骨髓间充质干细胞移植对慢性马兜铃酸肾病大鼠模型肾小管周毛细血管修复及治疗作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     马兜铃酸肾病(arisolochic acid nephropathy,AAN)是由于服用含有马兜铃酸的中草药所致的肾脏损害。在不同类型的AAN中,以慢性马兜铃酸肾病(chronicaristolochic;acid nephropathy,CAAN)最为多见。进展迅速的小管萎缩、间质纤维化与肾功能损害不平行的早期严重贫血及可伴发肿瘤,是本病的突出特征。至今CAAN的发病机制尚不清楚。近年来研究显示,CAAN在有明显的肾小管损伤、肾间质纤维化之前,肾小管周毛细血管(peritubular capillary,PTC)已有所减少,且PTC减少与肾间质纤维化程度成正相关。因此,如何解决PTC丢失是治疗CAAN的重要环节。
     骨髓间充质干细胞(Mesenchymal stem cells,MSCs)移植,近年来已成为干细胞领域的研究热点。MSCs不仅支持造血系统,理论上还可向中胚层和外胚层来源的组织分化。最近国内外,体内、体外研究结果均已证明MSCs可向血管内皮细胞(endothelial cells,ECs)分化,为应用MSCs修复PTC,改善肾间质-小管低氧状态,提供了契机。
     本试验拟从以下三个方面进行研究:①探讨骨髓间充质干细胞是否具有向慢性马兜铃酸肾病肾小管周毛细血管内皮细胞分化的潜能;②骨髓间充质干细胞移植是否具有改善慢性马兜铃酸肾病肾间质缺氧状态的治疗作用;③骨髓间充质干细胞移植是否具有改善慢性马兜铃酸肾病肾间质纤维化的治疗作用。
     材料与方法
     第一部分:①MSCs的分离、纯化及培养。于超净台中,取出雄性Wistar大鼠(5只,155±5g,鼠龄6w)双侧股骨,用L-DMEM(低糖DMEM)培养液,冲洗骨髓腔,制备成骨髓单细胞悬液。用1.073的Percoll液来分离获得白色有核细胞层,PBS洗涤后,于1000rpm、4℃,离心30 min。用10%(体积分数)FBS的L-DMEM培养液(加青霉素100U/ml、链霉素100μg/ml)重悬细胞。以1×10~7 cell/ml接种于25ml塑料培养瓶。培养条件为L-DMEM培养液(组方同上文)、37℃,5%CO_2,100%饱和湿度孵箱静置培养。48-72小时首次换液,弃悬浮细胞。经数次换液,培养10~14d后传代。当贴壁细胞达到90%左右的融合后,予以传代。②MSCs的鉴定。根据细胞表面抗原CD_(34)、CD_(105)、CD_(29)、CD_(44)表达情况,以鉴定第5代骨髓源细胞为MSCs后,经消化、洗涤,PBS调整细胞浓度为1×10~7 cell╱ml后备用。
     将30只雌性大鼠随机分为3组:①慢性马兜铃酸肾病大鼠模型MSCs非移植组(下文均简称为CAAN组);②慢性马兜铃酸肾病大鼠模型MSCs移植组(下文均简称为MSCs移植组);③正常对照组。CAAN组和MSCs移植组各10只雌性大鼠经关木通水煎剂灌胃(关木通原药20g·kg~(-1)·d~(-1),相当于关木通水煎剂10ml·kg~(-1)·d~(-1),2次/日)12周制备CAAN大鼠模型。正常对照组雌性大鼠10只,予饮用水(10ml·kg~(-1)·d~(-1),2次/日)灌胃12周。第12周,MSCs移植组经尾静脉输入1ml MSCs悬液;CAAN组和正常对照组经尾静脉输入1ml生理盐水。第16周,处死全部大鼠留取肾组织标本。本部分用免疫荧光(IF)和Y染色体荧光原位杂交(Y-FISH)法,检测Y染色体和CD34双阳性细胞的分布,观察MSCs移植组大鼠肾组织中MSCs向血管内皮细胞分化情况。
     第二部分:①MSCs的分离、纯化及培养。于超净台中,取出雄性Wistar大鼠(5只,155±5g,鼠龄6w)双侧股骨,用L-DMEM(低糖DMEM)培养液,冲洗骨髓腔,制备成骨髓单细胞悬液。用1.073的Percoll液来分离获得白色有核细胞层,PBS洗涤后,于1000rpm、4℃,离心30 min。用10%(体积分数)FBS的L-DMEM培养液(加青霉素100U/ml、链霉素100μg/ml)重悬细胞。以1×10~7 cell╱ml接种于25ml塑料培养瓶。培养条件为L-DMEM培养液(组方同上文)、37℃,5%CO_2,100%饱和湿度孵箱静置培养。48-72小时首次换液,弃悬浮细胞。经数次换液,培养10~14d后传代。当贴壁细胞达到90%左右的融合后,予以传代。②MSCs的鉴定。根据细胞表面抗原CD_(34)、CD_(105)、CD_(29)、CD_(44)表达情况,以鉴定第5代骨髓源细胞为MSCs后,经消化、洗涤,PBS调整细胞浓度为1×10~7 cell/ml后备用。
