新型长链硅烷偶联剂的合成及其对瓷修复体粘接效果影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔粘接修复技术能够在不磨切或少磨切牙体组织的前提下实现牙体缺损、牙色及形态异常、咬合关系异常的微创修复与治疗。全瓷修复体则能够最大程度地还原牙齿的形态、色泽与层次感,且具有优异的生物相容性。因此,全瓷粘接修复已成为近年来口腔医学研究的焦点领域之一。瓷与树脂之间良好、持久的结合是粘接修复成功的关键,影响着修复体的固位与功能、长期成功率以及修复体与牙体组织间的微渗漏及继发龋等并发症。
     目前,粘接强度与耐久性不足仍是导致粘接修复体临床失败的主要问题,其原因主要是界面上存在着不良润湿、收缩应力和弱界面层等,导致粘接剂与被粘体之间的界面结合强度无法满足或无法长期满足口腔特殊环境与功能要求。修复体表面处理是目前提高界面粘接强度的有效途径,主要包括机械粗化处理和无机物表面化学改性。在化学改性中,偶联剂表面处理是目前应用最简便也最广泛的方法。硅烷偶联剂能够在无机和有机材料界面之间起到“分子桥”作用,将两相有机地连接在一起,从而有效改善界面层的粘接强度;同时还能够避免表面机械处理造成的修复体表面结构改变、适合性降低等问题。因此,硅烷偶联剂处理是具有良好研究前景的一类修复体表面处理方式。
     近年来,口腔粘接修复领域所使用的硅烷偶联剂大多以γ-MPS(γ-甲基丙烯酰氧基丙基三甲氧基硅烷)为主要功能成分,分子结构相对简单,难以与修复体表面产生理想的化学结合;在口腔环境中受湿度、酸碱度、温度变化及咬合应力等影响,作用效果不够持久;因而,其作用尚不能完全满足实际要求。化工材料领域的研究显示,长链硅烷分子在有机-无机两相间具有界面增强增韧的作用。因此,本研究借鉴高分子化学与材料学的最新研究进展和相对成熟的技术,依据口腔粘接修复的特点与要求,设计、合成新型长链硅烷分子并筛选高效的合成路径与条件。在此基础上,对新型硅烷分子的相关性能进行初步评估,并对其在口腔粘接修复中瓷-树脂粘接界面的作用机理进行初步分析,为长链硅烷偶联剂在口腔粘接修复领域中的进一步研究及应用提供一定的实验依据。
     本研究第一部分借鉴有机化学与材料学相关基础,尝试使用不同前体经不同合成路径合成目标分子:
     实验一在室温下依次将合成前体混合搅拌,经硅氢加成、醇解、酯化三步反应合成含甲基丙烯酸基团的长链硅烷分子;产物经红外光谱及核磁共振表征,特征官能团的变化符合设计的反应路线,证实获得了目标产物。
     实验二变更了合成前体,通过硅氢加成与酯化两步反应合成了长链硅烷分子;产物经红外光谱与核磁共振表征,证实获得了目标分子,合成路径可行;二步法合成反应条件温和易控制,操作方便,污染危害小。
     实验三比较了不同反应条件对产物结构及产率的影响。在25℃室温条件下,本实验硅氢加成反应的时间和加料方式对产物的结构、组成无明显影响;温度对甲基丙烯酰氯与烯醇酯化反应的产物浓度与产率均有一定影响。推荐采取合成前体缓慢滴加的方式,在20-25℃室温条件下进行硅氢加成反应30分钟、85℃加热回流条件下进行酯化反应2小时,反应完全且产率较高。
     本研究第二部分在规范剪切粘接强度测试方法的基础上,评价了新型硅烷表面处理对瓷-树脂粘接强度的影响,并对其作用机理进行了初步分析与探讨:
     实验一发现样本材质对剪切粘接强度值有明显影响,弹性模量高的粘接体能够获得较高的剪切强度测试值;剪切粘接强度值受到样本粘接面积的影响,粘接面积越小,粘接强度值越高;粘接强度测试前,应根据研究对象与目的选择适宜的样本材质与粘接面积,以能够更加准确真实地反映材料的性能。
     实验二证实新型长链硅烷分子对瓷-树脂粘接强度有增强作用,即刻粘接强度与市售商品硅烷偶联剂相当;样本经体外老化处理后,较高浓度新型硅烷处理组的粘接强度值高于商品偶联剂及短链偶联剂;随硅烷浓度增加,偶联效果逐渐增强;但当浓度达到4%质量浓度时,粘接强度增加不明显且在部分实验组出现下降。
     实验三用分析化学手段分析新型硅烷的作用机理以及与粘接强度的关系。ATR-FTIR结果显示硅烷分子与瓷表面形成了硅氧烷化学结合,硅烷浓度达到2%以上时各特征官能团能够获得明确表征;XPS分析结果表明硅烷与瓷表面形成了Si-O-Si硅氧烷结合,且表面各元素比例的变化趋势与硅烷浓度的增减相一致;综合ATR-FTIR与XPS分析结果,可知新型硅烷分子能够与瓷表面形成化学结合,在一定浓度范围内,随浓度增加,硅烷的化学结合亦增加。
     实验四测试了新型长链硅烷处理后全瓷表面润湿性的变化,证实其能够显著降低甘油与含硅全瓷表面的接触角,改善无机物表面的润湿性;扫描电镜观察结果则显示当硅烷浓度过高时,可能在无机物表面形成硅氧烷膜而导致粘接强度降低。新型长链硅烷宜配制成2~4%的乙醇溶液用作齿科含硅全瓷材料的表面处理。
     综上所述,本课题借鉴高分子材料与化工研究经验与基础,设计合成了理论上具有较好作用效果的新型长链硅烷分子,并利用成熟的化学分析方法对产物进行了表征;研究比较分析了不同合成路径、不同反应条件对产物的影响,初步筛选出了高效低害的合成方法;在此基础上,对新型长链硅烷分子作用后对瓷-树脂粘接强度的影响进行了测试,并对作用效果做出了初步评价;通过分析化学和表面形态学研究对新型硅烷分子影响粘接强度的作用机理进行了初步探讨,证实其与牙科含硅全瓷材料表面形成了化学结合并改善了瓷表面的润湿性。
Dental bonding technology now is widely used in many branches of dentistry. Withless cut of tooth tissue, it can repair the tooth defects, color and occlusion abnormalities bytooth-colored restorations. All-ceramic restoration can greatly restore the tooth shape,color and layering, and has excellent biocompatibility. Therefore, the all-ceramic adhesiverestoration has become one of the focuses in dental research in recent years. Permanentbonding between ceramic and resin is the key point of adhesive restoration’s long-termsuccess.
     At present, the deficiency of bond strength and durability is still the main problem ofthe clinical failure in restoration. It is mainly due to the inefficient wetting, shrinkagestress and weak layer on the interface between adhesive and adherends. Restorationsurface treatment is an effective way to improve the bond strength of the interface,including mechanical roughening treatment and chemical surface modification. Surface treatment by coupling agent is the simplest and also the most widely used method ofchemical modification. Silane coupling agent can play the role of ‘molecular bridge’between the inorganic and organic interface, which can connect two different materialstogether and improve the bond strength effectively, as well as avoid surface structurechange and compatibility decrease in restoration. Therefore, silane coupling agenttreatment is a prosthesis surface treatment with good prospects.
