与食品 1997(3) pp137-138
    25.陈世和《微生物生理学原理》同济大学出版社 1992
    26. Horwitz W.Official Method of Analysis of the Association of Analytical Chemists.12th ed,Washington.D.C;AOAC Inc,1985.857
    27.李季伦《微生物生理学》北京农业大学出版社 1993
    28.黄占旺 固态活性乳酸菌制剂制备工艺研究 江西农业大学学报 1997 Vol.19 No.3
    29.童华荣 陈宗道《食品感官分析》西南农业大学食品科学院 1995
    30.盖世双歧牌双歧钙产品配方及依据(内参)
    31.唐翔宇 水生生态系统中的微生物—金属相互作用环境科学研究 1998.3
    32.唐丹玲;乳酸菌的筛选和发酵产物初测 微生物学通报1995,22(1) p.25-28
    33. Ford T.Microbial transport iof toxic metals:Environ metal Microbiol.New York:1992,83-101
    34. Gilmour C.:Metcury methylation in aquatic systems affected by acid deposition Pollut,1991,71:131
    35. Challenger F.Biological Methylzafion.Chem Rev,1945,36:315
    36. Thmman E.Organic geochemistry of natural waters:Nijhoff/Junk,1985
    37. Ryan D..toxic metals in aquatic ecosystems:Environ Health Perspect,1995,103:25
    38.池肇春;《钙磷代谢与临床》,上海,上海科学技术出版社,1986
    39.何佳;食用菌富钙的研究 食用菌 Vol.20,No.6,1998
    40.高宪枫;食品与发酵工业 论钙的营养与强化 1999,25(4)
    41.荫士安;市售商品补钙制剂的补钙效果观察 食品与发酵工业 1996,(6) p.22-29
    42.小泽修,《日本食品科学》,1991,9:33-38
    43.迁启介;《食品工业》(日本),1993,7:50-56
    44.陈蓓 骨粉钙的吸收利用研究及其强化食品的人群效应观察 1988.6南京医学院硕士论文
    45.杨洁彬:《乳酸菌—生物学基础及应用》,北京,中国轻工业出版社,1996
    46.郑建仙,《功能性食品》,北京,中国轻工业出版社,1999(2) 326:337
    
    
    47. Ayebo A.D.,Effect of Ingestion Lactobacillus Acidophilus Milk upon Fecal Flora and Enzyme activity in Human,Milchwissenschaft,1980,35:730
    48. Beck C:Beneficial Effects of Administration of Lactobacillus Acidophilus in Diarrheal and other Intestinal Disorders,Amer.J.Gastroeterol,1961,35:522-530
    49. Drasar B.s.:Intestinal Bacteria and Cancer,Amer.J.Clin.Nutr.1972,25:1399
    50. Gilliland S.E:Health and Nutritional Benefit from Lactic Acid Bacteria,FEMS Microbiol.Reviews.1990,87:175
    51. Lin M.Y.:Influence of a Meal and Additional Lactose,Amer.J.Clin.Nutr.,1991,53:1253-1258
    52. Pearce J.E.,and Hamilton J.R:Contralled trial of Orally Administered Lactobacilli in Acute Infantile Diarrhea,J.Pediat,1974,84:261
    53. Sanders M.Lactic Acid Bacteria as Promoters of Human Health,Champan & Hall,1994,P295
    54. Stiles M.:Bio-preservation by lactic acid bacteria,Antonie van Leeuwenhoek,1996,70:331
    55. Stamer,J.R.:The Lactic Acid Bacteria:Microbes of Diversity,Food Technol.,60,1976
    56. Vanos,V.et al.:Rapid routine Method for the Detection of Lactic Acid Bacteria among Competitive Flora,Food Microbiol.,3:223,1986
    57. Man,et.al.:A medium for the Cultivation of Lactobacilli,J,Appl.Bact.,23(1):130,1960
    58. Readdy,M.S.et al.:Agar Medium for Differential Enumeration of Lactic Strep.,Appl.Microbiol.,24:947,1972
    59.吕加平 乳酸菌增菌培养基的优化设计 中国乳品工业 1999,27(3):13
    60.美国公职分析家协会(AOAC).分析方法手册.北京:1986,617
    61. Mortensen L.:Bioavailablity of Calcium Supplements and the Effect of Vitamin D.Amer J.Clin Nutr,1996,63:354
    62. C K M Tripathi;Production of calcium gluconate by fermentation Indian Journal of Experimental Biology Vol.37,no.7,1999
    63.郭茂祥 葡萄糖酸钙的制备 化学世界 Vol.6,1989.253-255
    64.石卫东 强骨胶囊治疗老年肾虚型骨质疏松症临床与实验研究 河南中医学院硕士论文 1997.4
    65.齐越峰 补骨汤防治老年去睾大鼠骨质疏松症的实验研究 辽宁中医学院硕士论文 1998.6
    66.马刚 猪骨形成蛋白与羟基磷酸钙成骨作用的研究 首都医学院硕士论文 1991.10
    67. Adewusi SRA;The effect of processing on total organic acids content and mineral availability of simulated cassava-vegetable diets Plant Foods for Human Nutrition Vol.53,No.4,1999
    
    
    68. Usha Antony;Antinutrient reduction and enhancement in protein,starch,and mineral availability in fermented flour of finger millet Journal of Agricultural & Food Chemistry Vol.46,No.7,1998
    69. Lombardi Boccia G;Dialysable,soluble and fermentable calcium from beans (Phaseolus vulgaris L.) as model for in vitro assessment of the potential calicium availability.Food Chemistry Vol.61,No.1-2,1998
    70. Heyman M;Effect of lactic acid bacteria on diarrheal diseases.Journal of the American College of Nutrition.Vol.19,No.2,2000
    71. Ghanem KZ.;Calcium bioavailability of selected Egyptian foods with emphasis on theimpact of fermentation and germination International Journal of Food Sciences & Nutrition Vol.50,No.5,1999
    72. Anshu Sharma;Effect of fermentation with whey on the HCl extractability of minerals from rice-dehulled blackgram blends.Journal of Agricultural & Food Chemistry Vol.45,No.6,1997
    73. Watanabe O.;Increased intestinal calcium absorption from the ingestion of a phosphorylated guar gum hydrolysate independent of cecal fermentation in rats Bioscience,Biotechnology,and Biochemistry Vol.64,No.3,2000 74.李少英;乳酸菌发酵骨泥的研究 内蒙古农牧学院学报 Vol.19,No.3,1998
    Lopez HW.;Strains of lactic acid bacteria isolated from sour doμghs degrade phyticacid and improve calcium and magnesium solubility from whole wheat flour;Journal of Agricultural & Food Chemistry,Vol.48,No.6,2000
    75.傅哓超 食品与发酵工业,1992(4):35-43
    76.唐涌濂 微生物学通报,1996(5):272
    77.关岳;蔡庆 乳酸发酵液预处理方法的研究 工业微生物 Vol.19,No.5,1989
    78.马杰 酸乳中乳酸菌的分离及其发酵性能测试 河南科学 Vol.14,No.4,1996
    79. Chakraborty P;Kinetics of lactic acid production by Lactobacillus delbrueckii and L.bulgaricus in glucose and whey media.Journal of Food Science and Technology Mysore Vol.36,No.3,1999.
    80.吕加平;发酵乳品中乳酸菌生物量测定方法的研究 肉品卫生 1997,(2)p.3-7
    81.近其荣等;《有机酸发酵工艺学》,北京,中国轻工业出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700