脉冲预电离纵向放电扩散冷却CO_2激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纵向放电的脉冲气体激光器重新受到了人们的重视,一种小型的低功率的高重复频率脉冲激光器在激光探测、精细加工和光化学等许多应用领域,有重要的应用前景。本文研究了脉冲预电离的扩散冷却CO_2激光器的运转机理,提出采用脉冲预电离技术改善纵向脉冲放电的稳定性、降低工作电压和提高电光转换效率。提出了两种新的预电离技术。第一种技术称为“纵向多段脉冲预电离“技术。在玻璃放电管的外表面紧密套上若干圆环形电极,作为预电离电极。第二种技术是“横向螺旋脉冲预电离“技术。在玻璃放电管的外表面螺旋地粘上两条相对平行的金属箔,作为预电离电极。两种技术产生的效果基本相同。和无预电离的脉冲放电相比,激光器的工作电压下降了大约20%,电光转换效率提高了大约30%。
     采用螺旋结构横向脉冲预电离技术首次研究了非自持纵向放电CO_2激光器,非自持激光器的主放电和输出功率由外加的预电离脉冲控制,激光器的可控性非常好。非自持放电使激光器的激发和电离过程分开,有利于使二者分别处于各自的最佳E/P值附近,放电的正阻抗特性使放电电路可以省去限流电阻,极大地提高激光器的实际效率。获得的最大的电光转换效率达19%。
     本文还发展了一种采用Pspice软件对脉冲预电离放电进行瞬态模拟的理论分析方法,有利于激光器放电电路的优化设计。
     最后,在前述理论和实验的基础上,提出了两种新型的脉冲预电离扩散冷却板条CO_2激光器方案,进行了可行性研究。这对进一步发展紧凑的高功率高重复频率激光器有重要意义。
In recent years, the longitudinal pulsed-discharge gas lasers with diffusive cooling have received renewed interests. A compact low power pulsed laser with high repetition rate has potential importance in laser exploration, fine mechanical processing, photochemistry and so on. In this dissertation the operation mechanism of pulsed-preionization diffusive cooling CO_2, laser is studied. Pulsed preionization technology is put forward to improve the stability of discharge, decrease the operating voltage, and enhance the electro-optical efficiency. Two novel preionization technologies are presented. One is "multi-segmented coaxial pulsed-preionization ". A number of metal cirque electrodes surround equidistantly outside the glass discharge tube, acting as preionization electrodes. Another is "helical transverse-pulsed preionization ". Two comparatively parallel copper foil strips surround helically outside the glass discharge tube, acting as preionization electrodes. The two technologies produce similar results ba
    sically. In contrast to pulsed discharge without preionization, the working voltage of the laser falls about 20% and the electro-optical efficiency is improved approximately 30%.
    Non-selfsustained longitudinal discharge CO2 laser employing helical transverse-pulsed preionization technology is investigated for the first time. The main discharge and output power are well controlled by the pre-ionization pulser. In non-selfsustained discharge the excitation and ionization processes can be controlled separately, which is useful to optimize the E/P value of the discharge. The ballast resistance can be leaved out and the maximal electro-optical efficiency reaches 19%.
    This paper also presents a theoretical analyzing method for the instantaneous simulation of pulsed-preionization discharge by using Pspice software, it is favorable
    