     In recent years, most of the dental silane coupling agents have used γ-MPS as themain functional component. Because of relatively simple molecular structure, it is difficultto obtain sufficient chemical bonding with ceramic surface. Influenced by factors asmoisture, pH, temperature and occlusal stress in oral environment, the bonding effect isnot permanent. Studies of chemical materials have suggested that long-chain silanemolecules can strengthen the interface between organic-inorganic phases.
     Therefore, this study is based on the latest research progress in polymer chemistryand materials science. Accoding to the characteristics and requirements of dental bonding,this study aims to synthesize a novel long-chain silane molecule, and screen efficientsynthetic route and conditions. Then, we have analyzed the effect of the new silane onceramic-resin bonding strength. And an analysis of the mechanism of interaction betweensilane with ceramic interface has also been performed, so as to provide experiment datafor the further application of long-chain silane in restoration.
     Part I of this study focuses on synthesis of target long-chain silane molecules throughdifferent routes and different reaction conditions.
     Experiment1: At room temperature, long-chain silane molecules containing amethacrylate group were synthesized following three-step reaction (hydrosilylation,alcoholysis, esterification). Molecules were characterized by FTIR and NMR.
     Experiment2: At room temperature, long-chain silane molecules containing amethacrylate group were synthesized following two-step reaction (hydrosilylation,esterification) with different raw materials. Molecules were characterized by FTIR andNMR. Two-step synthesis route is easy to operate and has less pollution.
     Experiment3: Effect of different reaction conditions on the structure of the productwas analyzed. At a room temperature of25℃, time and feeding methods ofhydrosilylation reaction had no significant effect on the structure of the product. To someextent, temperature influenced the esterification reaction product concentration and the production rate. Slow dropping of reactants is recommended in hydrosilylation reaction ata room temperature of25℃for30minutes and esterification for two hours under85℃heating refluxing, since the reaction will be complete and the productivity will be higher.
     Part II of this study aims to evaluate the effect of new silane treatment on ceramicbond strength, and to analyze its mechanism of interaction.
     Experiment1: The study showed that sample material had significant effect on theshear bond strength value. Adherend with higher elastic modulus was able to obtain highershear strength test value. Shear bond strength values were also influenced by the bondingarea. The smaller the bonding area, the higher the bond strength value is. We should useappropriate sample material and bonding area, according to the research object andpurpose, to reflect the performance of the material more accurately and realistically.
     Experiment2: The enhancement of new long-chain silane to ceramic-resin bondingwas confirmed. Its instant bond strength was as effective as commercial silane couplingagent. After aging treatment, the samples useing novel silane showed higher bond strengthvalues. The silane coupling effect was gradually enhanced when the concentration wasincreased. But when the concentration reached4%, the bond strength was not significantlyincreased, and even decreased in some experimental groups.
