磁场和缺陷对碳纳米管电子结构和电学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管,特别是单壁碳纳米管是一种重要的准一维纳米功能材料,是当前高新技术研究的前沿和热点之一。碳纳米管结构的特殊性,它的小尺寸效应、界面效应、量子效应和量子隧道效应等一系列新的物理效应,使碳纳米管出现许多不同于其它传统材料的独特性能,成为当前制备纳米电子器件的首选材料之一,也是材料物理、凝聚态物理等学科领域的研究前沿问题。
     本文主要研究了在磁场作用下碳纳米管的能带结构、态密度变化以及缺陷对称性对碳纳米管电学性质的影响。
     首先,从紧束缚模型出发,应用固体能带理论,解析地推导出了在轴向磁场作用下单壁碳纳米管中π电子的能带表达式,研究了碳纳米管磁致能隙峰值随直径的变化,得到了能隙峰值与直径成反比关系,相同直径的金属性碳纳米管的能隙峰值最大。理论分析结果认为磁场使范霍夫奇异点发生分裂-移动-融合的周期性变化现象正是在磁场作用下碳纳米管出现绝缘体-金属转变的机理所在。碳纳米管优异的电子结构特性和对外磁场的奇异响应特性,使它在微纳电子器件中有广阔的应用前景,因而我们的研究工作具有实际的意义,对碳纳米管的磁致电阻、磁化系数和轨道磁矩等磁性质的深入研究也会有很大的帮助。
     另外,还采用π电子紧束缚模型下实空间和k空间格林函数方法,研究了碳纳米管中Stone-Wales缺陷的对称性效应。缺陷的存在将部分或者全部地破坏碳纳米管固有的过轴线的镜面对称性,导致电导和局域态密度改变。分析缺陷对称性以及产生的准束缚态对本征导电通道的影响,可以更好地理解碳纳米管的电导和态密度对缺陷的对称性和强度的依赖关系。缺陷对称性效应的阐明对碳纳米管输运性质有更深入的认识,因此缺陷的对称性效应的分析对研究含缺陷碳纳米管的相关物理特性是十分有益的。
Carbon nanotubes, especially single-walled carbon nanotubes, is an important quasi-one-dimensional nanostructures functional materials,it is also one of the hot spots and the forefront of high-tech research currently. By reason of the special structure of carbon nanotubes, carbon nanotubes have series of new physical effects, small size effect, interface effect, quantum effects and quantum tunnel effect etc. Carbon nanotubes, with a number of unique properties different from traditional materials’, is one of the preferred material preparing of nano-electronic devices currently, is also the forefront of the issue on material physics, condensed matter physics and other fields.
     The band structure and the density of state changes of carbon nanotubes under the magnetic field and the effects of defects symmetry on the electrical properties of carbon nanotubes was studied in this paper.
     First, the effects of the external magnetic field on the energy gap of carbon nanotubes were investigated by using the tight-bonding method. It was found that , under the axes magnetic field , the peak of energy gap induced by magnetic field depend on the diameters tightly. For the same diameters tubes, the metal type tubes have the highest energy gap peak. Furthermore, under the magnetic field, the density of states of carbon nanotubes near the Fermi level are also calculated, showing that the Van Hove singularities will exhibit a periodic phenomenon of splitting, moving and merging. Hence our research work has practical significance. It will be of great help in-depth study on the magnetic resistance coefficient and orbital magnetic moment such as magnetic properties Carbon nanotubes.
     In addition, the effects of the Stone-Wales defects symmetry in the carbon nanotubes were researched by using electronic tight-binding model under real space and space Green's function method. The existence of defects will destroy partly or the whole inherent mirror axis of symmetry of the carbon nanotubes, and lead to the changes of the local density of states and the conductance. It can be better understood the conductance and the density of states of carbon nanotubes depend on the symmetry and the intensity of the defects tightly, by analysing the impact of the quasi-bound states from the symmetry of the defects for the conductive channels inherently. To clarify and study on the effects of the symmetry of the defects has a better understanding of the transport properties of carbon nanotubes. It is also very useful to study the related physical properties of carbon nanotubes with defects.
