铜箔力学性能的尺寸效应及微拉深成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属箔板在电子工业、微机电系统、医疗以及新能源领域中的应用日渐广泛。塑性微成形技术以其高效率、高质量和低成本等优点成为微型零件批量化生产的首选。然而,金属箔板的力学性能和断裂行为都与宏观尺寸的板材有着很大的区别,目前这方面的研究工作不多,这制约了金属箔板微成形技术的发展。因此,研究金属箔板在塑性变形过程中产生的尺寸效应十分必要。
     本文以纯铜箔和黄铜箔为实验材料,通过对不同厚度和晶粒尺寸的铜箔试样进行单向拉伸实验,研究箔板的屈服强度、抗拉强度和延伸率等参数的尺寸效应。为了提高拉伸试验的应变测量精度,研制了基于图像测量技术的非接触式视频引伸计,建立了可靠的适用于金属箔板的拉伸实验方法。
     拉伸实验结果表明:试样宽度对铜箔试样力学性能的影响不大,屈服强度的大小同时受到厚度和晶粒尺寸的影响,但与其没有明显的比例关系;其变化规律既不同于金属薄板的“越小越弱”,也与金属薄膜的“越小越强”有区别,表现出复杂的尺寸效应。从位错理论出发分析了板材屈服强度尺寸效应的机理:表面层晶粒的流动应力的下降造成了屈服强度“越小越弱”的现象,而“越小越强”则是应变梯度强化作用的体现,其影响随着厚度的减小快速增强。由于箔板的厚度介于薄板和薄膜之间,因此屈服强度对厚度的变化很敏感,其变化规律也表现为两者之间的“过渡”。从实验结果来看,两种铜箔的实验规律几乎一致:厚度约为特征长度的10倍时是个临界点,对于铜箔,若厚度大于40μm,屈服强度随厚度的变化主要表现为“越小越弱”,而小于40μm则会表现为“越小越强”。综合表面层晶粒和应变梯度的影响,以Hall-Petch公式为基础建立了包含厚度和表层晶粒比例的屈服强度关系式,此关系式可以较好地描述箔板屈服强度的尺寸效应。
     铜箔的应变硬化指数与晶粒尺寸和厚度成正比。抗拉强度与厚度成正比,与晶粒尺寸成反比,但在厚度晶粒尺寸比很小时与厚度成正比,而在t/d很大时成反比关系。延伸率随着晶粒尺寸的增长而增大,且随着厚度的减小急剧下降,这完全不同于金属薄板的变化规律。采用球体孔洞模型和基于应变梯度的本构方程对孔洞的长大率进行了计算,结果表明应变梯度对孔洞的长大有明显的抑制作用。拉伸试样的断口分析揭示了铜箔延伸率的尺寸效应机理:在应变梯度的影响下,厚度小于40μm的铜箔的断裂机制是沿晶断裂,因此延伸率较低;而厚度较大的铜箔的断裂机制是韧窝-微孔聚集型断裂,变形中产生的孔洞也延缓了断裂的发生,使得延伸率较高。
     使用有限元软件DYNAFORM进行了不同条件的微拉深成形模拟。设计加工了多套微拉深模具,采用不同条件的坯料进行了微拉深成形实验。结果表明:随着拉深件直径的减小,无量纲拉深力和极限拉深比都随之降低,但与此同时,摩擦力的影响却逐渐增大,使直径1mm拉深件的极限拉深比在坯料晶粒尺寸较大时出现了与延伸率成反比的现象;微拉深件的表面质量主要取决于晶粒尺寸。微拉深成形的尺寸效应主要是由铜箔力学性能的改变造成的,摩擦力对其也有重要的影响。最后,采用落料拉深复合模,成形出了直径1mm到8mm的,表面质量良好的拉深件。
In recent years, metal foil is wide applied in electronics industry, micro electromechanical systems, medical and new energy fields. Plastic microforming technology becomes the first choice of mass production of miniature parts for its advantages including high efficiency, high quality and low cost. However, the mechanical properties and fracture mechanism of metal foil differ significantly from sheet in macroscopic size, and the current research in this area is infrequent, which limits the development of metal foil microforming technology. Therefore, the study of size effects of metal foil during plastic deformation is necessary.