     Experiment3: The mechanism of the novel silane and its relation with bond strengthwere analyzed by analytical chemistry methods. ATR-FTIR results showed that the silanemolecule and the ceramic surface formed a siloxane chemical bonding. When silaneconcentration was2%or higher, each characteristic functional group got clearcharacterization. XPS analysis showed that the silane formed the Si-O-Si siloxane on theceramic surface. The proportion of each element is consistent with the silaneconcentration.
     Experiment4: Wettability of ceramic surface treated by the new silane was tested. Itwas confirmed that new silane treatment could significantly reduce the contact angle ofglycerol to silicon-containing ceramic surface. The long-chain silane could improve thewettability of the surface of inorganic material. SEM showed that when the silaneconcentration was too high, silicone membrane formed on the surface of inorganicmaterial. This might result in bond strength reduction. Accordingly, the new long-chainsilane should be formulated as2-4%ethanol solution to be used as the dental ceramiccoupling agent.
     In summary, based on polymer materials and chemical research, this study designedand synthesized a novel long-chain silane molecule with better theoretical effect. Theproducts were characterized by series chemical analysis methods. Synthetic route withhigh efficiency and low harm was screened out. On this basis, the effect of long-chainsilane molecules on bond strength between ceramic and resin were tested. By the chemicaland surface morphology studies, we analyzed the mechanism of new silane molecules onthe bonding strength. It was confirmed that the chemical bonding formed betweensilicon-containing all-ceramic surface and long-chain silane molecules.
引文
1. Yanjun Xie, Callum A.S. Hill, Zefang Xiao, Holger Militz, Carsten Mai. Silane coupling agents usedfor natural fiber/polymer composites: A review. Composites Part A: Applied Science andManufacturing,2010(41)7:806-819.
    2. Christie Ying, Kei Lung, Jukka Pekka Matinlinna. Aspects of silane coupling agents and surfaceconditioning in dentistry: An overview. Dental Materials,2012(28)5:467-477.
    3.陈宏刚,项素云,吕秉玲。偶联剂其应用。塑料科技,1996(1):l5-20。
    4.(美) Edwin E P.等。硅烷和钛酸酯偶联剂[M]。上海:上海科学技术文献出版社,1987。
    5. Yunsheng Xu, D.D.L Chung. Carbon fiber reinforced cement improved by using silane-treatedcarbon fibers. Cement and Concrete Research,1999(29)5:773-776.
    6.廖俊,陈家云,康宇峰等。硅烷偶联剂及其在复合材料中的应用。化工新型材料,2001(29)9:26-28。
    7. Kinbeh A J.Adhesion and adhesives science and technology. Chapman and Hall Ltd.1987.154.
    8. Arkles B. Tailoring Surfaces with silanes. Chem Tech.1977,7:766.
    9. Ishida H, Koenig J L. Fourier transform infrared spectroscopic study of the silane couplingagent/porous silica interface. J. Colloid Interface Sci.,1978(64)3:555.
    10.陈世容,瞿晚星。偶联剂的应用进展。有机硅材料,2003(17)5:28-31。
    11.刘光烨,胡之祥。石英填充聚氯乙烯塑料的研究。塑料技术,1990(4):9-12。
    12.罗士平,周国平,曹佳杰等。钛酸酯偶联剂对无机填料表面改性的研究。合成材料老化与应用,2001(30)1:9。
    13. Monte J S. Improved Process ability of Thermoplastic and Elastomer Compounds Using TitanateZirconte Coupling Agents. Kenrieh Petrochemical, Inc. USA.
    14. Monte J S. The Apllieation of Titanate in PVC. Kenrich Petrochemiea1, Inc. USA.
    15.钱知勉,朱昌辉。塑料偶联剂的机理与实效。塑料科技,1983(36)4:10。
    16. Han C D. Effects of titanate coupling agents on the rheological and mechanical properties of filledpolyolefines. Polymer Engineering and Science,1978,(18)7:849-860.
    17. A. Voelkel, T. Grzeskowiak. Influence of monolayer of titanium and zirconium coupling agents ondispersive and acid–base properties of modified silica gel. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2002,(208)1-3:177-185.
    18.李红玲,董斌,韩延安等。钛酸酯偶联剂的偶联机理及研究进展。表面技术,2012(41)4:99-102。
    19.傅永林。偶联剂在塑料复合材料中的应用。中国塑料,1991(5)3:20。
    20.章文贡,陈田安,陈文定。铝酸酯偶联剂改性碳酸钙的性能与应用。中国塑料,1988(2)1:3。
    21. Lawerence B. Cohen. Zircoaluminate adhesion promoters. Adhesion Sci. Tech.1991(6)5:439-448.
    22.梁亮,廖列文,崔英德。铝-锆有机金属络合物偶联剂的合成及应用。精细化工,1999(16)4:49。
    23. Lawerence B. Cohen. Zircoaluminates strengthen chemical coupling agents, Plastics and RubberInternational.1986(2):22-23.