引文
[1]成会明.纳米碳管制备,结构,物性及应用[M].北京:化学工业出版社,2002.8.
    [2]黄秋萍.单壁碳纳米管轨道杂化和电子性质的研究[D]:硕士学位论文.杭州:浙江师范大学,2006,10.
    [3]陆地.单壁碳纳米管电子性质的研究[D]:硕士学位论文.湘潭:湘潭大学,2003.5.
    [4]欧阳玉,彭景翠,彭志华.均匀磁场中碳纳米管的电子结构[J]。湖南大学学报(自然科学版),2006,33(5):132-135.
    [5]宋海峰.缺陷和外电场对碳纳米管电导和态密度调制的理论研究[D]:博士学位论文.北京:清华大学,2003.4.
    [6]张立德.《纳米材料和纳米结构》[M].北京:科学出版社.2000.
    [7]张振华.碳纳米管电子结构及输运特性的研究[D]:博士学位论文.长沙:湖南大学,2002.12.
    [8]张助华,郭万林,郭宇锋.轴向磁场对碳纳米管电子性质的影响[J].物理学报,2006,55(12):6526-6531.
    [9] Ajiki H, Ando T J. Quantum interference of electrons in carbon nanotubers [J]. Phys. Soc. Japan. 1993, 62:1255-1258.
    [10] Bachtold A, Strunk C, Salvetat J P, et al. Aharonov-Bohm oscillations in carbon nanotubes[J]. Nature (London), 1999, 397(6721): 673-675.
    [11] Bethune D S, Kiang C H, deVries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature, 1993, 363(6430): 605-607.
    [12] Bockrath M, Liang W J, Bozovic D, etal. Resonant electron scattering by defects in single-walled carbon nanotubes [J]. Science, 2001, 291(5502): 283-285.
    [13] Chico L, Benedict L X, Louie S G, et al. Quantum conductance of carbon nanotubes with defects [J]. Phys. Rev. B, 1996, 54(4): 2600-2606.
    [14] Choi H J, Ihm J, Louie S G, et al. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(13):2917-2920.
    [15] Chu S L. Phycics of Atom, Beijing: Higher Education Press, in Chinese.1979.
    [16] Colbert D T, Zhang J, et al. Electric effects in nanotube growth [J]. Carbon, 1995, 7(33): 921~954.
    [17] Collins PG, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science, 2000, 287(5459): 1801-1804.
    [18] C .T. W hite, D.H .Robertson, J .W Mintmire. Ph ys.R ev.B 47, 54 85(1993).
    [19] Dai H J, Hafner J H, and Rinzler A G. Nanotubes as nanoprobes in scanning probe microscopy [J]. Nature (London), 1996, 384(6605): 147-150.
    [20] Dresselhaus M S, Dresselhaus G, Eklund P C. Sience of Fullerenes and Carbon nanotubes [J]. San Diego: Academic Press, 1996.
    [21] Dun Y X, SHI Y M, XIAO F X. The model and the electronic structure of armchair toroidai Carbon Nanotubes[J].China science and technology information May.2006,9:294-295.
    [22] Ebbesen T W. and Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature, 1992, 358(6383): 220-222.
    [23] Ebbesen T W, Hiura H, Fujita J, et al. Patterns in the bulk growth of carbon nanotubes [J]. Chem. Phys. Lett., 1993, 209(1-2): 83-90.
    [24] Frank S, Poncharal P, Wang Z L, de Heer W A. Carbon nanotube quantum resistors [J].Science, 1998 (280): 1744~1746.
    [25] Gao G H, Cagin T, Goddard W A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes [J]. Nanotechnology, 1998, 9 (3):184-191.
