锰基稀土氧化物的结构及金属—绝缘体转变点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用溶胶-凝胶方法制备La 1-x Sr x MnO(3x=0.0,0.2,0.3,0.33,0.375,0.4,0.5)系列及La 0.67-y Ce y Sr 0.33 MnO3(y=0.0,0.1,0.15,0.2,0.25)系列粉体,并经过压制成型,最后对块体进行烧结。通过改变掺杂元素含量以及烧结工艺来研究块体样品的结构和电阻率-温度关系。
     XRD对样品相结构进行分析;SEM对粉体、块体样品形貌进行观察和分析;EDS对样品的成分进行检测;使用标准四引线法测量样品的电阻率-温度关系;用德国耐驰STA449C综合热分析仪对粉体的前驱体进行热分析,以检测溶胶-凝胶工艺的合理性。
     TG-DSC曲线分析表明,溶胶-凝胶制备粉体工艺设计合理,XRD分析粉体(900℃)为菱面体钙钛矿结构;粉体形貌观察表明,1000℃,烧结4小时后粉体形貌变规则,颗粒尺寸增大,发现由900℃平均~50nm增大到~60nm。所制粉体压制成圆片状并在不同工艺下进行烧结,进行SEM观察,发现随着烧结温度提高,时间延长,材料致密度提高,颗粒明显长大。而且LSMO块体样品平均晶粒尺寸随着Sr掺杂含量增加而减小;LCSMO块体样品平均晶粒尺寸随着Ce含量增加缓慢增加。XRD检测发现:LSMO样品为菱面体钙钛矿结构;LCSMO样品为菱面体钙钛矿相与CeO2相,并随着掺杂Ce含量提高CeO 2含量增加。成分分析结果表明制备样品纯度高。
     采用标准四引线法表征块体样品电阻率随温度的变化关系,研究结果表明,LSMO和LCSMO样品都出现金属-绝缘体转变,1000℃,4h烧结LSMO样品随着掺杂Sr含量增加金属-绝缘体转变温度(TMI)先升高后降低,并且La 0.7 Sr 0.3 MnO3的TMI最大(269K),而电阻率随着Sr掺杂含量增加逐渐降低。LCSMO样品(1000℃,4h)电阻率-温度关系曲线表明掺杂Ce后显著降低T MI ,从248K(La 0.67 Sr 0.33 MnO 3 )降低到133K(La_(0.57)Ce_(0.2)Sr_(0.33)MnO_3)。对LSMO掺杂Sr含量为0.3、0.33、0.4的样品及LCSMO样品Ce掺杂含量为0.1的样品进行不同烧结工艺处理,研究表明,随着烧结温度提高样品TMI明显提高,电阻率下降,在1200℃烧结后,T MI普遍在室温以上。La_(0.67)Sr_(0.33)MnO_3样品在1100℃,8h烧结工艺下T MI在室温27℃。
The polycrystalline powder La 1-x Sr x MnO3(x=0.0,0.2,0.3,0.33,0.375,0.4,0.5)and La 0.67-y Ce y Sr 0.33 MnO3(y=0.0,0.1,0.15,0.2,0.25)were prepared by sol-gel method, then compressed into pellets and sintered. The structure and the temperature dependence of resistivity of polycrystalline samples were studied by changing content of doped elements or sintering technologies.
     The phase structure of samples were studied by X-ray diffraction; the morphology of powder and ceramics samples were studied by scanning electron microscope; the compositions were detected by EDS; the temperature dependence of resistivity of samples was measured using the standard four-probe method;the thermoanalysis of powder precursor was measured by STA449C General Thermoanalysis Apparatus that made from Germany. The rationality of sol-gel method was checked by analyzing thermogravimetric curve.
     The analysed result of TG-DSC curve shows that the sol-gel technology was reasonable. The structure of powder was studied by XRD and it shows the rhombohedral perovskite. The powder morphologies indicate that they’ll be regular and grain coarsening after sinter 4 hours at 1000℃. The average grain size of LSMO powder is increased from~50nm at 900℃to~60nm at 1000℃. The resultant powder was pressed into disks, which were then sintered at different technologies. It shows that the grain size clearly coarsed and the density increased at the higher sintered temperature or longer sintered time. The average grain size of LSMO bulk samples decrease with doped Sr content. And the current grain size of LCSMO increases slowly as doped Ce content. The structure of bulk samples were analysed by XRD. The results indicate that LSMO samples has the rhombohedral structure and LCSMO samples are composed by rhombohedral perovskite and CeO 2 . The CeO2 phase increases as doped Ce content. The samples are pure from the results of EDS.
