准一维硅纳米材料的制备及其场发射特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准一维硅纳米结构包括硅纳米线和纳米锥等。由于其奇特的物理和化学性质并且将可能在光致发光、生物传感器、场效应管、太阳能电池、锂离子电池、热电材料和场发射器件等诸多方面有潜在的应用前景,因此准一维纳米结构越来越被人们所关注。为了满足硅纳米结构的科学研究和技术应用等方面的需求,人们相继发展了多种方法来合成高质量的硅纳米线和纳米锥,例如气液固法(VLS),氧化物辅助法(OAG)和金属辅助化学腐蚀法(MaCE)等。尽管目前人们已经在硅纳米结构的生长方向、形貌和位置的控制等方面取得了巨大进展,但是准一维硅纳米结构的生长依然存在许多问题和挑战;虽然金属催化生长的机理已经被广泛的研究并理解,但很多具体的中间过程还是不清楚,例如硅的氧化过程,金属催化剂的迁移过程和纳米锥的径向生长过程等等。明晰这些过程不仅有利于准一维硅纳米材料的形貌控制,更有利于其杂质和缺陷等的控制,因为硅中的杂质和缺陷对其物理性能有着非常重要的影响。
     由于硅基半导体产业非常成熟,人们试图拓展硅在微电子产业以外领域的应用,比如场发射器件。准一维硅纳米材料长径比大且功函数较低,但是由于其热导率差,在场发射器件应用上受到限制。因此人们通常在硅纳米结构上覆盖其它具有良好场发射性能的材料,以有效地提高其场发射性能。我们知道,碳化硅是一种是重要的宽带隙场发射材料,能在高温、高频、高功率等极端条件下工作,因此我们在硅线阵列上生长碳化硅纳米线,以期降低其开启电场同时保持其场发射电流稳定性。
     基于此,本论文在硅线生长动力学以及其场发射性能等方面展开研究工作,主要工作内容分为以下几个部分:
     (1)以金为催化剂,采用化学气相沉积法成功地在Si(111)和(100)衬底外延生长了有序的硅纳米线。实验结果表明,外延生长对腔体中的氧含量非常敏感。当系统中的氧含量较高时,金不仅催化硅纳米线的生长也催化硅的氧化,导致纳米线停止生长,纳米线的低温热氧化实验验证了金催化硅氧化的过程;当系统中的氧含量较少时,金原子在硅线表面迁移,导致其电学性能变差,该现象在纳米线的直径较大或者金在共熔液滴中过饱和时尤为明显。
     (2)我们提出了一种新方法来合成硅纳米线。首先将草酸铜直接分散在氧化铝模板衬底上,然后在系统温度达到590℃时,向CVD腔体中通入硅烷气体生长硅纳米线。通过研究催化剂形成过程,我们发现,首先草酸铜自组织地热分解为Cu和Cu2O纳米颗粒,然后与硅烷反应形成Cu3Si,进而成为硅纳米线的成核中心。纳米线平均直径大约为20nm。这是一种廉价有效的硅纳米线制备方法。
     (3)通过VSS机制制备硅纳米锥,并详细地研究了硅纳米锥轴向和径向生长过程。为了避免由成核时间所导致的测量误差,我们首次设计并制备了多段硅纳米锥。然后建立模型解释了总气压和氢气含量等因素对硅纳米锥生长动力学的影响,我们发现Langmuir吸附决定了硅尖锥轴向生长速率对总气压的依赖关系,而氢在硅纳米锥表面的覆盖则会大大降低其径向生长速率。最后,通过对总气压和氢气含量的调节可以实现硅纳米锥锥角的有效控制。这些研究结果可能应用于硅基太阳能电池。
     (4)使用NiO为催化剂在有序的硅纳米线上制备β-SiC纳米线。普通衬底上的SiC场发射开启电场为3.4 V/μm,而在硅线阵列上的SiC场发射开启电场低达2.2 V/μm,与文献报道的有序SiC纳米线相近。这种结构的场发射性能也很稳定。
     经过一系列地系统研究,我们对硅线(锥)的VLS和VSS生长过程有了更深入地理解,并对其在场发射等领域的应用做了初步的工作。
Quasi-one-dimensional silicon nanostructures, including silicon nanowires (SiNWs) and silicon nanocones (SiNCs), have attracted more and more interest for their novel physical and chemical properties and potential wide applications in photoluminescence, biology sensor, FET, solar cells, Li battery, thermoelectric materials and field emission devices. In order to meet the need of scientific study and technical application of silicon nanostructures, many methods have been developed continuously to synthesize high-quality SiNWs and SiNCs, such as vapor-liquid-solid (VLS), oxygen-assisted growth (OAG), metal-assisted chemical etching (MaCE) and so on. Although much progress has been made in the control of nanostructures' orientation, morphology and position, there are still many problems and challenges in the synthesis of them. Concretely speaking, although the VLS growth mechanism has been extensively studied and understood, many detailed medium processes remain unclear, i.e. the oxidation of silicon, the migration of catalyst and the radial growth of SiNCs etc. To understand these processes will not only be advantageous in the control of the morphology of quasi-one-dimensional silicon nanostructures but also in the control of contaminants and defects, which have important influence on their physical properties.
