表面等离子体共振光电传感系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体共振(Surface Plasmon Resonance,SPR)技术被广泛应用于生物化学检测、光无源器件的制作、新型材料的获取及物质的筛选鉴定等方面。基于SPR技术的传感器具有免标记、实时检测、灵敏度高、非破坏性、样品不需要纯化和抗背景干扰等优点。本文从SPR传感器在样品折射率检测和表面形貌探测两个应用方面出发,对组成SPR传感器的各个组成部件的选择及应用试验进行了深入的研究。
     首先,研究了构成SPR传感器的金属膜的性质。从Maxwell方程出发,对金属表面存在的表面等离子波(Surface Plasmon Wave,SPW)的波函数进行了研究,发现真空中光波无法直接激发产生SPR现象。通过对光衰减全反射理论的分析,找到了激发产生SPR现象的耦合方式,并由此给出了SPR传感器的几种耦合类型。
     其次,根据经典的Kretschmann耦合模型,从理论上对SPR传感器的各个组成部件的参数选择进行了研究,给出了参数选取对SPR传感器的探测性能的影响。分析比较了基于强度探测的表面等离子体显微镜(Surface Plasmon Microscopy,SPM)和基于相位探测的干涉型表面等离子体显微镜(Surface Plasmon Interference Microscopy,SPIM)的探测精度。
     接着,分析了SPR传感器各个组成部件的折射率在不同入射光波长和环境温度下变化的规律,根据试验数据给出了相应的拟合公式,为下一步的试验做了理论指导。
     理论分析完毕后,从试验系统的硬件和软件两个大部分出发,对整个SPR传感器做了介绍。引入了“虚拟仪器”的概念,采用Labview软件进行数据处理,给出了试验设计的总框架。针对系统中的各硬件部分做了试验前的准备工作。
     针对SPR传感器在样品折射率检测中的应用,以人类血清和含有杂质的蒸馏水为研究对象做了相关试验,发现了存在的问题,提出了相应的改进措施。通过对试验数据的分析,证明了改进后的SPR传感器的性能得到了很大的提升。
     针对SPR传感器在样品表面形貌探测中的应用,给出了实验用光源波长的选择依据,利用SPM和SPIM系统分别对样品的表面形貌进行了还原再现。通过对试验数据分析,发现SPIM相对SPM来说,很大程度上消除了系统各部件引起的误差,具有更高的分辨率。
     最后,针对试验中获得的启发和碰到的问题,将纳米孔技术和SPR技术相结合,提出了一种用于单个生物分子测量的SPR检测系统;为了消除震动对探测结果的影响,提出了SPIM系统的改进方法。
The technology of Surface Plasmon Resonance (SPR) can be widely applied in biochemical analytical, optical passive device, new material and drug screening. According to The SPR sensor has the much advantage of label-free detection, real-time monitoring, high-sensitivity, non-destructive, non-purified, and without background interference. The SPR sensor can be used in detection the refractive index and the surface image of sample, the application experiment are studied in this work.
     Firstly, we discuss the character of metal. Metal is the important part of SPR sensor. The surface of metal has Surface Plasmon Wave (SPW). We study the wave function of SPW according to the Maxwell equation and draw a conclusion that the light wave in vacuum can not excite the SPR. We analyze the theory of attenuated total reflection (ATR) and find the coupling method to excite the SPR and introduce the coupling type of the SPR sensor.
     Secondly, according to the Krestchmann coupling method, we study how to choice the parameters of the SPR sensor's parts and obtain the SPR sensor's detection performance choice different parameters. The accuracy detection of the Surface Plasmon Microscopy (SPM) based on intensity detection and the Surface Plasmon Interference Microscopy (SPIM) are studied.
     Thirdly, the index of the SPR sensor’s parts in different wavelength of incidence light and in different environmental temperature is studied. We obtain the fitting formula according to analyses the experimental data. The fitting formula gives guidance in theory for the following experiment.
     After finished the SPR theoretical analysis, we introduce the experimental system of the SPR sensor from hardware and software. The virtual instrument has been applied. We use the Labview software to analyze the experimental data. The experiment’s framework has been introduced. The preparatory work for the SPR system's hardware has been finished before the experiment.