     Tensile tests of pure copper foil and brass foil with various thickness and grain size were performed at room temperature to investigate the size effects on yield strength, tensile strength and elongation. A set of non-contact video extensometer based on image measuring technique was developed to improve the strain measurement accuracy of the tensile test. A reliable tensile test method for metal foil was established.
     The results showed that the influence of the sample width on the mechanical properties of copper foil is inconspicuous. The yield strength affected by the thickness and grain size, but with no obvious proportional relations between them, its variation was different from the "smaller is weaker" of the metal sheet, but also from the "smaller is stronger" of the metal film, presented the complicated size effect. The size effect mechanism of yield strength was analyzed from the dislocation theory, the "smaller is weaker" phenomenon of yield strength was caused by the surface layer, and the "smaller is stronger" was the result of the strengthening effect of strain gradient, which rapidly increased with decreasing thickness. As the thickness of foil was intervenient between sheet and film, so the yield strength was sensitive to the change of thickness, which also showed the variation of "transition". The experimental rules of two kinds of copper foil were almost identical: the value about 10 times of the characteristic length was a critical point for the thickness. For the copper foil, the variation of yield strength would exhibit the "smaller is weaker" if the thickness was greater than 40μm, but otherwise it showed as "smaller is stronger". Integrated the influences of the surface layer and strain gradient, a modified equation of yield strength contained the thickness and the ratio of surface layer grain based on Hall-Petch equation was established. This relationship can describe the yield strength size effect of foil properly.
     The strain hardening exponent of copper foil was proportional to the grain size and thickness. The tensile strength was proportional to the thickness, and inversely proportional to the grain size. Elongation increased with the increasing grain size, and decreased sharply with the decreasing thickness. The variation of copper foil in elongation was entirely different from sheet metal. The calculated results based on spherical cavity model and strain gradient constitutive equation showed that the growing rate of hole is significantly restrained by the strain gradient. The fracture surface analysis of tensile specimen revealed the size effect mechanism of elongation. The elongation of copper foil which thickness less than 40μm was lower because its fracture mechanics was intergranual crack. As the fracture mechanics was dimple fracture, and the holes postponed the fracture, the elongation of the thicker copper foil was well.
     The simulation of micro deep drawing was performed by finite element software DYNAFORM. Multiple sets of micro deep drawing dies were designed and fabricated. Micro deep drawing experiment with billets under different conditions was carried out to study the size effects in microforming. The results showed that the nondimensional drawing load and limit drawing ratio were decreased with the reduction in the size of deep drawing parts, but at the same time, the impact of friction escalated. Influenced by the increasing force of friction, the LDR of 1mm drawing parts with larger grain size was inversely proportional to the elongation. The surface quality of the micro deep drawing parts depended on the grain size. Finally, drawing parts of 1mm to 8mm in diameter with good surface quality were drawn by blanking-deep drawing compound dies.