    [26] Hiroshi A. Magnetic-field effects on the optical spectra of a carbon nanotubes [J]. Phys Rev B, 2002, 65: 233 409 - 233 415.
    [27] Hsu W K, Chu S Y, Munoz-Picone E, et al. Metallic behaviour of boron-containing carbon nanotubes [J]. Chem. Phys. Lett., 2000, 323(5-6): 572-579.
    [28] Igami M, Nakanishi T, and Ando T. Conductance of carbon nanotubes with a vacancy [J]. Phys. Soc. Jpn., 1999, 68(3): 716-719.
    [29] Ijima S.Helical. microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [30] J. Jiang, J. Dong, H.Y ang, D.Y.Xing. P hys.R ev.B. 2001, 64, 04: 5409.
    [31] J.W.Ding, X.H.Yan, J.X.Cao. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes [J]. Phys. Rev. B. 2002, 66: 073401-073404.
    [32] J.W.G.Wild?er, L.C.Venema, A.G.Rinzler. Electeronic structure of atomically resolved carbon nanotubes [J]. Nature (London), 1998, 391: 59-62.
    [33] J.X.Cao, X.H.Yan, J.W.Ding. Electronic properties of single-walled carbon nanotubes [J]. Journal of physical society of Japan. 2002, 71: 1339-1345.
    [34] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287: 622-625.
    [35] Kostyrko T, Bartkowiak M and Mahan GD. Reflection by defects in a tight-bindingmodel of nanotubes [J]. Phys. Rev. B, 1999, 59(4): 3241-3249.
    [36] Lee C J, Park J. Appl Phys lett, 2000, 77: 3397.
    [37] Lee J O , KimJ J , Kim J R et al. Quantum interference of electrons in multiwall carbonnanotubes [J]. Solid State Commun. 2000 , 11: 5467-5468.
    [38] Lee R S, Kim H J, Fischer J E, et al. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br [J]. Nature, 1997, 388(6639): 255-257.
    [39] Liang WJ, Bockrath M, Bozovic D, et al. Fabry-Perot interference in a nanotube electron waveguide device [J]. Nature (London), 2001, 411(6838): 665-669.
    [40] Liu C, Fan Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286(5442): 1127-1129.
    [41] Lu J P. Magnetotransport in bundles of intercalated carbon nanotubes [J]. Phys. Rev. Lett. 1995, 74:1123-1126.
    [42] Mahan G D. Many-Particle Physcis [M]. New York: Plenum.
    [43] Martel R, Schmidt T, Shea HR, et al. Single-wall and multi-wall carbon nanotube field-effect transistors [J]. Appl. Phys. Lett., 1999, 73(17): 2447-2449.
    [44] Minot E D, Yaish Y, Sazonova V et al. Nature, 2004, 428 536.
    [45] Mintmire J W, White C T. Phys. Rev. Lett. 1998, 81: 2506.
    [46] M.Ouyang, J.L.Huang, C.L.Cheung. Energy Gaps in“Metallic”single-walled carbon nanotubes [J]. Science, 2001, 292:702-706.
    [47] Nardelli M B. Electronic transport in extended systems: Application to carbon nanotubes [J]. Phys. Rev. B, 1999, 60 (11): 7828-7833.
    [48] Nardelli M B, Yakobson B I, and Bernholc J. Mechanism of strain release in carbon nanotubes [J]. Phys. Rev. B, 1998, 57(8): R4277-R4280.
    [49] Nyg?rd J, Cobden D H,and Lindelof P E. Kondo physics in carbon nanotubes [J]. Nature (London), 2000, 408(6810): 342-345.
    [50] Paul Delaney et al. Broken symmetry and pseudogaps in ropes of carbon nanotubes [J]. Phys. ReV. B. 1999,60: 7899-7904.
    [51] P. R .W allace. Ph ys.R ev. 1947, 71: 622.
    [52] Postma H W C, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature [J]. Science, 2000, 293: 76-79.