     将30只雌性大鼠随机分为3组:①慢性马兜铃酸肾病大鼠模型MSCs非移植组(下文均简称为CAAN组);②慢性马兜铃酸肾病大鼠模型MSCs移植组(下文均简称为MSCs移植组);③正常对照组。CAAN组和MSCs移植组各10只雌性大鼠经关木通水煎剂灌胃(关木通原药20g·kg~(-1)·d~(-1),相当于关木通水煎剂10ml·kg~(-1)·d~(-1),2次/日)12周制备CAAN大鼠模型。正常对照组雌性大鼠10只,予饮用水(10ml·kg~(-1)·d~(-1),2次/日)灌胃12周。第12周,MSCs移植组经尾静脉输入1ml MSCs悬液;CAAN组和正常对照组经尾静脉输入1ml生理盐水。第16周,处死全部大鼠,留取血、尿、肾组织标本。处死前留取24小时尿以做24小时尿蛋白定量,眼眦静脉取血作血尿素氮、血清肌酐等生化指标检测。透射电镜、HE染色观察实验各组病理改变情况。应用免疫组织化学技术、Western blotting和RT-PCR等检测方法,观察实验各组大鼠肾组织PTC密度、HIF-1α、VEGF、VEGFR-2表达情况。
     第三部分:①MSCs的分离、纯化及培养。于超净台中,取出雄性Wistar大鼠(5只,155±5g,鼠龄6w)双侧股骨,用L-DMEM(低糖DMEM)培养液,冲洗骨髓腔,制备成骨髓单细胞悬液。用1.073的Percoll液来分离获得白色有核细胞层,PBS洗涤后,于1000rpm、4℃,离心30 min。用10%(体积分数)FBS的L-DMEM培养液(加青霉素100U/ml、链霉素100μg/ml)重悬细胞。以1×10~7 cell/ml接种于25ml塑料培养瓶。培养条件为L-DMEM培养液(组方同上文)、37℃,5%CO_2,100%饱和湿度孵箱静置培养。48-72小时首次换液,弃悬浮细胞。经数次换液,培养10~14d后传代。当贴壁细胞达到90%左右的融合后,予以传代。②MSCs的鉴定。根据细胞表面抗原CD_(34)、CD_(105)、CD_(29)、CD_(44)表达情况,以鉴定第5代骨髓源细胞为MSCs后,经消化、洗涤,PBS调整细胞浓度为1×10~7 cell/ml后备用。
     将30只雌性大鼠随机分为3组:①慢性马兜铃酸肾病大鼠模型MSCs非移植组(下文均简称为CAAN组);②慢性马兜铃酸肾病大鼠模型MSCs移植组(下文均简称为MSCs移植组);③正常对照组。CAAN组和MSCs移植组各10只雌性大鼠经关木通水煎剂灌胃(关木通原药20g·kg~(-1)·d~(-1),相当于关木通水煎剂10ml·kg~(-1)·d~(-1),2次/日)12周制备CAAN大鼠模型。正常对照组雌性大鼠10只,予饮用水(10ml·kg~(-1)·d~(-1),2次/日)灌胃12周。第12周,MSCs移植组经尾静脉输入1ml MSCs悬液;CAAN组和正常对照组经尾静脉输入1ml生理盐水。第16周,留取肾组织标本。应用免疫组织化学技术和RT-PCR技术检测结缔组织生长因子(CTGF)、金属蛋白酶组织抑制物-1(TIMP-1)、胶原-Ⅰ(Col-I)的表达情况。观察MSCs移植后,有无改善慢性马兜铃酸肾病肾间质纤维化的治疗作用。
     结果
     第一部分:Y-FISH和CD_(34)免疫荧光染色结果。①正常对照组:第16周,雌性大鼠肾组织切片经Y-FISH检测未发现Y染色体阳性(Y~+,黄绿色荧光亮点)细胞。②CAAN组:第16周,雌性CAAN大鼠肾组织切片经Y-FISH检测未发现Y~+细胞。③MSCs移植组:第16周,大鼠肾组织切片经Y-FISH检测可见Y~+细胞;同时,部分Y~+细胞细胞浆、细胞膜同时可见红色荧光即内皮细胞标准物CD_(34)阳性,即发现Y染色体和CD_(34)双阳性细胞。Y~+和CD_(34)双阳性细胞占所在视野内皮细胞的比例为(4.98±1.56)%,占所在视野总细胞的比例为(1.12±0.48)%。
     第二部分:①一般状态观察。CAAN组大鼠一般状态继续恶化,活动明显减少、进食极少、毛色秽暗、严重者出现耸毛、局部脱毛、稀水便加重。逐渐出现毛色暗黄、大便塘等现象;MSCs移植组可见大鼠一般状态明显好转,活动增多、进食增加、毛色恢复光泽、大便成形。②免疫组织化学结果。第16周,CAAN组与MSCs移植组结果分别为:CD_(34)-IOD值(8.26±0.08)×10~3、(21.25±0.62)×10~3,P<0.01;PTC密度(5.26±0.78)/0.13mm~2、(26.47±1.56)/0.13mm~2,P<0.01;HIF-1α-IOD值(25.27±1.46)×10~3、(6.74±0.67)×10~3,P<0.01;VEGF-IOD值(2.75±0.38)×10~3、(14.67±1.67)×10~3,P<0.01。③Western blotting结果。MSCs移植组CD_(34)、VEGF、VEGFR-2表达较CAAN组显著增强,P均<0.01;MSCs移植组HIF-1α表达较CAAN组显著减弱,P<0.01④RT-PCR结果。MSCs移植组HIF-1αmRNA较CAAN组表达显著减弱;MSCs移植组VEGFmRNA较CAAN组显著增加,P值均<0.01。⑤MSCs移植组BUN、Scr和24h尿蛋白定量较CAAN组显著降低,P<0.01。⑥肾组织形态学。HE染色可见CAAN组大部分肾小管萎缩、管壁断裂。肾血管壁增厚、存在广泛玻璃样变。MSCs移植组肾小管上皮细胞肿胀、空泡变性减轻,可见炎性细胞散在分布。电镜可见CAAN组ECs线粒体肿胀、线粒体脊断裂,胞浆空泡和致密颗粒血管基底膜结构不规整,节段性增厚伴有分层,部分ECs与基底膜分离、基底膜断裂、ECs脱落至血管腔内。MSCs移植组ECs线粒体肿胀程度、线粒体脊断裂程度减轻,血管基底膜清晰但是局部仍然厚薄不均。