引文
1王立鼎,刘冲.微机电系统科学与发展趋势.大连理工大学学报. 2000, 40(5): 505~508
    2朱蹇彬.微型机械加工技术发展现状和趋势及其关键技术.精密制造与自动化. 2002, (2): 9~11
    3章吉良,杨春生.微机电系统极其相关技术.上海交通大学出版社, 2001: 1~5
    4 M. Geiger, M. Merklein, M. Tolazzi. Metal forming insures innovation and future in Europe. Proceedings of the 8th ICTP. Verona, Italy, 2005:25~54
    5 J. Jeswiet, M. Geiger, U. Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, S. Bruschi. Metal forming progress since 2000. CIRP Journal of Manufacture Science and Technology. 2008, 1:2~17
    6 M. Geiger, U. Engel. Microforming—a challenge to the plasticity research community—addressed to the 40th anniversary of the JSTP. Journal of the JSTP. 2002-3,43(494):5~7
    7 U. Engel, R. Eckstein. Materials microforming—from basic research to its realization. Processing Technology. 2002, 125-126:35~44
    8 N. Tiesler, U. Engel, M. Geiger. Forming of microparts-effects of miniaturation on friction. Proc.6th ICTP. 1999:889~894
    9 M. Geiger, M. Kleiner, R. Eckstein. Microforming. Annals of the CIRP. 2001, 50(2): 445~462
    10单德彬,郭斌,王春举等.微塑性成形技术的研究进展.材料科学与工艺. 2004, 12(1):449~453
    11张泰华.纳米硬度计在MEMS力学检测中的应用.微纳电子技术. 2003, 7(8):212~214
    12赵则祥,王海容,蒋庄德.纳米压入法MEMS材料力学性能测量与评定标准化的初步设想.机械强度.2001, 23(4): 456~459
    13 O. Durand-Drouhin, A.E. Santana, A. Karimi. Mechanical properties and failure modes of TiAl(Si)N single and multilayer thin films. Surface and Coatings Technology. 2003, 163-164:260~266
    14 R. Saha, W.D. Nix. Effects of the substrate on the determination of thin filmmechanical properties by Nanoindentation. Acta Mater. 2002, 50:23~38
    15 S. Simunkova, O. Blahova, I. Stepanek. Mechanical properties of thin film-substrate systems. Journal of Materials Processing Technology. 2003, 133: 189~194
    16袁林.微纳米尺度下材料变形行为的跨尺度模拟及实验研究.哈尔滨工业大学工学博士论文. 2006:122~152
    17 J.F. Michel, P. Picart. Size effects on the constitutive behaviour for brass in sheet metal forming. Journal of Materials Processing Technolgoy. 2003, 141(3): 439~446
    18 L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens. Size effects in the processing of thin metal sheets. Journal of Materials Processing Technology. 2001, 115(1): 44~48
    19 J.S. Stolken, A.G. Evans. A microbend test method for measuring the plasticity length scale. Acta Mater, 1998, 46: 5109~5115
    20黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG理论.机械强度. 1999, 21(2):81~87
    21黄克智,邱信明,姜汉卿.应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论.机械强度. 1999, 21(3):161~165
    22 W.N. Sharpe, K.T. Tumer, R.L. Edwards. Polysilicon tensile testing with electrostatic gripping, microelectromechanical structures for materials research. Materials Research Society. 1998, 518:191~196
    23 W.N. Sharpe, S. Brown, G.C. Johnson. Round-robin tests of modulus and strength of polysilicon, microelectromechanical structures for materials research. Materials Research Society. 1998, 518:57~65
    24 E. Mazza, J. Dual. Mechanical behaviorμm-sized single crystal silicon structure with sharp notches. Journal of the Mechanics and Physics of Solids. 1999, 47:1795~1821
    25 H.D. Espinosa, B.C. Prorok, M. Fischer. A methodology for determining mechanical properties freestanding thin films and MEMS materials. Journal of the Mechanics and Physics of Solids. 2003, 51:47~67
    26 M.A. Haque, M.T.A Saif. Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension. Scripta Materialia. 2002, 47: 863~867