    
    to the optimal design of the laser discharge circuit.
    Finally, based on the theoretical and experimental studies above, we bring forward two new schemes of pulsed-preionization slab CO: laser with diffusive cooling. This has important significance on further developing compact, high power, high repetition rate pulsed CO2 laser.
引文
[1] D A Orchard and R C Hollins. A high pulse repetition rate helium-xenon laser. SPIE, 1997(3092) : 82-85
    [2] M. A. El-Osealy, T. Jitsuno, M. Nakatsuka, Y. Ohoguchi, T. Ido, K. Nakamura, and S. Horiguchi. Co-axially excited gas lasers toward vacuum ultra-violet region. Proceedings of SPIE, 2000(3889) : 774-779
    [3] A P Schwarzenbach and U W Hunziker. Industrial CO2 laser with high overall efficiency. Proc. High power CO2 laser systems and applications. SPIE, 1988(1020) : 43-48
    [4] W. H. Shiner. Sealed CO, laser opens door to new industrial uses. Industrial Lasers. Reprinted from the September 1992 issue of PHOTONICS SPECTRA.
    [5] S. Yatsiv, A. Gabay and M. A. Brastel. A CO2 laser mounted on a robot for dynamic cutting manipulations. Proc.CO2 Lasers and Applications II. SPIE, 1990(1276) : 142-150
    [6] Du K, Biesenbach J, Ehrlichmann D. Lasers for materials processing: Specifications and trends. Optical and quantum electronics, 1995( 27(12) ): 1089-1102
    [7] H. J. J. Seguin, Power scaling of diffusion-cooled lasers. Optics and laser technology, 1998(30) : 331-336
    [8] V. G. Naumov, V. M. Shashkov. Investigation of a combined discharge used to pump fast-flow lasers. Sov. J. Quantum Electron, 1977(7(11) ): 1386-1390
    [9] H. J. J. Seguin, A. K. Nam, and J. Tulip. The photoinitiated impulse-enhanced electrically excited(PIE) discharge for high-power cw laser applications. Appl. Phys. Lett, 1978(32(7) ): 418-420
    [10] C. P. Christensen. Pulsed transverse electrodeless discharge excitation of a CO2 laser. Appl. Phys. Lett., 1979(34(3) ): 211-213
    
    
    [11] H. J. J. Seguin, A. K. Nam, and J. Tulip. The photoinitiated impulse-enhanced electrically excited(PIE) discharge for high-power cw laser applications. Appl. Phys. Lett, 1978(32(7) ): 418-420
    [12] V. V. Antyukhov, A. V. ondarenko, A. F. Glova, V. S. Golubev, O. R. Kachurin, L. L. Kolelsov, E. A. Lebedev, F. V. Lebedev, Yu. F. Suslov, and V. A. Timofeev. Sov. J. Q.uanum Electron. 1981(11(10) ): 1363-1365
    [13] William H. Long, Michael J. Plummer, and Eddy A. Stappaerts. Efficient discharge pumping of an XeCl laser using a high-voltage prepulse. Appl. Phys. Lett., 1983(43(8) ): 735-737
    [14] K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi. Silent-discharge excited TEM00 2. 5kW CO2 laser. IEEE J. Quantum Electron., 1989(25(4) ):836-839
    [15] A. D. Colley, H. J. Baker and D. R. Hall. Planar waveguide, 1kW cw, carbon dioxide laser excited by a single transverse rf discharge. Appl. Phys. Lett, 1992(61(2) ): 136-138
    [16] V V Borovkov ,V VvORONIN, S L V oronov, D I Zenkov, B V Lazhintsev, V A Nor-Arevyan, V A Tananakin, G I Fedorov"highly efficient gas lasers with a three-electrode double discharge" Quantum Electronics 26(1) 39-40(1996)
    [17] J. J. Wendland, R. J. Morley, H. J. Baker, and D. R. Hall. High power mid infrared operation of the atomic xenon laser. Appl. Phys. Lett, 1998(72(12) ): 1436-1438
    [18] 万重怡,周锦文,张福敏,李振德,齐继兰,赵润乔,单焕炎.封离型CO2激光器.中国激光,1974(创刊号):21-26
    [19] Masaki Kuzumoto, ShuJi Ogawa, Masaaki Tanaka, and Shigenori. Fast Axial Flow CO2 Laser Excited by Silent Discharge. IEEE Journal of Quantum Electronics. 1990(26(6) ) : 1130-1134
    [20] A K Nam. Operational characteristics of a pulse-sustained de-excited transverse-flow cw CO2 laser of 5-kW output power. Optical Engineering, 1994(33(6) ): 1889-1893
    