     The temperature dependence of resistivity of bulk samples was measured using the standard four-probe method. It indicates that the bulk samples of LSMO and LCSMO show metal-insulator transition. When adding the content of doped Sr in LSMO samples that sintered 4 hours at 1000℃, the T MI first rise and then fall. The T MI of composite La 0.7 Sr 0.3 MnO3 comes to maximal value (269K). The resistivity reduces as the content of doped Sr. The curve between temperature and resistivity of LCSMO that sintered at 1000℃for 4 hours indicate that the TMI decreases distinctly when adding the content of doped Ce , from 248K (La 0.67 Sr 0.33 MnO 3 ) to 133K(La_(0.57)Ce_(0.2)Sr_(0.33)MnO_3).The samples of LSMO (x=0.3, 0.33,0.4) and LCSMO (x=0.1) were carried on different sinter technologies, the results show that the TMI increasing and the resistivity decreasing as the sinter temperature improved. The TMI of bulk samples is above room temperature when sintered at 1200℃. The T MI of La_(0.57)Ce_(0.2)Sr_(0.33)MnO_3 sintered 8 hours at 1100℃is 27℃.
引文
1刘俊明,王克锋.稀土掺杂锰氧化物庞磁电阻效应.物理学进展. 2005, 25 (1): 82-105.
    2张鹏翔,王茺等.超巨磁电阻薄膜物理及应用.红外技术. 2004, 26(3): 53-62.
    3 T. Tokura. Giant Magnetotransport and Magnetostructural Phenomena in Hole-doped Manganese Oxides. Materials Science and Engineering B. 1995(31): 187-191.
    4 Tao Geng,Ning Zhang. Electronic Structure of the Perovskite Oxides La 1-x Sr x MnO 3. Physics letters A. 2006(351): 314-318.
    5陈钊.掺杂稀土锰氧化物的结构和外场诱导输运特性研究.西北工业大学硕士学位论文. 2005, 3.
    6任尚坤,张凤鸣,都有为.半金属磁性材料.物理学进展. 2004(4): 0381-0398.
    7胡国光,尹平,吕庆荣. La 1-x Sr x MnO3氧化物的导电和吸收特性.中国稀土学报. 2002(2): 179-181.
    8李小怡.稀土空位(La 1-x-y Y y ) 2/3 Ca 1/3 MnO3系的磁电阻效应及磁热效应的研究.南昌大学硕士学位论文. 2006, 5.
    9江少群.沉积与注入掺杂LSMO膜的金属-绝缘体转变与发射率研究.哈尔滨工业大学博士学位论文. 2008, 4.
    10 S. Zemni, A. Gasmi. Effect of Nominal Strontium Deficiency on the Structure and the Magnetic Properties of La 0.6 Sr 0.4-δMnO3 Manganese Perovskites Materials Science and Engineering B. 2007(144): 117-122.
    11周振春. LaMnO3的La位掺杂对输运特性和磁电阻的影响.丽水学院学报. 2005, 27(5): 46-51.
    12杨海,余鸿飞,蔡武德. La-Ca-Mn-O薄膜的巨磁效应.半导体杂志. 1998, 23(3): 11-14.
    13马永青,宋文海等.钙钛矿结构锰氧化物La 0.67 Ca 0.33 MnO3的内耗研究.金属学报. 2003(11): 1173-1175.
    14 D. S. Rana, K. R. Mavani. Electronic Transport, Magnetism and Colossal Magnetoresistance of (La 0.7-3x Tb x )(Ca 0.3 Sr 2x)MnO3 (0.025≤x≤0.125)Compounds. Journal of Magnetism and Magnetic Materials. 2004(271): 215-223.
    15 C. Krishnamoorthy, K. Sethupathi. R. Nirmala Magnetic and Magnetotransports Properties of Ce Doped Nanocrystalline LaMnO3. Journal of Alloys and Compounds. 2007(438): 1-7.
    16 Takeshi Yanagida, Teruo Kanki. Investigation on Ce-doped LnMnO3 (Ln=La, Nd) Thin Films by Laser Molecular Beam Epitaxy Method. Vacuum. 2006(80): 780-782.
    17 S. Das, A. Poddar Studies of Transport and Magnetic Properties of Ce-doped LaMnO 3. Journal of Alloys and Compounds. 2004(365): 94-101.
    18 C. Krishnamoorthy, K. Sethupathi, V. Sankaranarayanan. Synthesis of Single Phase Ce Doped Nanocrystalline LaMnO3. Materials Letters. 2007(61): 3254-3257.
    19 S. M. Yusuf, R. Ganguly. Effect of Dy Substitution for La in La 0.7 Ca 0.3 MnO3 Perovskite. Journal of Alloys and Compounds. 2001(326): 89-93.
    20刘宜华,张汝贞等. La 0.67 Ca 0.33 MnO 3和La 0.67 Ba 0.33 MnO3中Dy的置换作用.功能材料. 2003, 2(32): 148-150.