    27 H. Ogawa, O. Tabato, J. Sakata, Y. Taga. Specimen size effect on tension strength of surface micromachined polycrystalline silicon thin film. J. ofMicroelectronmechanical System. 1998, 7(1):106~113
    28 Y. Saotome, K. Yasuda and H. Kaga. Microdeep drawability of very thin sheet steels. Journal of Materials Processing Technology. 2001, 113: 641~647
    29丁建宁,孟水刚,温诗铸.微结构和尺寸约束下多晶硅微机械构件拉伸强度的尺寸效应.科学通报. 2001, 5(46):436~440
    30张泰华,杨业敏,赵亚溥. MEMS材料力学性能的测试技术.力学进展. 2002, 4(32): 545~562
    31 T.A. Kals, R. Eckstein. Miniaturization in sheet metal forming. Journal of Materials Processing Technology. 2000, 103: 95~101
    32 R. Kals, F. Vollertsen, M. Geiger. Scaling effects in sheet metal forming. Proceedings of the 4th SheMet. 1996:65~75
    33 M. Geiger, R. Eckstein. Microforming. Advanced Technology of Plasticity. Proceedings of the 7th ICTP. Yokohama, 2002, (1): 327~338
    34 M. Geiger, F. Vollertsen, R. Kals. Fundamentals on the manufacturing of sheet metal microparts. Annals of the CIRP. 1996, 45(2): 227~282
    35 J.F. Michel, P. Picart. Modelling the constitutive behaviour of thin metal sheet using strain gradient theory. Journal of Materials Processing Technology. 2002, 125-126: 164~169
    36 L.V. Raulea, L.E. Govaert, F.P.T. Baaijens. Grain and specimen size effects in processing metal sheets. Proceedings of the 6th ICTP. 1999: 19~24
    37 J.T. Gau, C. Principe, J. Wang. An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. Journal of Materials Processing Technology. 2007, 184: 42~46
    38 H.D. Espinosa, B.C. Prorok, B. Peng. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. Journal of the Mechanics and Physics of Solids. 2004, 52: 667~ 689
    39张广平,高岛和希,肥后矢吉.微米尺寸不锈钢的形变与疲劳行为的尺寸效应.金属学报. 2005, 41(4): 337~341
    40 G.P. Zhang, K.H. Sun, B. Zhang, J. Gong, C. Sun, Z.G. Wang. Tensile and fatigue strength of ultrathin copper films. Materials Science and Engineering: A. 2008, 483-484: 387~390
    41张滨,孙恺红,宫骏,孙超,才庆魁,张广平. 100nm厚铜薄膜的拉伸性能.材料研究学报. 2006, 20(1):29~32
    42 M.G.D. Geers, W.A.M. Brekelmans, P.J.M. Janssen. Size effects in miniaturizedpolycrystalline FCC samples strengthening versus weakening. International Journal of solids and Structures. 2006, 43:7304~7321
    43 H.J. LEE, P. Zhang, J.C. Bravman. Study on the strength and elongation of free-standing Al beams for microelectromechanical systems applications. Applied Physics Letters. 2003, 84(6):915~917
    44王春举.微塑性成形机理及精密微塑性体积成形装置研究.哈尔滨工业大学工学博士学位论文. 2007: 21~36
    45常妍妍.微型圆柱件镦粗变形规律数值模拟研究.哈尔滨工业大学工学硕士论文. 2006: 19~50
    46于君祖.微塑性体积成形中尺寸效应的研究.哈尔滨工业大学工学硕士论文. 2005: 24~54
    47郭晓琳. Zr基块体非晶合金等温变形及纳米晶化行为研究.哈尔滨工业大学工学博士学位论文. 2008: 34~95
    48汪鑫伟. C2680黄铜箔微弯曲工艺研究.哈尔滨工业大学工学硕士论文. 2008: 20~42
    49 Y. Shen, H.P. Yu, X.Y. Ruan. Simulation study on fluctuant flow stress scale effect. Journal of Zhejiang University Science A. 2006, 7: 1343~1350
    50 Y. Shen, H.P. Yu, X.Y. Ruan. Discussion and prediction on decreasing flow stress size effect. Transactions of Nonferrous Metals Society of China. 2006, 16: 132~136
    51赵亚西. H62黄铜微挤压成形及其尺寸效应研究.南京航空航天大学工学硕士学位论文. 2007: 21~38
    52李凡国.微型H62黄铜圆柱体加热镦粗实验研究.南京航空航天大学工学硕士学位论文. 2006: 18~33
    53彭林法.微/介观尺度下薄板成形建模分析与实验研究.上海交通大学工学博士学位论文. 2007: 36~111
    54 L.F. Peng, F. Liu, J. Ni, X.M. Lai. Size effect in thin sheet metal forming and its elastic-plastic constitutive model. Materials and Design. 2007, 28: 1731~1736