    
    [21] Denis R. Hall and Howard J. Baker. Area scaling boosts CO_2-laser performance. Laser focus world, 1989(October):77-80
    [22] C. Tallman. Preionization technique for discharge lasers. SPIE. Pulse power for lasers (?). 1989(1046):2-14
    [23] G.A.Abil'siitov, E.P. Velikhov, V.S.Golubev, and F.V. Lebedev. Promising systems and methods for pumping high-power technological CO2 lasers (reiew). Sov. J. Quantum Electron., 1981(11(12)): 1535-1549
    [24] G.贝克菲等著,庄国良,褚成译.《激光等离子体原理》.上海科学技术出版社,1981
    [25] 赫光生,雷仕湛.《激光器设计基础》.第一版,新华书店上海发行所,上海科学技术出版社,1979:148-155
    [26] C. K. N. Patel. Interpretation of CO_2 optical maser experiment. Phys. Rev. Letters, 1964(12):588
    [27] A K Nath and V S Golubev. Design considerations and scaling laws for high power convective CW cooled CW CO_2 lasers. PRAMANA-journal of physics, 1998(51): 463-479
    [28] G I Kozlov and V A Kuznetsov. Soviet Journal Quantum Electron, 1985(15(3)): 362-367
    [29] F. Lebedev, A. Glova, O Kachurin, A. Napartovich and V. PisMenniy. Proc. Intense Laser Beams, SPIE, 1992(1628): 331
    [30] A. F. Hill. Uniform electrical excitation of large volume high pressure gases with application to laser technology. New York, 1977
    [31] C. O. Brown, et al. Closed cycle performance of a high-power electrical-discharge laser. Appl. Phys. Lett., 1972(21):48-52
    [32] 李家熔,王汉生.万瓦连续CO_2激光器的放电稳定性和某些特性的研究.中国激光,1992(5):333-336
    [33] V. E. Merchant. Development of a new 20-kW CO_2 laser. Laser Focus/Electron-optics, 1985(5):162-167
    
    
    [34] A. K. Nath, H. J. J. Seguin, and Verna A. Seguin. Optimization Studies of a Multikilowatt PIE CO2. IEEE Joural of Quantum Electronics, 1986(QE-22(2)): 268-274
    [35] 丘军林.1kW无氦横流连续CO_2激光器的研究.中国激光,1988(2):110-113
    [36] Adam Hilger. High power industrial CO_2, lasers. Paper presented at 5th GCL Symposium. Oxford, 1, 1984
    [37] A. Fenstermacher, et al. Electron beam initiation of large volume electrical discharges in CO_2 laser media. Bull. Amer. Phys. Soc., 1971(16(1)): 42
    [38] H. Schwede, Keming du, et al. Investigation of the spatial homogeneity of high frequency excited laser discharges. Gas Lasers-Recent Development and Future Respects. NATO ASI Series 3.1995(3(2)
    [39] Keming Du. Recent developments in CO_2 lasers. SPIE, 1997(1992)
    [40] 安承武等,轴快流CO_2激光器的气动特性研究.应用激光.1987(7(2)):54
    [41] J. G. XIN and D. R. HALL. Multipass coaxial radio-frequency discharge co2 laser. OPTICS COMMUNICATIONS, 1986(58(6)):420-422
    [42] K. M. Abramski, A. D. Colley, H. J. baaker and D. R. Hall. Power scaling of large-area transverse radio frequency discharge CO_2 lasers. Appl. Phys. Lett., 1989(54(19)):1833-1835
    [43] P. E. Jackson, H. J. Baker, and D. R. Hall. CO2 large-area discharge laser using an unstable-waveguide hybrid resonator. Appl. Phys. Lett, 1989(54(20)): 1950-1952
    [44] 周建民.射频激励波导CO_2激光器的发展.激光与光学,1990(3):1-6
    [45] 董明,吕百达,屈乾华,兰戈.射频激励大面积放电CO_2激光器的进展.激光技术,1993(17(1)):40-43
    [46] 曹军.射频激励陶瓷—金属结构CO_2激光器研究.应用激光,1994(14(4)):184-183
    [47] 辛建国,魏光辉.射频横向激励扩散型冷却CO_2激光器技术的进展与前景.
    