     第三部分:①Masson染色。正常对照组肾小球、肾小管形态基本正常。第16周,CAAN组可见大部分肾小管萎缩、管壁断裂,肾间质纤维化面积显著扩大,出现多灶性纤维化。MSCs移植组肾小管上皮细胞肿胀,肾间质纤维化不明显。MSCs移植组较CAAN组肾间质纤维化面积显著减小,P值<0.01。②免疫组织化学染色结果。第16周,CAAN组与MSCs移植组结果分别为:CTGF-IOD值(31.54±3.14)×10~3、(11.28±2.57)×10~3,P<0.01;TIMP-1-IOD值(34.54±2.79)×10~3、(16.75±0.74)×10~3,P<0.01;Col-1-IOD值(16.75±1.34)×10~3、(8.37±1.12)×10~3,P<0.01;③RT-PCR结果。MSCs移植组较CAAN组HIF-1αmRNA、CTGFmRNA、TIMP-1mRNA的表达显著减弱,两者比较,P值均<0.01。
     结论
     本研究结果表明:
     1、MSCs移植组大鼠肾脏组织行Y-FISH和CD_(34)荧光染色可见Y染色体和血管内皮细胞标志抗原CD_(34)双阳性细胞,从而证明了MSCs具有在CAAN大鼠肾脏向ECs分化的潜能。
     2、MSCs移植可增加CAAN大鼠肾脏PTC密度、降低HIF-1α表达,改善肾间质肾小管缺氧状态、并促进VEGF和VEGFR-2表达上调。
     3、第16周,CAAN大鼠存在明显肾功能恶化、24小时蛋白尿量显著增加。MSCs移植后CAAN大鼠肾功能、24小时蛋白尿量等生化指标得到改善。
     4、MSCs移植能明显减轻肾间质纤维化面积;降低肾脏纤维化相关因子CTGF、TIMP-1、Col-I的表达。
Objective
     Aristolochic Acid Nephropathy(AAN) is a renal disease reported after the introduction of Chinese herbs contained aristolochic acid.The chronic aristolochic acid nephropathy(CAAN) is the commonest AAN.Rapidly progressive tubulointerstitial fibrosis and early,severe anaemia and urothelial malignancy of the upper urinary is the characteristics of AAN.Recently,attention has focused on the mechanism of fibrosis and anaemia in AAN.Pathogenesis of CAAN is not clear yet currently.Peritubular capillary(PTC) loss,with consequent tissue hypoxia and ischemia,play an important role in progressive CAAN.PTC loss contributed to the progressive tubulointerstitial fibrosis.
     Mesenchymal stem cells(MSCs) have the capability to differentiate cells of endothelial lineage in vitro.MSCs may be a useful source of stem cell therapy.So if MSCs could differentiate into endothelial cells in PTC and repair PTC,MSCs transplantation maybe lessen renal damage and interstitial fibrosis in the rat model of CAAN.
     Our investigation included three parts:①The differential potentiality study of MSCs into vascular endothelia cells(ECs) in PTC in the rat model of CAAN.②The therapeutic action of MSCs transplantation can repair PTC and improve the condition of hypoxia on the CAAN rats.③The effect of MSCs transplantation to the express of the connective tissue growth factor(CTGF),tissue inhibitor of matrix metalloproteinase-1(TIMP-1) and collage-Ⅰ(Col-Ⅰ) in the kidney of chronic aristolochic acid nephropathy rats.