    24.李滨,李友明,杨文亮。铝锆偶联剂的合成及对纳米TiO2的表面改性。华南理工大学学报(自然科学版),2009(37)6:7-12。
    25. Yusuke Morita, Kenichi Nakata. Wear properties of zirconia/alumina combination for jointprostheses. Wear,2003(25)4:147-153.
    26. Elena Cabrera, Jose C. de la Macorra. Micro tensile bond strength distributions of three compositematerials with different polymerization shrinkages bonded to dentin. The Journal of Adhesive Dentistry,2011(13)1:39-48.
    27. Grace M. Dias de Souza, Van P. Thompson. Effect of metal primers on microtensile bond strengthbetween zirconia and resin cements. Jornal of Prosthodontics Dentistry,2011(5):297-302.
    28. H. Hilmer, C. Sturm. Observation of strong light-matter coupling by spectroscopic ellipsometry.Superlattices and Microstructures,2010(47)6:19-23.
    29. Yuan S C.Primers containing zircoaluminate coupling agents for improved adhesion:US,5468791.1995:11-21.
    30. Norio N, Toyoharu H. Preparation of TiO2nanoparticles surface-modified by both carboxylic acidand amine: dispersibility and stabilization in organic solvents. Colloids and Surfaces A:Physicochemica1Engineering. Aspects,2008,317:543-550.
    31. D. Eng, M. Stoukides. The catalytic and electrocatalytic coupling of methane over YTTRIA-stabilized zirconia. Catalysis Letters,1991(9):47-54.
    32. M. Takahashi, J. Hayashi. Use of coupling agents as a route to improvement of the compressibilityof fine zirconia and alumina powders. Journal of Materials Science,1993(28):3183-3186.
    33.陈均志,赵艳娜,唐宏科。新型铝-锆酸酯偶联剂的制备及其对轻质碳酸钙表面性能的影响。化学世界,2004(3):137-147。
    34.张静,丁永红。木质素作为偶联剂在橡胶中的作用。特种橡胶制品,2001(22)6:22。
    35. Hsiech H L, Quirk R P. Anionic polymerization: principles and practical applications. New York:Marcel Dekker Inc.,1996.447.
    36. Tsutumi F, Sakakibara M, Oshima N. Structure and dynamic properties of solution SBR coupledwith tin compounds. Rubber Chemistry and Technology,1990(69)1:8.
    37.武德珍,白宗武。稀土偶联剂处理碳酸钙填充PVC复合材料及其性能的研究。现代塑料加工应用,1996(8)1:10。
    38. Joiner A. Tooth colour:A review of the literature. J Dent,2004(32)Suppl1:3-12.
    39. Chen YM, Smales RJ, Yip KH, et a1. Translucency and biaxial flexural~trength of four ceramiccore materials. Dent Mater.2008(24)11:1506-1511.
    40. Rosenblum MA, Sehulman A. A review of all-ceramic restorations. Ann Dent,1997(128)3:297-307.
    41. Webber B, McDonald A, Knowles J. An in vitro study of the compressive load at fracture ofProcera AllCeram crowns with varying thickness of veneer porcelain. J Prosthet Dent.2003,89:154-160.
    42. Manabu Doi, Keiichi Yoshida. Influence of pre-treatments on flexural strength of zirconia anddebonding crack-initiation strength of veneered zirconia. The Journal of Adhesive Dentistry,2011(13)1:79-84.
    43. A.B. Bavbek, B. Goktas, A. Sahinbas, B. Oz opur, G. Eskitascioglu, M. zcan. Effect of differentmechanical cleansing protocols of dentin for recementation procedures on micro-shear bond strength ofconventional and self-adhesive resin cements. International Journal of Adhesion and Adhesives,2013(41)3:107-112.
    44. L.E. Tam, S. Khoshand, R.M. Pilliar. Fracture resistance of dentin-composite interfaces usingdifferent adhesive resin layers. Journal of Dentistry,2001(29)3:217-225.
    45. Bahad r Ersu, Bulem Yuzugullu, A. Ruya Yazici, Senay Canay. Surface roughness and bondstrengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. Journal ofDentistry,2009(37)11:848-856.
    46. Munir Tolga Yucel, Filiz Aykent, Serhan Akman, Isa Yondem. Effect of surface treatment methodson the shear bond strength between resin cement and all-ceramic core materials. Journal ofNon-Crystalline Solids,2012(358)5:925-930.
    47. B. Yang, A. Barloi, M. Kern. Influence of air-abrasion on zirconia ceramic bonding using anadhesive composite resin. Dental Materials,2010(26)1:44-50.
    48. Chen JH, Matsumura H, Atsuta M. Effect of different etching periods on the bond strength of acomposite resin to a machinable porcelain. J Dent.1998,26:53-58.
    49. Bowen RL. Compatibility of various materials with oral tissues. I: The components in compositerestorations. J Dent Res.1979,58:1493-1503.
    50. Bascom WO. Structure of silane adhesive promotor film on glass and metal surface. Macromecular.1972,5:792-795.
    51. Soderholm KJ, Shang SW. Molecular orientation of silane at the surface of colloidal silica. J DentRes.1993,72:1050-1054.