     Semiconductor industry based on silicon has been so well developed that the applications of silicon are being extended to other fields beside microelectronics such as field emission devices. Quasi-one-dimensional silicon nanostructures have high aspect ratio and low work function, but due to the low thermal conductivity the application of silicon in field emission has been restricted. Therefore, other good field emission materials are usually used to cover silicon nanostructures in order to improve the field emission performance effectively. As we know, SiC is a kind of important wide band gap semiconductor that can be operated in harsh conditions such as high temperature, high frequency and high power. So we intend to employ SiC nanowires to cover the surface of silicon arrays for the purpose of lowering the turn-on field and holding the stable current. Based on the above mentioned, the main work of this thesis is focused on the growth kinetics and field emission properties of quasi-one-dimensional silicon nanostructures, divided into four parts as follows:
     (1) Ordered SiNWs were successfully grown on silicon (111) and (100) wafer epitaxially using gold as catalyst via chemical vapor deposition. The results show that the epitaxial growth was very sensitive to the oxygen content in the chamber. When the oxygen content was high, gold not only catalyzed the VLS growth but also the oxidation of silicon, which stopped the growth. This was demonstrated by the experiment of low-temperature oxidation of SiNWs. When the oxygen content was low, gold atoms migrated on the surface of silicon nanowires, degrading the electric conductivity. The migration of gold was enhanced when the diameters of SiNWs were large or gold was supersaturated in the eutectic drop.
     (2) A novel approach to prepare SiNWs was proposed. First, copper oxalate was dispersed on the AAO substrate directly. When the system temperature reached 590℃, silane was flowed to the CVD chamber to grow silicon nanowires. The process of the formation of catalyst was studied. It was found that copper oxalate was thermally decomposed to be Cu and Cu2O nanoparticles self-assembly. Then the nanoparticles reacted with silane sequentially to form Cu3Si, which served as the nuclei for the growth of SiNWs. The as-grown nanowires are as thin as 20 nm in diameter in average. It is a cheap and efficient method for the synthesis of SiNWs.
     (3) SiNCs were synthesized through the VSS mechanism. Detailed study of the axial and radial growth of SiNCs was carried out. In order to avoid the measuring error that rised from the nucleation time, multi-segment SiNCs were first designed and fabricated. A model was developed to investigate the growth kinetic of SiNCs dependent on pressures of silane and hydrogen. It was found that Langmuir adsorption contributed to the dependence of the axial growth rate on total pressure, while hydrogen coverage on the surface of SiNCs inhibited the radical growth rate greatly. In the end, we also demonstrated the controllable cone angles of SiNCs by modulating the total pressure and hydrogen content, which might be applied in silicon-based solar cells.
     (4) (3-SiC nanowires were grown on aligned SiNWs using NiO as catalyst. The turn-on field of SiC on silicon substrate was 3.4 V/μm, while it was 2.2 V/μm for SiC on silicon arrays substrate, which approached the ordered SiC nanowires in the literature. Besides, the SiC coated silicon arrays posed to be a kind of stable field emission structure.
     After a series of systematic study, better understanding of the VLS and VSS process of SiNWs (SiNCs) has been achieved and primary work of their application in field emission has been accomplished.
引文
[1]Wu HC, Tsai TY, Chu FH, Tai NH, Lin HN, Chiu HT, et al. Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods. Journal of physical chemistry C.2010;114:130-3.
    [2]Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett. 2000;77:1399-401.
    [3]Huang Y, Duan XF, Wei QQ, Lieber CM. Directed assembly of one-dimensional nanostructures into functional networks. science.2001;291:630-3.