     Materials and Methods
     Part 1:Under sterile conditions,the femurs of five male Wistar rats(155±5 g,age 6 weeks) were excised.Bone marrow plugs were extracted from the bones by flushing the bone marrow cavity with a 19G needle and L-DMEM.After mononuclear cells were isolated by centrifugation through 1.073 g/ml Percoll at 1000rpm and 4℃for 30 minutes,the cells were resuspended in DMEM culture medium,plated(1×10~7 cells per 25 cm~2 culture flask),and incubated at 37℃humidified atmosphere with 5%CO_2 for 3 days.The mesenchymal population was isolated on the basis of its ability to adhere to the culture plateau.At 90%confluence,the cells were trypsinized and were passaged to 25 cm~2 culture flasks at 1:3 ratios.Fifth-passage MSCs were used in all experiments. Fifth-passage MSCs were trypsinized and counted after rinse in phosphate-buffered saline(PBS).Aliquots of cells were incubated for 30 minutes with PE/FITC labelled monoclonal polyclone against rat CD29,CD34,CD44 and CD105.After being washed with PBS,the stained cells were run on a flow cytometer to identify the purity of MSCs.
     Thirty female Wistar rats were randomly divided into 3 groups.The Normal Control Group was perfused intragastrically with drinking water for 12 weeks.MSCs Group and CAAN Group were perfused intragastrically with decoction of Caulis aristolochiae manchuriensis for 12 weeks.At weeks 12 after establishing the model of chronic aristolochic acid nephropathy(CAAN) successfully,we injected the MSCs from the male Wistar rat into MSCs Group by caudal vein and injected 0.9%saline solution into CAAN Group and The Normal Control Group respectively.At weeks 16, ten rats respectively in three groups were killed.Their kidneys were takenout. Fluorescence in situ hybridization(FISH) test and immunofluorescence with CY_3-labeled CD34 was used.HE and Masson staining were used to observe the pathology of the kidney.
     Part 2:Under sterile conditions,the femur of five male Wistar rats(155±5g, age 6 weeks) were excised.Bone marrow plugs were extracted from the bones by flushing the bone marrow cavity with a 19G needle and L-DMEM.After mononuclear cells were isolated by centrifugation through 1.073 g/ml Percoll at 1000rpm and 4℃for 30 minutes,the cells were resuspended in DMEM culture medium,plated(1×10~7 cells per 25 cm~2 culture flask),and incubated at 37℃humidified atmosphere with 5% CO_2 for 3 days.The mesenchymal population was isolated on the basis of its ability to adhere to the culture plateau.At 90%confluence,the cells were trypsinized and were passaged to 25cm~2 culture flasks at 1:3 ratios.Fifth-passage MSCs were used in all experiments.Fifth-passage MSCs were trypsinized and counted after rinse in phosphate-buffered saline(PBS).Aliquots of cells were incubated for 30 minutes with PE/FITC labelled monoclonal polyclone against rat CD29,CD34,CD44 and CD105.After being washed with PBS,the stained cells were run on a flow cytometer to identify the purity of MSCs.
     Thirty female Wistar rats were randomly divided into 3 groups.The Normal Control Group was perfused intragastrically with drinking water for 12 weeks.MSCs Group and CAAN Group were perfused intragastrically with decoction of Caulis aristolochiae manchuriensis for 12 weeks.At weeks 12 after establishing the model of chronic aristolochic acid nephropathy(CAAN) successfully,we injected the MSCs from the male Wistar rat into MSCs Group by caudal vein and injected 0.9%saline solution into CAAN Group and The Normal Control Group respectively.At weeks 16, ten rats respectively in three groups were killed.Before killing the rats,specimens of blood and urine were Collected to detect the blood urea nitrogen(BUN),serum creatinine(Scr) and urine protein.Their kidneys were takenout.HE staining and electron microscope were used to observe the pathology of the kidney. Immunohistochemistry,Western blotting and RT-PCR used to detect the expression of hypoxia-inducible factor-1α(HIF-1α),CD34,Vascular endothelial growth factor acceptor 2(VEGFR-2) and Vascular endothelial growth factor(VEGF).
     Part 3:Under sterile conditions,the femur of five male Wistar rats(155±5g, age 6 weeks) were excised.Bone marrow plugs were extracted from the bones by flushing the bone marrow cavity with a 19G needle and L-DMEM.After mononuclear cells were isolated by centrifugation through 1.073 g/ml Percoll at 1000rpm and 4℃for 30 minutes,the cells were resuspended in DMEM culture medium,plated(1×10~7 cells per 25 cm~2 culture flask),and incubated at 37℃humidified atmosphere with 5% CO_2 for 3 days.The mesenchymal population was isolated on the basis of its ability to adhere to the culture plateau.At 90%confluence,the cells were trypsinized and were passaged to 25cm~2 culture flasks at 1:3 ratios.Fifth-passage MSCs were used in all experiments.Fifth-passage MSCs were trypsinized and counted after rinse in phosphate-buffered saline(PBS).Aliquots of cells were incubated for 30 minutes with PE/FITC labelled monoclonal polyclone against rat CD29,CD34,CD44 and CD105.After being washed with PBS,the stained cells were run on a flow cytometer to identify the purity of MSCs.