     In connection with the SPR sensor can be used to detect the refractive index of sample. The human blood serum and the distilled water that has some impurity is the experimental sample, we find the plenty of shortcomings and improve the SPR sensor. Through the experimental data analysis, we find the detection performance of the improved SPR sensor has been upgraded.
     The SPR sensor also can be used to detect the surface image of sample. We give the principle how to choice the light source wavelength. We obtain the sample surface image using SPM and SPIM detecting system. Analyzing the experimental data, we have found SPIM can reduce the SPR system error and have higher spatial resolution than SPM.
     The lastly, on the basis of the enlightenment and much problem form the experiment. Combining the technology of nanopore and SPR, we have proposed a new SPR system to detect single biology molecule. Shake will bring system error. In order to eliminate the error, we put forward the method of renovation in the SPIM system.
引文
[1] Ritchie R H. Plasma losses by fast electrons in thin films. Phys Rev, 1957, 106: 874 - 881
    [2] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Magm, 1902, 14: 396 - 402
    [3] Otto A. Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z Physik, 1968, 216: 398 - 410
    [4] Kretschmann E, Raether H. Radioactive decay of non-radioactive surface plasmons excited by light. Nature, 1968, 23: 2135 - 2136
    [5] Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gas detection and biosensing. Sensor and Actuators, 1983, 4: 299 - 303
    [6] Archenault M, Gagnaire H, Goure J P, et al. A simple intrinsic optical-fibre chemical sensor. Sensors and Actuators, 1992, 8(B): 161 - 166
    [7] Abdelghani A, Chovelon J M, Jaffrezic R N, et al. Surface plasmon resonance fibre-optic sensor for gas detection. Sensors and Actuators, 1997, 38(B): 407 - 410
    [8] Abdelghani A, Chovelon J M, Veilla C, et al. Chemical vapor sensing by surface plasmon resonance optical fibre sensor coated with fluoropolymer. Analytica Chimica Acta, 1997, 337: 225 - 232
    [9] Bühler B, Frohlich D, Haake H M, et al. Structure and characterizations of a micro flow system for the study of modulated concentrations. Trends in Analytical Chemistry, 2001, 20(4): 186 - 194
    [10] Chen S J, Chien F C, Lin G Y, et al. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Optics Letters, 2004, 29: 12 - 18
    [11] Anna K S, Richard D H, Philip N, et al. Phase interrogation of an integrated optical SPR sensor. Sensors and Actuators, 2004, 97(B): 114 - 121
    [12] Berger C E H, Baumer T A M, Kooyman R P H, et al. Surface plasmon resonance multi-sensing. Anal Chem, 1998, 70: 703 - 706
    [13] Chang S, Lin C W, Lin S M. Design and fabrication of array format SPR chips in microstructure Monolayers Detection. Annual International IEEE, 2002, (21): 7803 -7480
    [14] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators , 1993, B(12): 213 - 220
    [15] Striebel C, Brecht A, Gauglitz G. Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosens Bioelectron, 1994, 9: 139 - 146
    [16] Ulrich A A, Peter P B, Gunter S B, et al. A comparative study of spectral and angle-dependent SPR devices in biological applications. Sensors and Actuators, 1998, 51(B): 298 - 304
    [17] Kazuhiko N, Shinsuke S, Isao S. Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nature, 2001, 19: 51 - 55
    [18] Grunwald B, Holst G. Fibre optic micro sensor for refractive index and salinity based on SPR. SPIE, 1999, 3860: 472 - 479
    [19] Agbor N E, Cresswell J P, Petty M C, et al. An optical gas sensor based on polyaniline Langmuir-Blodgett films. Sensors and Actuators, 1997, 41(B): 137 - 141
    [20] Rothenhausler B, Knoll W. Surface plasmon microscopy. Nature, 1988, 332: 615 - 617
    [21] Grigorenko A N, Nikitin P I, Kabashin A V. Phase jumps and interferometric surface plasmon resonance imaging. Appl Phys Lett, 1999, 75(25): 3917 - 3919