    52.王迎捷。牙科陶瓷偶联剂的相关性能研究。中国优秀硕士学位论文全文数据库。2004:28-32。
    53.沈健,嵇根定。测接触角法确定偶联剂的最佳用量。无机化学学报,1992(8)3:321-322。
    54. Tabassom Hooshmand, Jukka P. Matinlinna, Alireza Keshvad, Solmaz Eskandarion, FereshtehZamani. Bond strength of a dental leucite-based glass ceramic to a resin cement using different silanecoupling agents. Journal of the Mechanical Behavior of Biomedical Materials,2013(17)1:327-332.
    55. Berry T, Barghi N, Chung K. Effect of water storage on the silanization in porcelain repair strength.J Oral Rehabil.1999,26:459-463.
    56. M. Pantoja, B. Díaz-Benito, F. Velasco, J. Abenojar, J.C. del Real. Analysis of hydrolysis process ofγ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on6063aluminum alloy. Applied Surface Science,2009(255)12:6386-6390.
    57. Tabassom Hooshmand, Richard van Noort, Alireza Keshvad. Storage effect of a pre-activated silaneon the resin to ceramic bond. Dental Materials,2004(20)7:635-642.
    58. Kato H, Matsumura H, Ide T, Atsuta M. Improved bonding of adhesive resin to sintered porcelainwith the combination of acid etching and a two-liquid silane conditioner. J Oral Rehabil.2001,28:102-108.
    59. Tabassom Hooshmand, Richard van Noort, Alireza Keshvad. Bond durability of the resin-bondedand silane treated ceramic surface. Dental Materials,2002(18)2:179-188.
    60. Jeffrey Y. Thompson, Brian R. Stoner, Jeffrey R. Piascik, Robert Smith. Adhesion/cementation tozirconia and other non-silicate ceramics: Where are we now? Dental Materials,2011(27)1:71-82.
    61. Jukka P. Matinlinnaa, Lippo V. Lassila. Enhanced resin-composite bonding to zirconia frameworkafter pretreatment with selected silane monomers. Dental Materials,2011(27)3:273–280.
    62. T. Fukushima, Y. Inoue, K. Miyazaki, T. Itoh. Effect of primers containing N-methylolacrylamideor N-methylolmethacrylamide on dentin bond durability of a resin composite after5years. Journal ofDentistry,2001(29)3:227-234.
    63. Matinlinna JP, Lassila LV, Ozcan M, Yli-Urpo A, Vallittu PK. An introduction to silanes and theirclinical applications in dentistry. Int J Prosthodont2004,17:155-164.
    64. Ma. A. Rodriguez, M. J. Liso, F. Rubio, J. Rubio, J. L. Oteo. Study of the reaction ofγ-methacryloxypropyltrimethoxysilane (γ-MPS) with slate surfaces. J. of Mater Sci.1999(34):3867-3873.
    65. Kamada K, Yoshida K, Atsuta M. Effect of ceramic surface treatments on the bond of four resinluting agents to a ceramic material. J Prosthetic Dent.1998,79:508-513.
    66. Sahafi A, Peutzfeldt A, Asmussen E, Gotfredsen K. Bond strength of resin cement to dentin and tosurface-treated posts of titanium alloy, glass fiber, and zirconia. J Adhes Dent.2003,5:153-162.
    67. Sarah Pollington, Andrea Fabianelli, Richard van Noort. Microtensile bond strength of a resincement to a novel fluorcanasite glass-ceramic following different surface treatments. Dental Materials,2010(26)9:864-872.
    68.袁媛园。影响复合树脂聚合收缩应力的因素。牙体牙髓牙周病学杂志,2009(19)6:363-367。
    69. Guodong Chen, S. Z, Guangxin Gu, et a1. Effects of surface properties of colloidal silica particleson redispersibility and properties of acrylic-based polyurethane/silica composites. Colloid InterfaceSci.,2005(281):339-350.
    70. N. Yoshino, H. Nakaseko, Y. Yamamoto. Syntheses and reactions of metal organics, XX. Synthesesof silane-coupling agents having end-branch fluorocarbon chain and surface modification of glass.Reactive Polymers,1994(23)2-3:157-163.
    71. Jinlong Cheng, Matilda Fone, Mark W. Ellsworth. Solid state NMR study on the conformation andmobility of n-octadecyl chains in a silane coupling agent attached to the surface of colloidal silica.Solid State Nuclear Magnetic Resonance,1996(7)2:135-140.
    72. Z.X. Jiang, L.H. Meng, Y.D. Huang, L. Liu, C. Lu. Influence of coupling agent chain lengths oninterfacial performances of polyarylacetylene resin and silica glass composites. Applied SurfaceScience,2007(253)9:4338-4343.
    73.彭自力,韩关佑。长链烷基硅烷偶联剂HD-109的合成。浙江化工,2004(36)6:10-12。
    74.朱淮军,廖洪流,李凤仪。长链烷基硅烷偶联剂的合成研究。化工新型材料,2005(133)19:54-58。
    75.甄广全。WD-10在石质文物表面封护中的应用。化工新型材料,2001(29)9:48-50。
    76. Pascal Magnea, Maria P.G. Paranhos, Luiz H. Burnett Jr. New zirconia primer improves bondstrength of resin-based cements. Dental Materials,2010(26)4:345-352.