     Thirty female Wistar rats were randomly divided into 3 groups.The Normal Control Group was perfused intragastrically with drinking water for 12 weeks.MSCs Group and CAAN Group were perfused intragastrically with decoction of Caulis aristolochiae manchuriensis for 12 weeks.At weeks 12 after establishing the model of chronic aristolochic acid nephropathy(CAAN) successfully,we injected the MSCs from the male Wistar rat into MSCs Group by caudal vein and injected 0.9%saline solution into CAAN Group and The Normal Control Group respectively.At weeks 16, ten rats respectively in three groups were killed.Immunohistochemistry and RT-PCR were used to detect the expression of connective tissue growth factor(CTGF),tissue inhibitor of matrix metalloproteinase-1(TIMP-1) and collage-Ⅰ(Col-Ⅰ).
     Results
     Part 1:We couldn't detect the Y chromatin-positive hybrid cells(Y~+,flavo-green fluorescence brighiened dot) cell in the renal section of the Normal Control Group rat and the CAAN Group rat.Through Y chromosome fluorescence in situ hybridization. Then we detect the MSCs Group,also found the Y~+ cells,and at the same time part of the Y~+ cells expressed vascular endothelia cells phenotype CD34,with immunofluorescence by serial seetions.
     Part 2:At week 16,Scr and urine protein of MSCs Group were significantly lower than those of CAAN Group.The indices of MSCs Group and CAAN Group respectively follows:CD34-IOD[(21.25±0.62)×10~3,(8.26±0.08)×10~3,P<0.01].the density of PTC[(26.47±1.56)/0.13mm~2 and(5.26±0.78)/0.13mm~2,P<0.01],HIF-1α-IOD [(6.74±0.67)×10~3,(25.27±1.46)×10~3,P<0.01].The expression of HIF-1αand HIF-1αmRNA of MSCs Group were significantly lower than those of CAAN Group. The density of PTC and expression of VEGF,VEGFR-2 and VEGFmRNA of MSCs Group were significantly higher than those of CAAN Group.There was significantly different between two groups(statistic result respectively showed P<0.01).
     Part3:In the Normal Control Group,no significant abnormality was observed in the renal tissue samples,but severe injury was found in the CAAN Group and renal interstitial fibrosis was obvious.On the contrary,in the MSCs Group rats,there was moderate interstitial edema,no significant interstitial fibrosis.Interstitial fibrosis areas of the CAAN Group was increased,(P value was less than 0.01).Compared to the CAAN Group rats was obviously improved through electron microscope.The indices of CAAN Group and MSCs group respectively follows:the density of CTGF-IOD [(31.54±3.14)×10~3,(11.28±2.57)×10~3,P<0.01],TIMPI-IOD[(34.54±2.79)×10~3,(16.75±0.74)×10~3,P<0.01],Col I-IOD[(16.75±1.34)×10~3,(8.37±1.12)×10~3,P<0.01].The expression of CTGF,TIMP1and ColⅠmRNA of MSCs Group were significantly lower than those of CAAN Group.There was significantly different between two groups(statistic result respectively showed P<0.01).There was significantly different between two groups(statistic result respectively showed P<0.01)
     Conclusion
     These data suggested that:
     (1) Y chromosome and CD_(34) double positive cells could be seen in renal tissue in MSCs Group. MSCs can differentiate into ECs in PTC.
     (2) MSCs can repair PTC and improve the condition of hypoxia.MSCs transplantation had beneficial effects on CAAN,which was possibly related with the reduction of PTC.MSCs transplantation can significantly improve the renal function of CAAN rats,lessen the level of 24h Urine protein.It expanded a new therapeutic way to CAAN,even to other renal failure.
     (3) MSCs transplantation can markedly remission renal pathological lesion of CAAN rats,lighten interstitial fibrosis.Decrease the protein and mRNA expression of CTGF,TIMP-1 and Col-Ⅰ.Therefore MSCs transplantation can lessen renal damage and interstitial fibrosis from the two aspects of cell and cytokine.It will provide a beneficial reference to the therapy of CAAN,even to that of other renal tubule interstitial fibrosis.
引文
1 李晓玫,杨莉,于洋,等.木通所致肾小管质肾病及其临床病理特点分析.中华内科杂志.2001:40:681-687.
    2 郭晓听,程鲁榕.马兜铃酸毒理学性研究与启示.中国新药杂志.2005:14(3):363-366.
    3 左巍,冯江敏.马兜铃酸引起肾损害发病机理及其治疗.中医药学刊.2003:21(2):178-180.
    4 原玲.中药与肾损害.新医学.2005:36(9):542-543.
    5 Wang JS,Shum-Tim D,Galipeau J,et al.Marrow stromal cells for cellular cardiomyo plasty feasibility and potential clinical advantages.J Thorac Cardiovasc Surg.2000;120:999-1005.
    6 Sun B,Zbang S,Ni C,et al.Correlation between melanoma angiogenesis and the mesencbymal stem cells and endothelial progenitor cells derived from bone marrow.Stem Cells.2005;14:292-298.
    7 Hristov M,Er W,Weber PC.Endothelial progenitor cells:Mobilization,different-tiateon and homing.Arterioscler Thromb Yasc Biol.2003;23:1185-1189.
    8 李晓玫,杨莉,于洋,等.关木通所致肾小管质肾病及其临床病理特点分析.中华内科杂志.2001:40:681-687.