    [4]Kim F, Kwan S, Akana J, Yang PD. Langmuir-Blodgett nanorod assembly. J Am Chem Soc.2001; 123:4360-1.
    [5]Shan YH, Kalkan AK, Peng CY, Fonash SJ. From Si source gas directly to positioned, electrically contacted Si nanowires:The self-assembling "grow-in-place" approach. Nano Lett.2004;4:2085-9.
    [6]Whang D, Jin S, Lieber CM. Large-scale hierarchical organization of nanowires for functional nanosystems. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.2004;43:4465-70.
    [7]Englander O, Christensen D, Kim J, Lin LW, Morris SJS. Electric-field assisted growth and self-assembly of intrinsic silicon nanowires. Nano Lett.2005;5:705-8.
    [8]Lee KN, Jung SW, Kim WH, Lee MH, Shin KS, Seong WK. Well controlled assembly of silicon nanowires by nanowire transfer method. Nanotechnology. 2007;18.
    [9]Li QL, Koo SM, Richter CA, Edelstein MD, Bonevich JE, Kopanski JJ, et al. Precise alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures. IEEE Transactions On Nanotechnology. 2007;6:256-62.
    [10]Fan ZY, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett.2008;8:20-5.
    [11]Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of singal crystal growth. Appl Phys Lett.1964;4:2.
    [12]Okajima Y, Amemiya M, Kato K, Asai S. VLS growth of silicon whiskers on a patterned silicon-on-insulator (SOI) wafer. J Cryst Growth.1996; 165:37-41.
    [13]Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. Journal of Vacuum Science & Technology B.1997;15:554-7.
    [14]Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science.1998;279:208-11.
    [15]Yu DP, Bai ZG, Ding Y, Hang QL, Zhang HZ, Wang JJ, et al. Nanoscale silicon wires synthesized using simple physical evaporation. Appl Phys Lett. 1998;72:3458-60.
    [16]Tang YH, Zhang YF, Wang N, Lee CS, Han XD, Bello I, et al. Morphology of Si nanowires synthesized by high-temperature laser ablation. J Appl Phys. 1999;85:7981-3.
    [17]Yu DP, Bai ZG, Wang JJ, Zou YH, Qian W, Fu JS, et al. Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires. Phys Rev B.1999;59:R2498-R501.
    [18]Feng SQ, Yu DP, Zhang HZ, Bai ZG, Ding Y. The growth mechanism of silicon nanowires and their quantum confinement effect. J Cryst Growth.2000;209:513-7.
    [19]Gudiksen MS, Lieber CM. Diameter-selective synthesis of semiconductor nanowires. J Am Chem Soc.2000;122:8801-2.
    [20]Holmes JD, Johnston KP, Doty RC, Korgel BA. Control of thickness and orientation of solution-grown silicon nanowires. Science.2000;287:1471-3.
    [21]Sunkara MK, Sharma S, Miranda R, Lian G, Dickey EC. Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method. Appl Phys Lett. 2001;79:1546-8.
    [22]Sharma S, Kamins TI, Williams RS. Diameter control of Ti-catalyzed silicon nanowires. J Cryst Growth.2004;267:613-8.
    [23]Wang CX, Hirano M, Hosono H. Origin of diameter-dependent growth direction of silicon nanowires. Nano Lett.2006;6:1552-5.
    [24]Schmidt V, Senz S, Gosele U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett.2005;5:931-5.
    [25]Cui Y, Duan XF, Hu JT, Lieber CM. Doping and electrical transport in silicon nanowires. J Phys Chem B.2000;104:5213-6.
    [26]Wang YF, Lew KK, Ho TT, Pan L, Novak SW, Dickey EC, et al. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Lett.2005;5:2139-43.
    [27]Garnett EC, Tseng YC, Khanal DR, Wu JQ, Bokor J, Yang PD. Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. Nature Nanotech.2009;4:311-4.
    [28]Schmid H, Bjork MT, Knoch J, Karg S, Riel H, Riess W. Doping Limits of Grown in situ Doped Silicon Nanowires Using Phosphine. Nano Lett.2009;9:173-7.
    [29]Schwalbach EJ, Voorhees PW. Doping nanowires grown by the vapor-liquid-solid mechanism. Appl Phys Lett.2009;95:-063105.