    中国激光, 1994(21(5) ): 371-376
    [48] J. G. Xin and D. R. Hall. Compact, multipass, single tranverse mode CO: laser., Appl, Phys. Lett, 1987(51(7) ): 469-471
    [49] E. F. Yelden, H. J. J. Seguin, C. E. Capjack, and S. K. Nikumb. Multichannel slab discharge for CO2 laser excitation. Appl. Phys. Lett, 1990(58(7) ): 693-695
    [50] Ehrlichmann D, Habich U, Plum HD. Azimuthally unstable resonators for high-power CO, lasers with annular gain media. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994(30(6) ):1441-1447
    [51] C. Emmelmann. ROFIN-SINAR 公司产品资料. 2000年 3月 .
    [52] M. Kumar, A. K. Nath. Optimization study of an ultraviolet preionized TEA CO, laser. Optical Engineering, 1994(33(6) ):1885-1888
    [53] O. P. Judd. An efficient electrical CO, laser using preionization by ultraviolet radiation. Appl. Phys. Lett., 1973(22(3) ): 95-96
    [54] H. M. Lamberton and P. R. Pearson. Improved excitation techniques fro atmospheric pressure CO, lasers. Electron. Lett., 1971(7) : 141-142
    [55] V. Hasson and H. M. von Bergman. Simple and compact photopreionization-stabilized excimer lasers. Rev. Sci. Instrum., 1979(50(2) ): 1542-1544
    [56] N. H. Burnett and A. A. Offenburger. Simple electrode configuration for UV initiated high-power TEA laser discharges. J. Appl. Phys., 1973(44) : 3617-3618
    [57] H. Seguin and J. Tulip. Photoinitiated and photosustained laser. Appl. Phys. Lett., 1972(21) : 41 4-415
    [58] M. C. Richardson, A. H. Alcock, K. Leopold and P. Burtyn, A 300-J multigigawatt CO2 laser. IEEE J. Quantum Electron., 1973(QE-9) : 236-243
    [59] O. P. Judd, J. Y. Wada. Investigations of a UV preionized electrical discharge and CO2 laser. IEEE J. Quantum Electron., 1974(QE-10) : 12-20
    [60] H. J. Seguin, J. Tulip and Don C. Mcken. Ultraviolet photoionization in TEA lasers. IEEE J. Quantum Electron., 1974(QE-10(3) ): 311-319
    [61] S. J. Scott and A. L. S. Smith. Ultraviolet photoionization in TEA CO2 lasers.
    
    Appl. Phys. Lett., 1988(64(2)): 528-536
    [62] R. S. Taylor, A. J. Alcock, W. J. Sarjeant and K. E. Leopold. Electrical and gain characteristics of a multi-atmospheric UV-preionized CO_2 laser. IEEE J. Quantum Electron., 1979(QE-15):1131-1140
    [63] P. R. Pearson and H. M. Lamberton. Atmospheric pressure CO_2 laser giving high output energy per unit volume. IEEE J. Quantum Electron., 1972(QE-8(2)): 145-149
    [64] K. R. Rickwood. A semiconductive preionizer for transversely excited atmospheric CO_2 lasers. J. Appl. Phys., 1982(53(4)): 2840-2842
    [65] 程亮,万重怡,周锦文,王东蕾,吴谨,谭荣清,.印刷电路板预电离小型TEA CO_2激光器.中国激光,2001(28(12)):7-9
    [66] 程亮,万重怡.印刷电路板预电离小型TEA CO_2激光器两种照射模式研究.激光杂志,2001(22(7)):20-21
    [67] Chongyi Wan, Shiming Liu, Jinwen Zhou, Jilan Qi, Xiaola Yang, Jin Wu, Rongqing Tan, Lichun Wang and Qichu Mei. High repetition rate TEA CO_2 laser with average power 1.5kW. SPIE, 1994(2502): 87-94
    [68] R. Marchetti, E. Penco and G. Salvetti. A new type of corona discharge photoionization source for gas lasers. J. Appl. Phys., 1984(56(11)):3163-3168
    [69] R. Marchetti, E. Penco and G. Salvetti. Corona discharge preionization for gas laser. United states patent number: 4,718,072(1988)
    [70] T. A. Watson. Low cost corona preionizer for a laser. United states patent number: 5,719,896(1998)
    [71] Keiji Nakamura, Chobei Yamabe and Kenji Horii. Improvement of a coronapreionized TEA CO_2 laser by means of high-frequency corona discharge. Japanese Journal of Applied Physics, 1990(20(1): 95-100
    [72] A. Fenstermacher, et al. Electron beam initiation of large volume electrical discharges in CO_2 laser media. Bull. Amer. Phys. Soc., 1971(16(1)): 42
    [73] A. Fenstermacher, et al. Electron-beam-controlled electrical discharge as a
    