    77. Christie Ying Kei Lung, Michael G. Botelho, Markku Heinonen, Jukka P. Matinlinna. Resinzirconia bonding promotion with some novel coupling agents. Dental Materials,2012(28)8:863-872.
    78. Shuzo Kitayama, Toru Nikaido, Rena Takahashi, Lei Zhu, Masaomi Ikeda, Richard M. Foxton,Alireza Sadr, Junji Tagami. Effect of primer treatment on bonding of resin cements to zirconia ceramic.Dental Materials,2010(26)5:426-432.
    79. M. Peumans, K. Hikita, J. De Munck, K. Van Landuyt, A. Poitevin, P. Lambrechts, B. VanMeerbeek. Effects of ceramic surface treatments on the bond strength of an adhesive luting agent toCAD–CAM ceramic. Journal of Dentistry,2007(35)4:282-288.
    80.朱文喜,陈胜云,廖俊等。甲基二甲氧基硅烷单体及其硅烷偶联剂的合成研究。武汉大学学报(理学版),2003(49)4:457-460。
    81. Heidi M. Fagerholm, Jarl B. Rosenholm, Thomas J. Horr, Roger St.C. Smart. Modification ofindustrial E-glass fibres by long-chain alcohol adsorption. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,1996(10)1:11-22.
    82. Su Zhao, Jizhong Zhang, Shiqi Zhao, Wenzhi Li, Hengde Li. Effect of inorganic-organic interfaceadhesion on mechanical properties of Al2O3/polymer laminate composites. Composites Science andTechnology,2003(63)7:1009-1014.
    83. J.P. Matinlinna, L.V.J. Lassila, P.K. Vallittu. The effect of three silane coupling agents and theirblends with a cross-linker silane on bonding a bis-GMA resin to silicatized titanium (a novelsilanesystem). Journal of Dentistry,2006(34)10:740-746.
    84. Min-yi Lou, De-ping Wang, Wen-hai Huang, Dong Chen, Bing Liu. Effect of silane-couplingagents on synthesis and character of core-shell SiO2magnetic microspheres. Journal of Magnetism andMagnetic Materials,2006(305)1:83-90.
    85. Y. Onal, E. Yak nc, T. Se kin, M.G. I duygu. Synthesis and characterization of asbestos-silanehybrid materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005(255)1-3:27-32.
    86. Kuo-Huai Kuo, Wen-Yen Chiu, Kuo-Huang Hsieh. Synthesis of UV-curable silane-coupling agentas an adhesion promoter. Materials Chemistry and Physics,2009(113)2-3:941-945.
    87.张遵,秦西鸣,薛朝。三氯氢硅合成所产生尾气的回收利用。硅谷,2012(17):182。
    88. Sevim ünügür elik, Ayhan Bozkurt. Sol-gel synthesis of proton conductive tetrazole functionalsilane networks. Solid State Ionics,2011(119-200):1-5.
    89.马国维,翁剑秀,范宏。硅氢加成反应在功能有机硅化合物及材料中的应用。科技通报,2012(28)11:140-147。
    90.李光亮。有机硅高分子化学。北京:科学出版社,1998。
    91. Chithravel Venkatesan, Kiyotada Aoyama, Kenichi Komura, Yoshihiro Sugi. A new synthesis routeto nano-sized β-zeolite with organic silane containing surfactant. Studies in Surface Science andCatalysis,2008(174)A:225-228.
    92.徐晓强,林艳,傅人俊。甲基二乙氧基硅烷的合成。有机硅材料,2006(20)2:67-69。
    93. Boulos Youssef, Elie About-Jaudet, Claude Bunel. Free-radical synthesis of newphosphorus-containing silane monomers and polysiloxanes. European Polymer Journal,1998(33)11:1649-1655.
    94.史博,陈丽娟,谢华娟。多烷氧基硅烷偶联剂的合成及实验条件探讨。广东化工,2012(39)7:33-34。
    95. Sona Thakur, Nicole A. Cohen, Eric S. Tillman. Chain extension and block copolymer synthesisusing silane radical atom abstraction coupled with nitroxide mediated polymerization. Polymer,2008(49)6:1483-1489.
    96. Reinhold Tacke, Stephan A. Wagner, Susanne Brakmann, et al. Synthesis of acetyldimethyl (phenyl)silane and its enantioselective conversion into (R)-(1-hydroxyethyl) dimethyl (phenyl) silane by plantcell suspension cultures of Symphytum officinale L. and Ruta graveolens L. Journal of OrganometallicChemistry,1993(458)1-2:13-17.