    9 王艳艳.肾间质纤维化中小管周毛细血管病变的研究临床肾脏杂志.2006,6(2):88-90
    10 孙东,冯江敏,孙立,等.慢性马兜铃酸肾病大鼠模型的早期贫血机制探讨.中华肾脏病杂志.2006:22:237-242.
    11 孙东,冯江敏,戴春,等.管周毛细血管损害引起的低氧对大鼠慢性马兜铃酸肾病进展的影响.中华医学杂志.2006,86:1464-1469.
    12 蔡宁,欧阳琦,王存祖,等.大鼠骨髓间充质干细胞植入大鼠脑内后的迁移.江苏大学学报(医学版).2006:16:198-202.
    13 余锦强,刁路明.骨髓间充质干细胞通过参与血管形成改善心脏的功能,临床和实验医学.2006:5:1479-1582.
    14 Nakagawa T,Kang DH,Ohashi R,etal.Tubulointerstitial disease role of ischemia and microvascular disease.Curr Opin Nephrol Hypertens.2003;12:233-241.
    15 ChoKJ,TrzaskaKA,GrecoSJ,etla.Neurons derived from human mesenchymla stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P byinterleukin-1 alpha.Stem Cells,2005,23:383-391.
    16 BaeJS,Furuya S,Shinoda Y,etla.Neurodegeneration augmentsthe ability ofbone marrow-deirved mesenchymalstem cellstofusewithPurkinjeneuronsinNiemann-Pick typeC mice.Hum GeneTher,2005,16:1006-1011.
    17 Lin S.Rocky ST.Transdifferentiation potentila ofhumna mesenchymla stem cells derived from bone marrow.FASEB J.2004.10:1096-1100.
    18 Schoell WM,Pieber D,Heich O,et al.Tumor angiogenesis as a prognostic factor in ovarian carcinoma:quantification of endothelial immunoreactivity by image analysis.Cancer.1997;80:2257-2262.
    19 Hamilton DW,Maul TM,Vorp DA.Characterization of the response of bone marrowderived progenitor cells to cyclic strain:implications for vascular tissueengineering applications.Tissue Eng.2004;10(3-4):361-369.
    20 左巍,冯江敏.马兜铃酸引起肾脏损害发病机理及其治疗.中医药学刊.2003:21(2):178-180.
    21 郭晓听,程鲁榕.马兜铃酸毒理学性研究与启示.中国新药杂志.2005:14(3):363-366.
    22 郭志玲,白燕,岳玉桃,等.马兜铃酸所致的慢性肾脏损害.河南科技大学学报.2005:23(3):190-191.
    23 Tsai RY,Kittappa R,McKay RD.Plasticity,niches,and the use of stem cells.Dev Cell.2002;2:707-712.
    24 杨莉,李晓玫,王素霞,等.关木通致急性肾小管坏死患者肾间质微血管病变的研究.中华内科杂志.2005:44(7):525-529.
    25 胡伟新,刘志红,程震,等.中药木通肾脏损害的临床和病理特征.肾脏病与透析肾移植杂志.2003:12:504-511.
    26 Knowles HJ,Raval RR,Harris AL,et al.Effect of ascorbate on the activity of hypozia-inducible factor in cancer cells.Cancer Res.2003;63:1764-1768.
    27 Kang DH,Hughes J,Mazzali M.Impaired angiogenesis in the remnant kidney model (Ⅱ):VEGF administration reduces renal-fibrosis and stabilizes renal function. J Am Soc Neprol.2001;12:1480-1450.
    28 Civin CI,Strauss LC,Brovall C,et al.Antigenic analysis of hematopoiesis Ⅲ:A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells.J Immunol.1984;133:157-165.
    29 kamoto T,Aoyama T,Nakayama T,etal.Clonla heterogeneity in differentiation potential of immortalized human mesenchymla stem cells.Biochem Biophys Res Commun.2002;295:354-361.
    30 李启芳,戴爱国.缺氧诱导因子-1α调控血管内皮生长因子对大鼠缺氧性肺动脉高压的作用.中华结核和呼吸杂志.2004:27(3):174-178.
    31 冯珍,陈平圣,张爱凤,等.缺氧诱导因子-1α及其下游分子在大鼠肝纤维化组织中的表达.现代医学.2005:33(4):211-215.
    32 Eero H,Eva yon W,PetriK,et al.Decreased expression of vascular endmhelial growth factor in idiopathic membranous glomerulonephritis:relationships to clinical course.Am J Kidneyn Dis.2003;42(6):1139.
    33 陈文,谌贻璞.马兜铃酸肾病.中华内科杂志.2001:40:426-427.
    34 张春,朱忠华,刘建社,等.结缔组织生长因子对肾小管上皮细胞转分化的调节机制.中华医学杂志.2005:85(41):2920-2925.
    35 Kitamura S,Maeshima Y,Sugaya T,et al.Transforming growth factor-beta 1 induces vascular endothelial growth factor expression in murine proximal tubular epithelial cells.Nephron Exp Nephrol.2003;95:79-86.
    36 Bellomo D,HeadrickJP,SilinsGU,etal.Mice lacking the vascular endothelial growth factor-B gene have smaller hearts,dysfunctional coronary vasculature,and impaired recovery from cardiacischemia.CircRas.2000;86(2):F29-35.