    55 X.M. Lai, L.F. Peng, P. Hu, S.H. Lan, J. Ni. Material behavior modeling in micro/meso-scale forming process with considering size/scale effects. Computational Materials Science. 2008, 43: 1003~1009
    56 Y. Wang, P.L. Dong, Z.Y. Xu, H. Yan, J.P. Wu, J.J. Wang. A constitutive model for thin sheet metal in micro-forming considering first order size effects.Materials and Design. 2010, 31: 1010~1014
    57李雷,谢水生,米绪军,曹建国.金属微塑性成形中的尺度效应及数值模拟技术.科技导报. 2008, 26(1):76~79
    58黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999:31~237
    59陈少华,王自强.应变梯度理论进展.力学进展.2003, 33(2):207~216
    60 N.A. Fleck, J.M. Hutchinson. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids. 1993, 41:1882~1857
    61 N.A. Fleck, J.M. Hutchinson. Strain gradient plasticity. In: Hutchinson W, Wu T Y, eds. Applied Mechanics. New York: Academic press. 1997, 33: 295~361
    62 K. Shizawa, H.M. Zbib. A thermodynamical theory of gradient elastioplasticity with dislocation density tensor I: Fundametals. Int J Plasticity. 1999, 15: 899~938
    63 W.D. Nix, H. Gao. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998, 46: 441~425
    64 H. Gao, Y. Huang, W.D. Nix, Hutchinson J W. Mechanism-based strain gradient plasticity-I.theory. J Mech Phys Solids. 1999, 47: 1239~1263
    65 Y. Huang, H. Gao, W.D. Nix, Hutchinson J W. Mechanism-based strain gradient plasticity-II.Analysis. J Mech Phys Solids. 1999, 48: 99~128
    66 E.C. Aifantis. On the microstructural of certain inelastic models. Trans ASME J Eng Mater Technol. 1984, 106: 326~330
    67 E.C. Aifantis. The physics of plastic deformation. Int J Plasticity. 1987, 3: 211~248
    68 H.B. Muhlhaus, E.C. Aifantis. The influence of microstructure-induced gradients on the localization of deformation in viscoplastic materials. Acta Mech. 1991, 89:217~231
    69 A. Acharya, J.L. Bassani. On non-local flow theories that preserve the classical structure of incremental boundary value problems. In: Micromechanics of Plasticity and Damage of Multiphase Materials. IUTAM Symposium, Paris, 1995
    70 S.H. Chen, T.C. Wang. A new hardening law for strain gradient plasticity. Acta Materialia. 2000, 48:3997~4005
    71 S.H. Chen, T.C. Wang. A new deformation theory for strain gradient effects. Int J Plasticity. 2002, 18(8):971~995
    72 S.H. Chen, T.C. Wang. Strain gradient theory with couple stress for crystallinesolids. Eur. J Mech A-Solid. 2001, 20:739~756
    73 H. Gao, Y. Huang. Taylor-based nonlocal theory of plasticity. Int J Solids Struct. 2001, 38: 2615~2637
    74郭永进.基于Taylor关系的非局部塑性理论的应用与发展.清华大学工学博士学位论文. 2000: 46~99
    75姜汉卿.应变梯度塑性理论断裂和大变形的研究.清华大学工学博士学位论文. 2000: 20~85
    76邱信明.基于细观机制的应变梯度塑性理论新发展及应用.清华大学工学博士学位论文. 2001: 28~99
    77云赓.考虑Taylor位错模型的含非经典应力矢量的应变梯度塑性理论.清华大学工学博士学位论文. 2006: 61~121
    78黄敏生,李振环,王乘,陈传尧.基体微尺度效应对弹塑性多孔洞材料本构势及孔洞长大的影响.固体力学学报. 2003, 24(2):137~147
    79 U. Engel, A. Rosochowski, S. Gei?d?rfer, L. Olejnik. Microforming and nanomaterials. Advances in Material Forming. 2007: 99~124
    80 F. Vollertsen, Z. Hu, H.S. Niehoff, C. Theiler. State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology. 2004, 151: 70~79
    81 http://www.seki-corp.co.jp/
    82 H. Justinger, G. Hirt, N. Witulski. Analysis of cup geometry and temperature conditions in the miniaturized deep drawing process. Proceedings of the 8th ICTP. Verona, Italy, 2005.