    [22] Notocovich A G, Zhuk V, Lipson S G. Surface plasmon resonance phase imaging. Appl Phys Lett, 2000, 76(13): 1665 - 1667
    [23]崔大付,李向明,蔡浩原等.表面等离子体谐振(SPR)生化分析仪的研制.现代科学仪器, 2001, 6: 34 - 38
    [24]聂奕,刘德明,元秀华等.用于生化分析的SPR效应研究.华中科技大学学报, 2001, 8: 21 - 22
    [25] Qiang L, Xiu H Y, De X H. High resolution surface plasmon interference resonance phase imaging. Proc of SPIE, 2005, 6020: 738 - 745
    [26]牟颖,赵晓君,王珍等.γ-干扰素DNA传感器组装过程的表面等离子体子共振研究.化学学报, 2000, 58(5): 500 - 504
    [27]崔小强,裴仁军,杨秀荣.表面等离子体共振法检测人血清白蛋白抗体活性.分析化学, 2000, 8: 950 - 955
    [28] Melendez j, Carr R, Bartholome W, et al. A commercial solution for surface plasmon sensing. Sensors and Actuators , 1996, B(35): 212 - 216
    [29] Raether H. Surface plasmon. Berlin: Springer, 1988. 89 - 102
    [30]顾秉林,王喜坤.固体物理学.北京:清华大学出版社, 1989. 35 - 66
    [31] H. E. Hall.固体物理学.刘志远,张增顺译.北京:高等教育出版社, 1983. 102 - 113
    [32]郭永康,鲍培谛.光学教程.成都:四川大学出版社, 1993. 96 - 98
    [33] Raether H. Surface plasma oscillations and their applications. Phys of Thin Films, 1977, (45): 145 - 258
    [34] Vancott T C, Loomis L D, Redfield R R, Birx D L. Real-time biospecific interaction analysis of antibody reactivity to peptides from the envelope glycoprotein. Journal of Immunological Methods, 1992, 146(2): 163 - 176
    [35] Lin W B, Nincole J R, Chovlon J M, et al. Optical fiber as a whole surface probe for chemical and biological application. Sensors and Actuators, 2001, 74(B): 207 - 211
    [36] Cheng Y Y, Su W K, Liou J H , et al. Application of a liquid sensor based on surface plasmon wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt Eng, 2000, 39: 311 - 314
    [37] Tiefenthaler K, Lukosz W. Integrated optical switches and gas sensors. Opt Lett, 1987, 9: 137 - 139
    [38] Cullen D C, Brown R G, Lowe C R. Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors, 1987/88, 3(4): 211 - 225
    [39] Jory M J, Vukusic P S, Sambles J R. Development of a pototype gas sensor using surface-plasmon resonance on gratings. Sensors and Actuators, 1994, 17(B): 203– 209
    [40] Lawrence C R, Geddes N J, Furlong, D N. Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings. Biosens & Bioelectron, 1996, 11: 389 - 400
    [41] Jory M J, Bradbery G W, Cann P S, et al. A surface-plasmon-based optical sensorusing acousto-optics. Measurement Sci Technol, 1995, 6: 1193 - 1200
    [42] Ebbsen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Letters to Nature, 1998, 391: 667 - 669
    [43] Homola J, Koudela I, Yee S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors and Actuators, 1999, 54(B): 16 - 24
    [44] Severs A, Schasfoort R. Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles. Biosens Bioelectron, 1993, 8: 365 - 370
    [45] Morgan H, Taylor D A. A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosens Bioelectron, 1992, 7: 405 - 410
    [46] Attridge J W, Danieis P B. Deacon J K, et al. Sensitivity enhancement of optical immuno-sensors by the use of a surface plasmon resonance fluoroimmunoassay. Biosens Bioelectron, 1991, 6: 201 - 214
    [47] Salamon Z, Brown M F, Tollin G. Surface plasmon resonance spectroscopy: probing molecular interactions within membranes. Trends in Biomedical Sciences, 1999, 24: 213 - 219
    [48] Steiner G., Sablinskas V, Hubner A, et al. Surface plasmon resonance imaging of micro structured monolayer. J Mol Struct, 1999, 509: 265 - 273
    [49] Jordan C E, Corn R M. Surface plasmon resonance imaging measurement of electrostatic biopolymer adsorption onto chemically modified gold surface. Anal Chem, 1997, 69: 1449 - 1456
    [50] Jian W, Dejiao L, Chunyong Y. Nanometer indicating system based on surface plasmon resonance and its application in an interferometer. Opt Eng, 2002, 41(3): 669 - 673
    [51] Nikitin P I, Grigorenko A N, Beloglazov A A, et al. Surface plasmon resonance interferometry for micro-array biosensing. Sensors and Actuators, 2000, 85(A): 189 - 193