    [53] Ren.Z.F, Huang ZP, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass [J]. Science, 1998, 282:1105.
    [54] Rochefort A and Avouris P. Electron interference effects on the conductance of doped carbon nanotubes [J]. J. Phys. Chem. A, 2000, 104(44): 9807-9811.
    [55] R.Saito, G..Dresslhaus, M.S.Dresselhaus. Trigonal warping effect of carbon nanotubes [J]. Phys.Rev.B. 2000, 61:2981-2990.
    [56] R.Saito, G.Dresselhaus, M.S.Dresselhaus. Physical properties of carbon nanotubes [M].Imperial College Press, London, 1998.
    [57] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes [M]. Imperial College Press, New York, 1999,87:2763-2765.
    [58] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Appl. Phys. Let. 1992, 60:2204.
    [59] Saito R, Fujita M, Dresselhaus G, Dresselhaus M. S. Electronic structure and growth mechanism of carbon tubules. Materials Science and Engineering, 1993, B19:185~191.
    [60] Saito R, Dresselhaus M. S. Dresselhaua G. Physical properties of carbon nanotubes [M]. London: Imperial College Press, 2003, 60: 35-45.
    [61] Saito Y, Yosbikawa T, et al. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge [J]. Chem. Phys. Lett.1993, 204: 277–282.
    [62] Sen R, Satishkumar B C, Govindaraj A, et al. B-C-N, C-N and B-N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts [J]. Chem. Phys. Lett., 1998, 287(5-6): 671-676.
    [63] Tans S J, Devoret M H, Dai H J, et al. Individual single-wall carbon nanotubes as quautum wires [J]. Nature (London), 1997, 386(6624): 474-477.
    [64] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393(6680): 49-52.
    [65] Tibbetts G G, Meisner G P, and Olk C H. Hydrogen storage capacity of carbon nanotubes [J].filaments, and vapor-grown fibers. Carbon, 2001, 39(15): 2291-2301.
    [66] Tsui F, Jin L, Zhou O. Magnetoresistance of entangled single-wall carbon nanotubes network [J].Appl. Phys. Lett. 2000, 76:1452-1454.
    [67] Walters D A, Ericson L M, Casavant M J, et al. Elastic strain of freely suspended single-wall carbon nanotube ropes [J]. Appl. Phys. Lett., 1999, 74 (25): 3803-3805.
    [68] Wei F, Zhu J-L, and Chen H-M. STS properties of defective metallic carbon nanotubes [J]. Phys.: Condens. Matter, 2000, 12(40): 8617-8622.
    [69] William Q. Luttinger parameter g for metallic carbon nanotubes and related systems [J]. Phys Rev B, 2002, 66: 193 405–193 408.
    [70] White C T, Mintmire J W. Nature, 1998, 394 29.
    [71] Yao Z, Postma H W C, Balents L, et al. Carbon nanotube intramolecular junctions [J].Nature, 1999, 402(6759): 273-276.
    [72] Ye Y, Ahn C C, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes [J]. Appl. Phys. Lett., 1999, 74(16): 2307-2309.
    [73] Yu J, Ahn J, Yoon S F, et al. Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers [J]. Appl. Phys. Lett., 2000, 77(13): 1949-1951.
    [74] Yu J, Bai X D, Ahn J, et al. Hightly oriented rich boron B-C-N nanotubes by bias-assisted hot filament chemical vapor deposition [J]. Chem. Phys. Lett., 2000, 323(5-6): 529-533.
    [75] Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Phys. Rev. Lett., 2000, 84(24): 5552-5555.
    [76] Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science, 2000, 287(5453): 637-640.
    [77] ZHANG Z H, PENGJ C. The Tight-binding Method for Electronic Structure of the Carbon Nanotubee in a Magnetic Field [J]. Chinese Journal of Atomic and Molecular Physics, 2001, 18 (1): 31 -34.
    [78] Zhou C W, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotubes [J]. Science, 2000, 290(5496): 1552-1555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700