    83 R. Erhardt, F. Schepp, D. Schmoeckel. Micro forming with local part heating by laser irradiation in trasnsparent tools. Proceedings of the 7th International Conference on Sheet Metal. Bamberg, Germany, 1999: 497~505
    84 K. Manabe, T. Shimizu, H. Koyama, M. Yang, K. Ito. Validation of FE simulation based on surface roughness model in micro-deep drawing. Journal of Materials Processing Technology. 2008, 204: 89~93
    85 K. Manabe, H. Koyama, H. Nouka, M. Yang, K. Ito. Finite element analysis of micro cup drawing process using tool and blank models with surface roughness. Proceedings of the 8th ICTP. Verona, Italy, 2005
    86 T. Mori. Development of ultrafine piercing by SiC fiber punch. Journal of Manufacturing Science and Engineering. 2004, 126: 659~665
    87 B.Y. Joo, S.H. Rhim, S.I. Oh. Micro-hole fabrication by mechanical punchingprocess. Journal of Materials Processing Technology. 2005, 170: 593~601
    88 Y. Saotome, T. Okamoto. An in-situ incremental microforming system for three-dimensional shell structures of foil materials. Journal of Materials Processing Technology. 2001, 113: 636~640
    89 S. Tanaka, T. Nakamura, K. Hayakawa. Miniature incremental forming of millimeter-sized thin sheet structures. Proceedings of the 7th ICTP. Yokohama, Japan, 2002: 403~408
    90周健,王春举,单德彬,郭斌.热变形参数对5A02铝合金微型齿轮成形质量的影响.材料科学与工艺. 2006, 14(2):144~147
    91 D.B. Shan, J. Xu, C.J. Wang, B. Guo. Hybrid forging processes of micro-double gear using micro-forming technology. International Journal of Advanced Manufacturing Technology. 2009, 44: 238~243
    92曾攀,卢永进,雷丽萍,赵迎红,方刚.宏域微成形与铋系超导带材的加工.锻压技术. 2007, 32: 125~128
    93 Y.J. Lu, P. Zeng, L.P. Lei, T.M. Qu, G. Fang, J.F. Sun. Investigation on drawing process of Bi-2223/Ag wires using racetrack-type dies: simulation and experiments. Science in China Series E: Technological Sciences. 2009, 52: 2255~2262
    94申昱,于沪平,阮雪榆.微小尺度镦挤复合成形研究.塑性工程学报. 2006, 13: 58~61
    95童忠财,于沪平.微成形热挤压试验及模具设计.模具技术. 2007, 2: 17~20
    96程明,张士宏,王春举,郭晓琳,周健,单德彬.微型非晶合金齿轮微塑性成形的研究.航天制造技术. 2008, 4: 4~6
    97张敏,陆辛.电磁脉冲驱动力在微成形工艺中的试验研究.锻压技术. 2009, 34: 72~74