    method of pumping large volume of CO2 laser media at high pressure. Appl. Phys. Lett., 1972(20(2) ): 56-60
    [74] 楼祺洪,徐捷,傅淑芬,庄斗南,陈建文:脉冲放电气体激光器.第一版.北京:科学出版社, 1993. 105-188
    [75] Shao-chi Lin and Jeffrey I. Levatter. X-ray preionization for electric discharge lasers. Appl. Phys. Lett., 1979(34(8) ): 505-508
    [76] James P. Reilly. Pulser/sustainer electric-discharde laser. J. Appl. Phys., 1972(43(8) ): 3411-3416
    [77] V. G. Naumov, V. M. Shashkov. Investigation of a combined discharge used to pump fast-flow lasers. Sov. J. Quantum Electron, 1977(7(11) ): 1386-1390
    [78] N. A. Generalov, V. P. Zimakov, V. D. Kosynkin, Yu. P. Raizer, and N. G. Solov'ev. Rapid-flow combined-action industrial CO2 Iser. Sov. J. Quantum Electron, 1982(12(8) ): 993-998
    [79] N. A. Generalov, M. I. Gorbulenko, N. G. Solov'yov, M. Yu. Yakimov , V. P. Zimakov. High-power industrial co2 lasers excited by a nonself-sustained glow discharge. Gas Lasers-Recent Developments and Future Prospects. Netherlands: Kluwer Academic Publishers, 1996, 323-341
    [80] A A Kuznetsov, M Z Novgorodov, V N Ochkin, V M Tikhonov, F Ya Blok,W J Witteman. A slab Xe laser excited by a non-self-suatained discharge. Quantum Electronics, 2000(30(5) ): 399-400
    [81] William H. Long, Jr., Michael J. Plummer, and Eddy A. Stappaerts. Efficient discharge pumping of an XeCl laser using a high-voltage prepulse. Appl. Phys. Lett., 1983(43(8) ):735-737
    [1] W.J.Witteman. The CO2 Laser. Springer series in Optical Sciences.1988
    [2] William L.Nighan. Electron energy distributions and collision rates in electrically excited N,, CO, CO2. Physical Review A, 1970(2(5) ): 1989-2000
    
    
    [3] William L.Nighan, John H. Bennett. Electron energy distribution functions and vibrational excitation rates in CO_2 laser mixtures. Applied physics letters, 1969(14(8): 240-243
    [4] 徐启阳,王新兵.高功率连续CO2激光器.第一版,北京:国防工业出版社,2000,10-47
    [5] 楼祺洪,徐捷,傅淑芬,庄斗南,陈建文:脉冲放电气体激光器.第一版.北京:科学出版社,1993,32-41
    [6] J. I. Levatter, S. C. Lin. Necessary conditions for the homogeneous formation of pulsed avalanche discharge at high gas pressures. J. Appl. Phys., 1980(51(1)): 210-222
    [7] F. Frungel. High Speed Pulse Technology. 1965(2): 347
    [8] 丘军林.1kW无氦横流连续CO_2激光器的研究.中国激光,1988(2):81-90
    [9] A. J. Palmer. A physical model on the initiation of atmospheric-pressure glow discharge. Appl. Phys. Lett., 1974(25(3)): 138-140
    [10] N. A. Generalov, M. I. Gorbulenko, N. G. Solov'yov, M. Yu. Yakimov, V. P. Zimakov. High-power industrial co2 lasers excited by a nonself-sustained glow discharge. Gas Lasers-Recent Developments and Future Prospects. Netherlands: Kluwer Academic Publishers, 1996, 323-341
    [11] A A Kuznetsov, M Z Novgorodov, V N Ochkin, V M Tikhonov, F Ya Blok,W J Witteman. A slab Xe laser excited by a non-self-suatained discharge. Quantum Electronics, 2000(30(5)): 399-400
    [12] William H. Long, Michael J. Plummer, and Eddy A. Stappaerts. Efficient discharge pumping of an XeC1 laser using a high-voltage prepulse. Appl. Phys. Lett., 1983(43(8)): 735-737
    [13] H. J. J. Seguin, A. K. Nam, and J. Tulip. The photoinitiated impulse-enhanced electrically excited(PIE) discharge for high-power cw laser applications. Appl. Phys. Lett, 1978(32(7)): 418-420
    [14] Alan E. Hill. Continuous uniform excitation of medium-pressure CO_2 laser
    