    [52] Nikitin P I, Beloglazov A A, Kochergin V E, et al. Surface plasmon resonance interferometry for biological and chemical sensing. Sensors and Actuators, 1999, 54(B): 43 - 50
    [53] Kun H C, Cheng C H, Der C S. Measurement of wavelength shift by using surfaceplasmon resonance heterodyne interferometry. Optics Commun, 2002, 209: 167 - 172
    [54] Chien M W, Zhi C J, Shen F J. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators, 2003, 92(B): 133 - 136
    [55] Tay C J, Quan C, Shang H M. Shape identification using phase shifting interferometry and liquid-crystal phase modulator. Optics and Laser Technology, 1998, 30: 545 - 550
    [56] Avander Z. Noise in Measurements. New York: John Wiley & Sons. Inc., 1976. 20 - 32
    [57] Kolomenskii A A, Gershon P D, Schuessler H A. Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl Opt, 1997, 36(25): 6539 - 6546
    [58] Kroo N, Krieger W, Lenkefi Z, et al. A new optical method for investigation of thin films. Surface Science, 1995, 331-333: 1305 - 1309
    [59]陈鹏万.大学物理手册.山东:科学技术出版社, 1985. 71 - 75
    [60] www.schott.com/optics_devices
    [61] Sinzig J, Quinten M. Scattering and absorption by spherical multilayer particles. Applied Physics A, 1994, 58(2): 157 - 162
    [62] Matsubara K, Kawata S. Optical chemical sensor based on surface plasmon resonance. Electron Lett, 1988, 23: 1160 - 1163
    [63] Bruijn H E, Altenburg B. Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations. Apply Optics, 1992, 31: 440 - 442
    [64] Bruijn H E, Altenburg B. Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance. Optic Commun, 1991, 82: 425 - 432
    [65] Lavers C R, Wilkinson J S. A waveguide-coupled surface-plasmon sensor for an aqueous environment. Sensors and Actuators, 1994, 22(B): 75 - 81
    [66] Ordal M A , Long L L. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Optics, 1983, 11: 1099 - 1119
    [67] Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Spring-Verlag(Berlin), 1988, 111: 125 - 127
    [68] Homola J. On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuators, 1997, 41(B): 207 - 211
    [69] Karlsen S R, Johnston K S. First-order surface plasmon resonance sensor system based on a planar light pipe. Sensors and Actuators, 1996, 32(B): 137 - 141
    [70] Kikuo U. Reflectivity of metals at high temperature. J Appl Phys, 1972, 43(5): 2376 - 2383
    [71] Chiang H P, Leung P T, Tse W S. Optical properties of composite materials at high temperatures. Solid State Communications, 1997, 101(1): 45 - 50
    [72] Lawrence W E. Electron-electron scattering in the low-temperature resistivity of the noble metals. Phys Rev, 1976, 13(B): 5316 - 5319
    [73] Ziman J M. Electrons and Phonos. England: Clarendon Press, 1960. 99 - 108
    [74] Chiang H P, Wang Y C. A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance. Optics Communicatiions, 2001, 188: 283 - 289
    [75] Chiang H P, Leung P T, Tse W S. The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures. Journal of Chemical Physics, 1998, 108(6): 2659 - 2670
    [76] Runa N, Hitoshi M. A plasma-polymerized film for surface plasmon resonance immunosening. Anal Chem, 1977, 69: 4649 - 4652
    [77] Rebecca L R, David G M. Recent developments in SPR biosensor technology: application of BIACORE. Chemical Sensors, 2001, 21(2): 14 - 23
    [78] Yang J, Sui S F. Polystyrene based SPR biosensor chip for use in immunoassay. Tsinghua Science and Technology, 1999, 4(3): 1495 - 1498
    [79] Hui A W, Hamielec A E. Thermal polymerization of styrene at high conversions and temperatures an experimental study. J Appl Polym Sci, 1972, 16: 749 - 769
    [80] Du Y, Hu X H. Optical properties of porcine skin dermis between 900 nm and 1500 nm. Phy Med Biol, 2001, 46: 167 - 181