    98 X.H. Dong, N. Ma. A study on size effects on process design of micro deep drawing. Proceedings of the 8th ICTP. Verona, Italy, 2005
    99马宁,董湘怀.第2类尺度效应对微拉深成形的影响.塑性工程学报. 2007, 14: 115~119
    100席庆标,董湘怀.微拉深成形工艺及模具设计研究.锻压技术. 2007, 32: 57~61
    101席庆标.微拉深工艺的实验研究及计算机模拟.上海交通大学工学硕士学位论文. 2007: 29~47
    102刘会霞,李保春,杨昆,陈成,沈宗宝,王霄,周明.金属箔板激光动态微拉深成形技术.光电子·激光. 2009, 20: 363~365
    103 L.F. Peng, X.M. Lai, H.J. Lee, J.H. Song, J. Ni. Friction behavior modeling and analysis in micro/meso scale metal forming process. Materials and Design. 2010, 31: 1953~1961
    104童敏杰.电沉积法制备细晶铜的微成形性能.哈尔滨工业大学工学硕士学位论文. 2006: 36~44
    105张凯峰,丁水,雷鹍,王国峰.电沉积纳米镍薄板的超塑微拉深性能.中国机械工程. 2007, 18: 983~987
    106贾莲莲. C2680黄铜箔微圆筒拉深工艺研究.哈尔滨工业大学工学硕士学位论文. 2007: 33~41
    107王姚舟.微小型接插件冲压工艺研究.哈尔滨工业大学工学硕士学位论文. 2009: 29~47
    108徐杰,郭斌,单德彬,王春举,李明星. T2铜箔精密微冲孔工艺.纳米技术与精密工程. 2010, 8(3):263~268
    109吕威,孙杰.线阵CCD传感器在材料变形量测试中的应用.中国测试技术. 2006, 32(2):139~141
    110马满堂,李新军,吕晓东.非接触测量在板材成形应变测量中的应用.锻压技术. 2004, 29(6):70~72
    111 YS-T449-2002铜及铜合金铸造和加工制品显微组织检验方法.中华人民共和国有色金属行业标准. 2002
    112王庆有. CCD应用技术.天津大学出版社, 2000:173~175
    113哈宽富.金属力学性质的微观理论.科学出版社, 1983. 412~430
    114崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社, 1998:155~157
    115 G. Saada. Hall–Petch revisited. Materials Science and Engineering A. 2005, 400–401:146~149
    116李经天,董湘怀.微细塑性成形中第I类尺度效应的研究.中国机械工程. 2005, 16(2): 168~171
    117周丽,李守新,柯伟.应变梯度塑性理论模拟晶粒尺寸对铝多晶体强度的影响.金属学报. 2006, 42(7):781~784
    118 N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson. Strain gradient plasticity: theory and experiments. Acta Metall Mater. 1994, 42: 475~487
    119 Y.W. Yu, F. Spaepen. The yield strength of thin copper films on Kapton. Journal of Applied Physics. 2004, 95(6):2991~2997
    120中国机械工程学会锻压学会.锻压手册冲压卷.第二版.机械工业出版社, 2002: 54~380
    121宋玉泉,管志平,马品奎,宋家旺.拉伸变形应变硬化指数的理论和实验规范.金属学报. 2006, 42(7):673~680
    122方健,魏毅静,王承忠.拉伸应变硬化指数的解析测定及力学分析.塑性工程学报, 2003, 10(3):12~17
    123 GB/T5028-1999金属薄板和薄带拉伸应变硬化指数(n值)试验方法.中华人民共和国国家标准. 1999
    124邢冬梅,李鸿琦,李林安,佟景伟,王志,李毅.纳米材料杨氏模量及延伸率与微观结构的关系.天津大学学报. 2000, 33(2):265~269
    125文九巴,蕴林,杨永顺.超塑性应用技术.机械工业出版社, 2005:12~37
    126钟群鹏,赵子华.断口学.高等教育出版社, 2006:12~31
    127崔约贤,王长利.金属断口分析.哈尔滨工业大学出版社, 1998:32~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700