    plasmas by means of controlled avalanche ionization. Appl. Phys. Lett. 1973(22(12) ): 670-673
    [15] V. Yu. Kolesnikov, B. V. Orlov, Yu. E. Pol'skii, and Yu. M. Khokhlov. Electric discharge chamber for coaxial CO2 lasers. Sov. J. Quantum Electron, 1984(14(5) ): 647-649
    [16] James P. Reilly. Pulser/sustainer electric-discharde laser. J. Appl. Phys., 1972(43(8) ): 3411-3416
    [17] V. G. Naumov, V. M. Shashkov. Investigation of a combined discharge used to pump fast-flow lasers. Sov. J. Quantum Electron, 1977(7(11) ): 1386-1390
    [18] C. K. N. Patel. Interpretation of CO2 optical maser experiment. Phys. Rev. Letters, 1964(12) : 588
    [19] 万重怡,周锦文,张福敏,李振德,齐继兰,赵润乔,单焕炎.封离型CO2激光器.中国激光,1974(创刊号): 21-26
    [20] G. A. Abil'siitov, E. P. Velikhov, V. S. GOLUBEV, and F. V. Lebedev. Promising systems and methods for pumping high-power technological CO2 lasers (review), Sov. J. Quantum Electron.l981(11(12) ): 1535-1549
    [21] A K NATH and V S GOLUBEV. Design considerations and scaling laws for high power convective CW cooled CW CO2 lasers. PRAMANA-journal of physics, 1998(51(3 &4) : 463-479
    [22] M. P. Vaisfel and Yu. E. Pol'skii. Thermal regime in a coaxial low-pressure CO2 laser. Sov. J. Quantum Electron, 1981(11(10) ): 1360-1362
    [23] V. Yu. Kolesnikov, Yu. M. Khokhlov, and L. A. Rachevskii "Thermal regime in a metal discharge chamber with a glass-enamel coating" Sov. J. Quantum Electron. 15(1) , Jan., 1985
    [24] Edward F. Plinski, Jerzy S. Witkowski. Prediction of the thermal properties of CO2 and Xe laser media. Optics & Laser Technology, 200 1( 33) : 61-66
    [25] A. B. Murphy. Thermal plasmas in gas mixtures. J. of Physics D: Applied Physics. 2001(34) : 151-173
    