    37 陈荣权,陈香美,崔世维,等.组织金属蛋白酶抑制物在老年大鼠肾小管间质病理损害中的动态变化.中华老年医学杂志.2004:23(4):253-258.
    38 Lin SK,Wang CC,Huang S,et al.Induction of dental pulp fibroblast matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 gene expression by interleukin-1 alpha and tumor necrosis factor-alpha through a prostaglandin- dependent pathway. J Erzdod. 2001;27(3):185-189.
    39 Goldschmediug R, Ateu J, Ito Y, et al. Connective tissue growth favtor: just another factor in reual fibrosis? Nephrol Dial Transplant. 2000;15(3):296-299.
    40 Yokni H, Mukoyama M, Sngawara A, et al. Role of connective growth factor in fibrouectin expression and tubuloiuterstitial. Am J Physiol Renal. 2002;282 (5):F933-942.
    41 Qi JH, Ebrahcm Q, Moorc N, et al. A novel function for tissue inhibitor of metalloprotcinascs-3(TIMP-3):inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9(4):407.
    42 Seo DW, Li H, Guedez L, et al. TIMP-2 mediated inhibition of MMP-independent mechanism. Cell. 2003;114(2):171.
    43 else K, Poschl E, Aigner T. Collagen-structure, function, and biosynthesis. Adv Drug Delivery Rev, 2003;55:1531.
    44 Ishikawa T, Terai S, Ursta Y, etal. Fibroblast growth factor 2 facilitates the differentiation of transplanted bone marrow cells into hepatocytes. Cell Tissue Res. 2006;323:221-231.
    45 Yamamoto N, Terai S. Ohats S. etal. A subpopulation of bone marrow cells depleted by a novel antibody, anit-Live, is useful for cell therapy to repair damaged liver.Biochem Biophys Re Commun. 2004;313:1110-1118.
    46 Oyagi S. Hirose M, Kojima M. etal. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CC14-injured rats. J Hepatol. 2006;44:742- 748.
    47 Sakaida I, Terai S, Yamamoto N, etal. Transplantation of bone marrow cells reduces CC14-induced liver fiborsis in mice. Hepatology. 2004;40:1304-1311.
    1 Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.
    2 Devme SM, Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opm Hematol. 2000;7:358-363.
    3 Campagnoli C.Roberts IA, Kumar S, et al. Identification of mesenchymal stem/ progenitor cells in human first-trimester fetal blood, liver and bone marrow. Blood. 2001;98:2396-2402.
    4 Pochampally RR, Smith JR, Ylostajo J, et al. Serum deprivation of human marrow stromal cells(hBMSCs)-select expression of OCT-4 and other embryonic genes. Blood. 2004;103: 1647.
    5 Lazarus HM, Koc ON, Devine SM, etal. Cotransplantation of HLA-identical sibling culture- expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant. 2005;11:389-398.
    6 Reyes M. Lund T, Lenvik T, etal. Purification and ex vivo expansion of poatnatal human marrow mesodermal progenitorcells. Blood. 2001;98:2615-2625.
    7 Suzawa M, Takada I, Yanagisawa J, et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAKl/TABl/NIK cascade. Nat Cell Biol. 2003;5:224-230.
    8 In' t Anker PS, Noort WA, Kruisselbrink AB, et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol. 2003, 31:881-889.
    9 Ara T, Nakamura Y, Egawa T, et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromalcell-derivedfactor-l(SDF-l). Proc Natl Acad Sci USA. 2003;100:5319-5323.
    10 Bacigalupo A. Mesenchymal stem cells and haepatopoietic stem cell transplanta tion. Best Pract Res Clin Haematol. 2004;17:387-399.
    11 Cahill RA, Jones OY, Klemperer M, et al. Replacement of recipient stromal/mesenchymal cells after bone marrow transplantation using bone fragments and cultured osteoblast-like cells.Biol Blood Marrow Transplant.2004;10:709.
    12 Rombouts WJ,Ploemacher RE.Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture.Leukemia.2003;17:160-170.
    13 傅文玉,路艳蒙,朴英杰.人骨髓间充质干细胞的培养及多能性研究.中华血液学杂志.2002:23(4):202.
    14 Jiang Y,Jahagirdar BN,Reinhardt RL,et al.pluripotency of mesenchymal stem cells derived from adult marrow.Nature.2002;418:41-49.
    15 Cen HH,Han CM,Lai PP,et al.Isolation,culturation and adipogenisis committed differentiation of adult human mesenchymal stem cell.Zhejiang Da Xue Xue Bao Yi Xue Ban.2003;32(2):137-40.
    16 Perry TE,Kaushal S,Sutherland FW.Bone marrow as a cell source for tissue engineering heart valves.Ann Thorac Surg.2003;75(3):761-767.
    17 Noth U,Osyczka AM,Tuli R,et al.Multilineagem esenchymal differentiation potentialof human Trabecular bone-derived cells.J Orthop Res.2002;20:1060-1069.
    18 Tuan RS,Boland G,Tuli R.Adult mesenchymal stem cells and cell-based tissue engineering.Arthritis Res Ther.2003;5:32-45.