    97.潘纯华,张卫红,陈芬等。ATR红外光谱法在高分子材料袁面成份分析上的应用。广州化工,2000(28)3:34-36。
    98.吴瑾光。近代傅里叶变换红外光谱技术及应用(第一版)。科学技术文献出版社,1994。
    99.薛奇。高分子结构研究中的光谱方法。北京:高等教育出版社,1995。
    100.强志翔,戴维帅。耐水解的硅烷偶联剂的制备及应用。高分子材料科学与工程,2012(28)9:112-115。
    101. Hamid J N, AhmadR M, Hamid A. Preparation and properties of silicone containing poly (methylmethacrylate) gels. Polym. Int.,2005(54)11:1564-1571.
    102. Shuzo Kitayama, Toru Nikaido, Rena Takahashi, et al. Effect of primer treatment on bonding ofresin cements to zirconia ceramic. Dent Mater,2010,(26)5:426-432.
    103. Xiangfeng Meng, Keiichi Yoshida, Yohsuke Taira. Effect of siloxane quantity and pH of silanecoupling agents and contact angle of resin bonding agent on bond durability of resin cements tomachinable ceramic. J Adhes Dent,2011,(13)1:71-78.
    104. Pascal Magne, Maria P.G. Paranhos, Luiz H.Burnett Jr. New zirconia primer improves bondstrength of resin-based cements. Dent Mater,2010,26(4):345-352.
    105. Kunio Ikemura, Hisaki Tanaka, Toshihide Fujii. Design of a new, multi-purpose, light-curingadhesive comprising a silane coupling agent, acidic adhesive monomers and dithiooctanoate monomersfor bonding to varied metal and dental ceramic materials. Dent Mater J,2011,(30)4:493-500.
    106. Muhittin Toman, Murat Türkün, Fahinur Ertu rul. Bond strength of glass-ceramics on thefluorosed enamel surfaces. J Dent,2008,(36)4:281-286.
    107. Kamada K, Yoshida K, Atsuta M. Effect of ceramic surface treatments on the bond of four resinluting agents to a ceramic material. J Prosthet Dent,1998,(79)5:508-513.
    108. Diaz-Arnold AM, Williams VD, Aquilino SA. Review of dentinal bonding in vitro: the substrate[J]. Oper Dent,1990,15(2):71-75.
    109. Ishikawa A, Shimada Y, Foxton RM, et al. Micro-tensile and micro-shear bond strengths of currentself-etch adhesives to enamel and dentin. Am J Dent.2007,20(3):161-166.
    110. IS0TS11405:2003, Dental materials-Testing of adhesion to tooth structure.
    111. J.R. Kelly, J.A.Tesk, J.A.Sorensen. Failure of All-ceramic Fixed Partial Dentures in vitro and invivo: Analysis and Modeling. J Dent Res,1995,74(6):1253-1258.
    112. P.S. Mangat, F.J. O’Flaherty. Influence of elastic modulus on stress redistribution and cracking inrepair patches. Cement and Concrete Res,2000,30:125-136.
    113. Era H, Otsubo F, Uchida T. A modified shear test for adhesion evaluation of thermal sprayedcoating. Mat Sci Eng,1998, A251(1-2):166-172.
    114. GA. Thompson. Influence of relative layer height and testing method on the failure mode andorigin in a bilayered dental ceramic composite. Dent Mater,2000,16(4):235-243.
    115. Steiner Patrick, Kelly Robert, Giuseppetti Anthony. Compatibility of Ceramic-Ceramic Systemsfor Fixed Prosthodontics. Int J Prosthodont,1997,10(4):375-380.
    116. Erickson RL, Glasspoole EA, Retief DG. Influence of test parameters of dentin bond strengthmeasurements. J Dent Res,1989,68:374.
    117. Phrukkanon S, Burrow MF, Tyas MJ. Effect of cross-sectional surface area on bond strengthsbetween resin and dentin. Dent Mater,1998,14(2):120-128.
    118. Phrukkanon S, Burrow MF, Tyas MJ. The influence of cross-sectional shape and surface area onthe microtensile bond test. Dent Mater,1998,14(3):212-221.
    119. Grifith AA. The phenomena of rupture and flow in solids. Phil Trans Roy Sot Lon(Series A), A221:168-198.
    120. Armstrong SR, Boyer DB, Keller JC. Mierotensile bond strength testing and failure analysis oftwo dentine adhesives. Dent Mater,1998,14(1):44-50.
    121. Addison O, Marquis PM, Fleming GJ. Adhesive luting of all-ceramic restorations-the impact ofcementation variables and short-term water storage on the strength of a feldspathic dental ceramic. JAdhes Dent,2008,10(4):285-293.
    122. Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength of dual-cured resin cement toglass ceramics. Dent Mater,2002,18(5):380-388.
    123. T Nagai, Y Kawamoto, Y Kakehashi. Adhesive bonding of a lithium disilicate ceramic materialwith resin-based luting agents. J Oral Rehabil,2005,32(8):598-605.
    124.尹敏,骆小平。不同树脂水门汀和瓷表面处理对玻璃陶瓷粘结强度的影响。口腔颌面修复学杂志,2008,9(2):106-109。
    125. M S Gale, B W Darvell.Thermal cycling procedures for laboratory testing of dental restorations. JDent,1999,27(2):89-99.