    
    [26] E.Nasser. Fundamentals of gaseous ionization and plasma electronics. (Wiley Inter-science, New York, 1971) : 173-175
    [27] G I Kozlov and V A Kuznetsov. Multibeam cw gas-discharge CO, Laser Iglan-3. Soviet Journal Quantum Electron, 1985(15(3) ): 362-367
    [28] K. M. Abramski, A. D. Colley, H. J. baaker and D. R. Hall. Power scaling of large-area transverse radio frequency discharge CO2 lasers. Appl. Phys. Lett., 1989(54(19) ):1833-1835
    [29] P. E. Jackson, H. J. Baker, and D. R. Hall. CO2 large-area discharge laser using an unstable-waveguide hybrid resonator. Appl. Phys. Lett, 1989(54(20) ): 1950-1952
    [30] J. G. XIN and D. R. HALL. Multipass coaxial radio-frequency discharge co2 laser. OPTICS COMMUNICATIONS, 1986(58(6) ): 420-422
    [31] J. G. Xin and D. R. Hall. Compact, multipass, single tranverse mode CO, laser., Appl. Phys. Lett, 1987(51(7) ): 469-471
    [32] S. Yatsiv, A. Gabay and M. A. Brastel. A CO2 laser mounted on a robot for dynamic cutting manipulations. Proc.CO2 Lasers and Applications II. SPIE, 1990(1276) : 142-150
    [33] A. D. Colley, H. J. Baker and D. R. Hall. Planar waveguide, 1kW cw, carbon dioxide laser excited by a single transverse rf discharge. Appl. Phys. Lett, 1992(61(2) ): 136-138
    [34] New Discharge Design May Miniaturize C02 Lasers. Lasers & Optronics, 1988(May): 19-21
    [35] C. J. Buczek, R. J. Wayne, P. Chenausky, and R. J. Freiberg. Magnetcally stabilized cross-field CO2 laser. Applied Physics Letters, 1970(16(8) ): 321-323
    [36] B. Frerisinger, I. H. Schafer et al. Microwave excited CO, lasers. SPIE. High power lasers and machining technology. 1989(1132) :22
    [37] U. Bielesch, M. Budde et al. MIDAS-A multikilowatt CO, laser system excited by microwave. Lasers and Optoelektronik. 1992(24(2) : 68
    
    
    [1] A. J. Beaulieu. High peak power gas lasers. Proc. IEEE, 1971(59) : 667-674
    [2] Chongyi Wan et al. High repetition rate industrial TEA CO2 laser with output power of 1. 5kW. SPIE. Gas Flow and Chemical Lasers, 1994(2502) : 87-89
    [3] T. Sakai, N. Hamada. Q-switched CO2 laser using intense pulsed rf discharge and high-speed rotating chopper. SPIE. Gas Flow and Chemical Lasers, 1994(2502) : 25-30
    [4] U. Bielesch et al. Q-switched low-pressure CO2 laser. SPIE. Gas Flow and Chemical Lasers, 1994(2502) : 31-37
    [5] A. E. Hill. Multijoule pulses from CO2 lasers. Applied Physics Letters, 1970(16(8) ): 423-426
    [6] G. J. Dezenberg, E. L. Roy, and W. B. Mcknight. Performance of high-voltage axially pulsed CO2 lasers. IEEE J. Quantum electronics, 1972(QE-8(2) ): 58-65
    [7] William L.Nighan. Electron energy distributions and collision rates in electrically excited N2, CO, CO2. Physical Review A, 1970(2(5) ): 1989-2000
    [8] William L.Nighan, John H. Bennett. Electron energy distribution functions and vibrational excitation rates in CO2 laser mixtures. Applied physics letters, 1969(14(8) : 240-243
    [1] A. E. Hill. Multijoule pulses from CO2 lasers. Applied Physics Letters, 1970(16(8) ): 423-426
    [2] G. J. Dezenberg, E. L. Roy, and W. B. Mcknight. Performance of high-voltage axially pulsed CO2 lasers. IEEE J. Quantum electronics, 1972(QE-8(2) ): 58-65
    [3] D A Orchard and R C Hollins. A high pulse repetition rate helium-xenon laser. SPIE, 1997(3092) : 82-85
    [4] M. A. El-Osealy, T. Jitsuno, M.-Nakatsuka, Y. Ohoguchi, T. Ido, K. Nakamura, and S. Horiguchi. Co-axially excited gas lasers toward vacuum ultra-violet region.
    