    21 D. Zhu, A. Maignan. Room Temperature Magnetoresistance in Ln 2/3 A 1/3 MnO3 Manganites. Solid State Communications. 2003(127): 551-555.
    22罗广圣,李小怡,吴小山.稀土空位锰氧化物(La (1-x-y) Y y ) 2/3 Ca 1/3 MnO3的结构和输运性质.中国有色金属学报. 2005, 15(12): 1968-1973.
    23王军华,尹立云等. Dy、Yb掺杂稀土锰氧化物的磁性和电性.潍坊学院学报. 2002, 2(6): 29-31.
    24刘宜华,张汝贞. Dy和Yb部分替代La 0.67 Ca 0.33 MnO3中的La的影响.材料研究学报. 2002, 16(6): 565-569.
    25 Y. Tomioka, Y. Okimoto, J. H. Jung, R. Kumai, Y. Tokura. Phase Diagrams of Perovskite-type Manganese Oxides. Journal of Physics and Chemistry of Solids. 2006(67): 2214-2221.
    26 A. G. Belous, O. I. V’yunov. Effects of Chemical Composition and Sintering Temperature on the Structure of La 1-x Sr x MnO3±γ. Solid Solutions Inorganic Materials. 2003, 2(39): 161-170.
    27 S. L. Ye, W. H. Song. Effect of Ag Substitution on the Transport Propertyand Magnetoresistance of LaMnO3. Journal of Magnetism and Magnetic Materials. 2002(248): 26-33.
    28 Hongwei Qin, Jifan Hu. Room Temperature Magnetoresistance in La 0.67 Sr 0.33 Mn 1-x Al xO3 Manganites (x≤0.25). Journal of Magnetism and Magnetic Materials. 2003(263): 249-252.
    29 S. L. Yuan, J. Tang, Z. C. Xia. Low-field Colossal Constant Magnetoresistance for Wide Temperature Ranges in the Sol–gel Prepared La 2/3 Ca 1/3 Mn 0.96 Cu 0.04 O 3. Solid State Communications. 2003(127): 743-747.
    30 X. M. Liu, G. D. Tang, X. Zhao. Infulences of Cu-doped and Sr Vacancy on the Room Magnetoresistance of La 0.67 Sr 0.33-x-y Cu xMnO3. Journal of Magnetism and Magnetic Materials. 2004(227): 118-122.
    31张国宏.溶胶-凝胶法制备的La 2/3 Ca 1/3 MnO3中Mn位Cu和Zn掺杂的比较研究.华中科技大学硕士学位论文. 2004, 5.
    32陈磊. (La 1-x Bi x ) 2/3 Ca 1/3 Mn 1-y Fe yO3的制备及物性研究华中科技大学硕士学位论文. 2005, 5.
    33 K. R. Priolkar, R. Rawat. Effect of Heterovalent Substitution at Mn Site on the Magnetic and Transport Properties of La 0.67 Sr 0.33 MnO3. Journal of Magnetism and Magnetic Materials. 2008(320): 325-330.
    34 Lingwei Li, Katsuhiko Nishimura. Effect of Mn-site Si Substitution on Magnetic, Transport Properties and Colossal Magnetoresistance in La 2/3 Ca 1/3 Mn 1-x Si xO3(x=0.05-0.25) System. Solid State Communications. 2007(144): 10-14.
    35 K. Vijaya Sarathy, P. Sreeraj. Effect of Ruthenium Doping on the Properties of Pr 0.5 A 0.5 MnO3(A=Ca,Sr), Solid State Communications. 2002(122): 385- 388.
    36侯登录,白云等. La 0.67-x Ca 0.33 MnO3系列样品的磁热效应.材料研究学报. 2004, 18(3): 332-335.
    37 Shahnaz Begum, Yasuhiro Ono, Hiroyuki Fujishiro, Tsuyoshi Kajitani. Interplay Between Structure and Magnetic Properties in a Perovskite Manganite. Physica B. 2006(385-386): 53-56.
    38 Thomas P. Papageorgiou, Reinhard K?nig. Electrical and Magnetic Properties of Non-stoichiometric La y-x Sr x MnO3+δPerovskites. Physica B. 2000(284-288): 1675-1676.
    39 J. M. Alonso, J. M. González-Calbet. Influence of Mn 2+ in the Magnetic Behaviour of Manganese Related-perovskites. Journal of Physics and Chemistry of Solids. 2006(67): 571-574.
    40 D. J. Wang, C. M. Xiong. Effects of Oxygen Content on the Transport Property of La 0.7 Ce 0.3MnO 3+δFilm. Physica B. 2006(371): 187-191.
    41刘力虎. La 0.65 Sr 0.35 MnO 3 /Fe 2 O3复合体系磁电阻性能研究.河北师范大学硕士学位论文. 2002, 4.