    126. Jatyr Pisan, Maria Carolina G. Influence of ceramic surface conditioning and resin cements onmicrotesile bond strength to a glass ceramic. J Prosthe Dent,2006,96(6):412-417.
    127. Miller J., Ishida H. Studies of the simulation of silane coupling agent structures on particulatefillers: the pH effect. Polymer Composites,1984,5(1):18-28.
    128. Della Bona A, Shen C., Anusavice KJ. Work of adhesion of resin on treated Lithia disilicate-based ceramic. Dent Mater,2004,20(4):338-344.
    129. Matinlinna J, Ozcan M, Lassila L, et a1. Effect of the cross-linking silane concentration in anovel silane system on bonding resin-composite cement. Acta Odontol Scand,2008,66(4):250-255.
    130. Nishiyama N, Komatsu K, Fukai K, et a1. Influence of adsorption characteristics of silane of thehydrolytic stability of silane at the silica-matrix interface. Composites,1995,26(4):309-313.
    131.谭秀民,冯安生,赵恒勤。硅烷偶联剂对纳米二氧化硅表面接枝改性研究。中国粉体技术,2011,17(1):14-17。
    132. I Kamada K, Taira Y, Yoshida K, et a1. Effect of four silane coupling agents on bonding of tworesin-modified glass ionomer cements to a machinable ceramic. Dent Mater J,2007,26(2):240-244.
    133. Nishiyama N, Shick R, Ishida H. Adsorption behavior of a silane coupling agent on colloidal silicastudied by gel permeation chromatography. J Colloid Interface Sci,1991,143(1):146-156.
    134. Spencer C. Clark, William A. Ducker. Exchange Rates of Surfactant at the Solid-Liquid InterfaceObtained by ATR-FTIR. Chem. B.,2003,107:9011-9021.
    135.张颖怀,许立宁,路民旭。高聚物/金属界面微观的表征方法。材料导报,2007,21(4):44-47。
    136. Soderholm K JM, Shang SW. Molecular orientation of silane at the surface of colloidal silica. JDent R.1993,72:1050-1054.
    137.何乐年。PECVD非晶SiO2薄膜的红外吸收特性研究。功能材料,2002,33(I):76-78。
    138. Plueddemann EP. Silane coupling agents. New York Plenum Press.1982,4-29.
    139. Ji-Ming Hu, Liang Liu, Jian-Qing Zhang, Chu-Nan Cao. Electrodeposition of silane films onaluminum alloys for corrosion protection. Progress in Organic Coatings,2007(58):265–271.
    140. Mohsen NM. Craig RG. Effect of silanation of fibers on their disperse ability by monomersystems. J Oral Rehabil,1995,22:183-l89.
    141. A. Dkhissi, A. Esteve, L. Jeloaica, et al. Grafting of chains organo-silane on silica surface: aquantum chemical investigation. Chemical Physics Letters,2004(400):353-356.
    142. Yoshida Y, Van Meerbeek B, Nakayama Y, et al. Evidence of chemical bonding atbiomaterial-hard tissue interfaces. J Dent Res,2000(79):709-714.
    143. Samsook Han a, Muncheul Lee b, Byung Kyu Kim. Effective holographic recordings in thephotopolymer nano-composites with functionalized silica nanoparticle and polyurethane matrix.Optical Materials,2011(34):131-137.
    144. Trabelsi W, Dhouibi L, Triki E, et a1. An electrochemical and analytical assessment on the earlycorrosion behavior of galvanized steel pretreated with aminosilanes. Surf Coat Technol,2005(192)2:284-290.
    145. Puglisi O., M artvtta G., Torrisi A. J Non-crystalline,1985(55):433.
    146.郑兆佳,胡缙昌。玻璃表面改性的XPS研究。表面技术,1999(28)5:7-8。
    147. Valadez-Gonzalez A, Cervantes J M, Olayo R, et a1. Chemical modification of henequen fiberswith an organosilane coupling agent. Composites Part B: Engineering,1999,30(3):321-331.
    148. F. Zucchi, V. Grassi, A. FrignaniT, et al. Influence of a silane treatment on the corrosionresistance of a WE43magnesium alloy. Surface&Coatings Technology,2006(200):4136-4143.
    149.黄月文,刘伟区。甲基丙烯酰氧基硅烷-聚硅氧烷的研究进展。高分子材料科学与工程,2007(23)1:16-20。
    150. F. Zucchi, V. Grassi, A. Frignani, et al. Octadecyl-trimethoxy-silane film formed on copper indifferent conditions. Materials Chemistry and Physics,2007(103):340-344.
    151. Trajtenberg CP, Powers JM. Bond strengths of repaired laboratory composites using three surfacetreatments and three primers. Am J Dent.2004(17):123-126.
    152.马文石,时镜镜,王维。长链硅烷对埃洛石纳米管的表面改性研究。有机硅材料,2011,25(4):248~252。
    153. Sarac D, Sarac YS, Kulunk S, Kulunk T. Effect of the dentin cleansing techniques on dentinwetting and on the bond strength of a resin luting agent. J Prosthet Dent.2005(94):363-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700