    19 Jeremy S,Duffield L,KwonMoo Park,et al.Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrowderived stem cells.J the American Society for Clinical Investigation.2005;115:1743-1755.
    20 Doyeob Kim,Gregory R,Dressler.Nephrogenic Factors Promote Differentiation of Mouse Embryonic Stem Cells into Renal Epithelia.J Am Soc Nephrol.2005;16:3527-3534.
    21 Mark S,Szczypka,Angela J,et al.Rare Incorporation of Bone Marrow-Derived Cells Into Kidney After Folic Acid-Induced Injury.Stem Cells.2005;23:44-54.
    22 Marina Morigi,Barbara Imberti,Carla Zoja,et al.Helping to Repair the Kidney and Improve Functionin Acute Renal Failure.J Am SocNe phrol.2004;15:1794-1804.
    23 Mari Hayakawa, Masamichi Ishizaki, Jun Hayakawa, et al. Role of bone marrow cells in the healing process of mouse experimental glomerulonephritis. Pediatr. 2005;58: 323-328.
    24 Hanger O, Frost E, Evan Heeswijk R, et al. Revaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology. 2006;238(1): 200-210.
    25 Yokoo T, Fukui A, Ohashi T, et al. Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo. J Am Soc Nephrol. 2006; 17(4): 1026-103.
    26 Sekiya I, Larson BL, Smith JR, et al. Expansion of Human Adult Stem Cells from Bone Marrow Stroma:Cnodiitons that Maximize the Yields of Early Progenitors and Evaluate Their Quality. Stme Cells. 2002;20:530-541.
    27 Murdoch B, Chadwick K, Martin M, et al. Wnt-5A augments repopulating capacity and primitive hematopoietic devdopment human blood stem cells in vivo. Proc Natl Acad Sei USA. 2003;100: 3422-3427.
    28 Mills KH. Regulatory T cells:friend or foe in immunitv to infection. Nat Rev Immunol. 2004;4: 841-855.
    29 Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus:the importance of dendritic cells in peripheral T cell to lerauce. Proc Natl Acad Sci USA. 2002; 99:351-358.
    30 Zhang W, Ge W,Li C,et al. Effects of mesenchymal stem cells on differentiation, maturation and function of human monocyte-derived dendritic cells. Stem Cells Dev.2004;13:263-271.
    31 Juan A, Oliver, Jonathan Braasch, etal. Metanephirc mesenchyme contains embryonic renal stem cells. Am J Physiol Renal Physiol.2002;283:799.
    32 Doyeob Kim,Gregoyr R,Derssier. Nephrogenic Factors Promote Diffeorntiation of Mouse Embryonic Stem Cells into Renla Epithelia. J Am Sco Nephorl. 2005;16:3 527-3534.
    33 Togel F,HuZ,WeissK,et al.Administered mesenchymal stem cells protect against ischemic acute renal failuer thorugh differentiation independent mechanisms.Am J Physiol Renal Physiol.2005;289(1):F29-30.
    34 Mark S,Szczypka,Angela J,et al.Rare Incorporation of Bone Marrow Deirved Cells Into Kidney After Folic Acid-Induced Injury.Stem Cells.2005;23:44-54.
    35 张婷,周云,张亚,等.体外诱导骨髓间充质干细胞向肾小管上皮细胞的分化中国组织工程与临床康复杂志.2007;11(3):487-481.
    36 Mari Hayakawa,Msaamichi Ishizaki,JunHayakawa,et al.Role of bone mallow cells in the healing process of mouse experimental glomerulonephritis.Pediatr.2005:58:323-328.
    37 Hauger O,Forst EE,van Heeswijk R,etla.MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy.Radioloyg.2006;238(1):200-210.
    38 Ito T,Suzuki A,Imai E,et el.Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling.J Am Soc Nephrol.2001;12(12):2625-2635.
    39 Yokoo T,Fukui A,Ohashi T,et al.Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo.J Am Soc Nephrol.2006;17(4):1026-1034.
    40 Towers PR,Woolf AS,Hardman P.Glial cell line-derived neurotrophic factor stimulates ureteric bud outgrowth and enhances survival of ureteric bud cells in vitro.Exp Nephrol.1998;6(4):337-51.
    41 Hammerman MR.Organogenesis of kidneys following transplantation of renal progenitor cells.Tranapl Immunol.2004;12(3-4):229-39.
    42 周云峰,张炜,张炜小,等.体外培养骨髓间充质干细胞及对大鼠移植肾作用初探.南京医科大学学报(自然科学版).2007:27(10):1088-1091.
    43 Mari Hayakawa,Masamichi Ishizaki,Jun Hayakawa,et al.Role of bone marrow cells in the healing process of mouse experimental glomerulonephritis.Pediatr.2005;58:323-328.
    44 Hammerman MR. Organogenesis of kidneys following transplantation of renal
    
    45 progenitor cells. Transpl Immunol. 2004;12:229-239.
    
    46 Dufield JS, Park KM, Hsiao LL, etla. Restoraiton of tubular epithelila cells during repair of the positschemic kidney occurs independently of bone marrow-derived setm cells. J Clin Invset. 2005; 115(7):1743-1755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700