    42 Wenjia Xiao, Zhenhui He. Broad Temperature Range of Resistance and Magnetoresistance of Multi-phase Nanocomposites La 1-x Sr x MnO3. Physica B. 2006(383): 202-206.
    43 J. H. Miao, S. L. Yuan. Effect of Sintering Temperature on Electrical Transport of La 0.67 Ca 0.33 MnO3 Granular System with 4% CuO Addition Journal of Alloys and Compounds. 2008(448): 27-31.
    44赵静,颜其洁.钙钛矿型复合氧化物LaMnO3.00的快速制备与表征.中国稀土学报. 2003(21): 48-51.
    45 C. S. Xiong, Y. T. Mai, Y. H. Xiong, H. L. Pi, Z. M. Ren, J. Zhang, Y. B. Pi, W. Xu, G. H. Dai, S. J. Song, S. Yang. A Modified Dynthesis Method of Manganese Perovskite La 0.67 Ca 0.33 MnO3 by High Energy Ball Milling and Post Heat Treatment. Materials Research Bulletin. 2007(42): 904-911.
    46王永仓等.脉冲激光沉积La 1/3 (Ca 2/3 Sr 1/3 ) 2/3 MnO3薄膜结构及输运特性的研究.稀有金属材料与工程. 2005, 34(2): 1854-1856.
    47杨乃涛,冯柳等.凝胶自燃法合成La x Sr 1-x Co y Fe 1-y O3-α纳米粉体.无机化学学报. 2005(11): 1623-1627.
    48李娜,冯明等.稀土锰氧化物La 0.65 Sr 0.35 MnO3的合成及表征.吉林师范大学学报. 2006(3): 26-27.
    49 NING ZHANG. Interfacial Tunnel-type GMR in Granular Perovskite La-Sr-Mn-O System. Journal of Materials Science. 1999(34): 1829-1833.
    50张邦强.掺杂铬酸镧超细粉体的制备及低温烧结.山东大学硕士学位论文. 2005, 6.
    51杨应平,袁松柳等.颗粒尺寸对多晶La 2/3 Ca 1/3 Mn 1-x Cu xO3低场磁电阻的影响.稀有金属材料与工程. 2004(33): 522-525.
    52尹荔松,樊志良等.纳米晶La 1-x Sr x MnO3的溶胶-凝胶法合成及表征.中国有色金属学报. 2005, 15(8): 1267-1271.
    53周新,马玉彬等.钙钛矿结构La 1-x Sr x CoO3(x=0.7,0.8,0.9,1.0)样品的铁磁相变和绝缘-金属转变.低温物理学报. 2006, 28(1): 1-5.
    54 Y. W. Duan, X. L. Kou, J. G. Li. Size Dependence of Structure and Magnetic Properties of La 0.7 Sr 0.3 MnO 3 Nanoparticles. Physica B. 2005(355): 250-254.
    55田世哲,赵军钗等.微观结构对溶胶-凝胶法合成的La 0.67 Sr 0.33 MnO3电磁性能影响.应用化学. 2007, 24(7): 752-756.
    56 Xianfeng Zhou, Yong Zhao. Fabrication of Polycrystalline Lanthanum Manganite (LaMnO3) Nanofibers by Electrospinning. Materials Letters. 2008 (62): 470-472.
    57 S. MATHUR, H. SHEN. Structure and Physical Properties of La 2/3 Ca 1/3 MnO3 Prepared via a Modified Sol-Gel Method. Journal of Sol-Gel Science and Technology. 2002(25): 147-157.
    58胡婕,邵光杰等.纳米氧化物La 0.8 Sr 0.2 MnO3的制备研究.物理测试. 2005, 23(4): 17-20.
    59 Gang Zou, Xian You, Pingsheng He. Patterning of Nanocrystalline La 0.7 Sr 0.3 MnO3 Thin Films Prepared by Sol-Gel Process Combined with Soft Lithography. Materials Letters. 2008(62): 1785-1788.
    60赵立峰.非均制锰基钙钛矿的磁及输运特性研究.华中科技大学博士学位论文. 2005, 11.
    61蒋丽珍.制备条件对La 1-x Sr x CoO3体系I-M相变的影响.浙江工商大学学报. 2007(4): 55-59.
    62黄继武. MDI Jade使用手册(X射线衍射实验操作指导)中南大学. 2006, 6.
    63彭振生,刘宁,徐素军,童伟. Er低掺杂(0.0≤x≤0.20)对La 0.67 Sr 0.33 MnO3输运行为的影响.低温物理学报. 2004, 26(2): 120-125.
    64冯尚申,焦正宽. La 0.822 Sr 0.178 Mn xO3薄膜的输运性质.低温物理学报. 2001, 23(2): 139-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700