    Proceedings of SPIE, 2000(3889): 774-779
    [5] William L.Nighan. Electron energy distributions and collision rates in electrically excited N_2, CO, CO_2. Physical Review A, 1970(2(5)): 1989-2000
    [6] William L.Nighan, John H. Bennett. Electron energy distribution functions and vibrational excitation rates in CO_2 laser mixtures. Applied physics letters, 1969(14(8): 240-243
    [7]楼祺洪,徐捷,傅淑芬,庄斗南,陈建文:脉冲放电气体激光器.第一版.北京:科学出版社,1993.32-35
    第五章:
    [1] W.J.Witteman. The CO_2, Laser. Springer series in Optical Sciences. 1988
    [2] N. G. Basov, E. P. Glotov, V. A. Danilychev, O. M. Kerimov et al. High-power electroionization CO_2 and CO Lasers for industrial applications. IEEE J. Quantum electronics, 1985(QE-21(4)): 342-357
    [3]楼祺洪,徐捷,傅淑芬,庄斗南,陈建文:脉冲放电气体激光器.第一版.北京:科学出版社,1993.41-43
    [4] H. J. J. Seguin, A. K. Nam, and J. Tulip. The photoinitiated impulse-enhanced electrically excited (PIE) discharge for high-power cw laser applications. Appl. Phys. Lett., 1978(32(7)): 418-420
    [5] William L. Nighan. Electron energy distribution and collision rates in electrically excited N_2, CO, and CO_2. Physical Review A, 1970(2(5)): 1989-2000
    [6] William L.Nighan, John H. Bennett. Electron energy distribution functions and vibrational excitation rates in CO_2 laser mixtures. Applied physics letters, 1969(14(8): 240-243
    [7] G.A.Abil'siitov, E.P. Velikhov, V.S.Golubev, and F.V. Lebedev. Promising systems and methods for pumping high-power technological CO2 lasers (reiew). Sov. J. Quantum Electron., 1981(11(12)): 1535-1549
    
    
    [1] W.J.Witteman. The CO2 Laser. Springer series in Optical Sciences. 1988
    [2] A K Nath and V S Golubev. Design considerations and scaling laws for high power convective CW cooled CW CO2 lasers. PRAM ANA-journal of physics, 1998(51) : 463-479
    [3] K. Du, et al. Lasers for materials processing: specifications and trends. Optical and Quantum Electronics. 1995(27) : 1089-1102
    [4] Rofin-Sinare公司产品说明 . Introduction to injdustrial laser materials processing. 2000
    [5] Coherent 激光公司产品说明书. 2000
    [6] K. M. Abramski, A. D. Colley, H. J. baaker and D. R. Hall. Power scaling of large-area transverse radio frequency discharge CO2 lasers. Appl. Phys. Lett., 1989(54(19) ):1 833-1835
    [7] C. J. Buczek, R. J. Wayne, P. Chenausky, and R. J. Freiberg. Magnetcally stabilized cross-field CO2 laser. Applied Physics Letters, 1970(16(8) ): 321-323
    [8] New Discharge Design May Miniaturize C02 Lasers. Lasers & Optronics, 1988(May): 19-21
    [9] Y. F. Zhang. Ph. D. Coupled array of CO, waveguide lasers. California Inistitute of Technology. 1993
    [10] 王新兵,徐启阳,谢明杰,许德胜,李再光.高频方波放电激励扩散冷却CO2激光器的研究.激光技术, 1997 (21 (6) ): 358-360
    [11] N. A. Generalov, M. I. Gorbulenko, N. G. Solov'yov, M. Yu. Yakimov , V. P. Zimakov. High-power industrial co2 lasers excited by a nonself-sustained glow discharge. Gas Lasers-Recent Developments and Future Prospects. Netherlands: Kluwer Academic Publishers, 1996, 323-341
    [12] Yi-Ming Ling, Yi-Bo Xu, Xu-feng Wu, Mei Xiao and Nan Jiang. Experimental Ivestigation of CO2 Laser Assisted by Silent Discharge. Jpn. Appl. Phys. 1999(38) : 4065-4068
    
    
    [13] C. P. Christensen. Pulsed transverse electrodeless discharge excitation of a CO2 laser. Appl. Phys. Lett., 1979(34(3) ): 211-213
    [14] A. E. Siegman. Laser. Mill Valley, CA; University Science Books. 1986. 858-922

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700