    [81] Peters V G, Wyman D R. Optical properties of normal and diseased human breast tissues in the visible and near infrared. Phys Med Biol, 1990, 35: 1317 - 1334
    [82] Vogel A I. Physical properties and chemical constitution. J Chem Soc, 1948. 1833 - 1854
    [83] Xiaoyan M, Jun Q L. Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys Med Biol, 2003, 48: 4165 - 4172
    [84] Herminghaus S, Leiderer P. Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime. Appl Phys Lett, 1991, 58: 352 - 354
    [85] Agranovich V M, Mills D L. Surface polaritons-electromagnetic waves at surfaces and interfaces. Amsterdam: North-Holland, 1982. 53 - 69
    [86] www.ni.com
    [87] Blodgett K B. Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc, 1935, 57: 792 - 802
    [88] Blodgett K B, Langmuir I. Built-up films of barium stearate and the iroptical properties. Physical Reviews, 1937, 51: 964 - 971
    [89] Qiang Z, Bin H. Surface plasmon resonance on the LB monolayer of solvent-soluble silicon phthalocyanine. Supr Sci, 1998, 5: 631 - 634
    [90] Lu Z H, Fang J Y. Observation of elongated and aligned polymer chains in a two-dimensional system by atomic force microscopy. Physics Letters A, 1993, 181: 183 - 185
    [91] Pastorino L, Berzina T S. Biocatalytic Langmuir-Blodgett assemblies based on penicillin Gacylase. Physics Letters A, 2002, 23: 357 - 363
    [92] Lu Z H, Fang J Y. An automatic Langmuir-Blodgett system based on flowing sub phase compression. Thin Solid Films, 1994, 243: 371 - 373
    [93] Chittur K K. FTIR/ATR for protein adsorption to biomaterial surface. Biomaterials, 1998, 19: 357 - 369
    [94] Green R J, Davies M C. Competitive protein adsorption as observer by surface plasmon resonance. Biomaterials, 1999, 20: 385 - 391
    [95] Disley D M, Morrill P R. An optical biosensor for monitoring recombinant proteins in process media. Biosens Bioelectron, 1999, 14: 481 - 489
    [96] Nelson R W, Krone J R, Jansson O. Surface plasmon resonance biomolecular interaction analysis mass spectrometry. Anal Chem, 1997, 69: 4369 - 4376
    [97] Timothy M, Anita S. Improving surface plasmon resonance sensor performance using critical angle compensation. SPIE, 1999, 3857: 104 - 113
    [98] Derek S, Jiali L, Jene A. Ion-beam sculpting time scales. Phys Rev Lett, 2002, 89: 61- 64
    [99] Storm A J, Chen J H. Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2003, 2: 537 - 540
    [100] Song L, Hobaugh M R. Structure of staphylococcal-hemolysin, a heptameric transmembrane pore. Science, 1996, 274 (5294): 1859 - 1865
    [101] Siwy Z, Fulinski A. Fabrication of a synthetic nanopore ion pump. Physical Rview Letters, 2002, 89(19): 1031 - 1034
    [102] Jiali L, Derek S. Ion beam sculpting at nanometer length scales. Nature, 2001, 412: 166 - 169
    [103] Sergey M, Malek O. Phase behavior of single DNA in mixed solvents. Journal of American Chemical Society, 1999, 121: 1130 - 1136
    [104] Ralls K S, Buhrman R A, Tiberio R C. Fabrication of thinfilm metal nanobridges. Appl Phys Lett, 1989, 55: 2459 - 2461
    [105] Shen S, Liu T, Guo J. Optical phase-shift detection of surface plasmon resonance. Appl Opt, 1998, 37: 1747–1751
    [106] Qiang L, Xiuhua Y, Dexiu H. Fiber optic surface plasmon resonance sensors for imaging system. Optical Engineering, 2007, 46(5): 1231 - 1236
    [107] Hsiu F M, Chen S J. Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization. Pro of SPIE, 2002, 4819: 167 - 174
    [108] Chen S J, Su Y D, et al. Surface plasmon resonance phase-shift interferometry: Real-time DNA micro array hybridization analysis. Journal of Biomedical Optics, 2005, 10(3): 51 - 56
    [109] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Applied Optics, 1987, 26(13): 2504 - 2506
    [110] Schwider J, Dresel T, Manzke B. Some consideration of reduction of reference phase error in phase stepp ing interferometry. Applied Optics, 1999, 38(4): 655– 659

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700