    [30]Xie P, Hu YJ, Fang Y, Huang JL, Lieber CM. Diameter-dependent dopant location in silicon and germanium nanowires. Meng, G W.2009; 106:15254-8.
    [31]Tan TY, Li N, Gosele U. Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process? Appl Phys Lett.2003;83:1199-201.
    [32]Lensch-Falk JL, Hemesath ER, Perea DE, Lauhon LJ. Alternative catalysts for VSS growth of silicon and germanium nanowires. J Mater Chem.2009;19:849-57.
    [33]Lensch-Falk JL, Hemesath ER, Lopez FJ, Lauhon LJ. Vapor-solid-solid synthesis of ge nanowires from vapor-phase-deposited manganese germanide seeds. J Am Chem Soc.2007; 129:10670-71.
    [34]Wang YW, Schmidt V, Senz S, Gosele U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotech.2006; 1:186-9.
    [35]Li CP, Lee CS, Ma XL, Wang N, Zhang RQ, Lee ST. Growth direction and cross-sectional study of silicon nanowires. Adv Mater.2003; 15:607-9.
    [36]Shi WS, Peng HY, Zheng YF, Wang N, Shang NG, Pan ZW, et al. Synthesis of large areas of highly oriented, very long silicon nanowires. Adv Mater. 2000;12:1343-5.
    [37]Ye CH, Zhang LD, Fang XS, Wang YH, Yan P, Zhao JW. Hierarchical structure: Silicon nanowires standing on silica microwires. Adv Mater.2004; 16:1019-20.
    [38]Zhang RQ, Lifshitz Y, Lee ST. Oxide-assisted growth of semiconducting nanowires. Adv Mater.2003; 15:635-40.
    [39]Barsotti RJ, Fischer JE, Lee CH, Mahmood J, Adu CKW, Eklund PC. Imaging, structural, and chemical analysis of silicon nanowires. Appl Phys Lett. 2002;81:2866-8.
    [40]Gole JL, Stout JD, Rauch WL, Wang ZL. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl Phys Lett. 2000;76:2346-8.
    [41]Wang N, Zhang YF, Tang YH, Lee CS, Lee ST. SiO2-enhanced synthesis of Si nanowires by laser ablation. Appl Phys Lett.1998;73:3902-4.
    [42]Li CP, Sun XH, Wong NB, Lee CS, Lee ST, Teo BK. Ultrafine and uniform silicon nanowires grown with zeolites. Chem Phys Lett.2002;365:22-6.
    [43]Teo BK, Li CP, Sun XH, Wong NB, Lee ST. Silicon-silica nanowires, nanotubes, and biaxial nanowires:Inside, outside, and side-by-side growth of silicon versus silica on zeolite. Inorg Chem.2003;42:6723-8.
    [44]Lee ST, Wang N, Lee CS. Semiconductor nanowires:synthesis, structure and properties. International-Union-of-Materials-Research-Societies International Conference on Advanced Materials (IUMRS-ICAM 99). Beijing, Peoples R China1999. p.16-23.
    [45]Sun XH, Wong NB, Li CP, Lee ST, Sham TK. Chainlike silicon nanowires: Morphology, electronic structure and luminescence studies. J Appl Phys. 2004;96:3447-51.
    [46]Tang YH, Pei LZ, Lin LW, Li XX. Preparation of silicon nanowires by hydrothermal deposition on silicon substrates. J Appl Phys.2009;105:-044301.
    [47]Chu TS, Zhang RQ, Cheung HF. Geometric and electronic structures of silicon oxide clusters. J Phys Chem B.2001;105:1705-9.
    [48]Li WN, Ding YS, Yuan JK, Gomez S, Suib SL, Galasso FS, et al. Synthesis and characterization of silicon nanowires on mesophase carbon microbead substrates by chemical vapor deposition. J Phys Chem B.2005; 109:3291-7.
    [49]Kim BS, Koo TW, Lee JH, Kim DS, Jung YC, Hwang SW, et al. Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires. Nano Lett. 2009;9:864-9.
    [50]Peng KQ, Yan YJ, Gao SP, Zhu J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater.2002; 14:1164-7.
    [51]Peng KQ, Yan YJ, Gao SP, Zhu J. Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater.2003;13:127-32.
    [52]Peng KQ, Zhu J. Simultaneous gold deposition and formation of silicon nanowire arrays. J Electroanal Chem.2003;558:35-9.
    [53]Peng KQ, Huang ZP, Zhu J. Fabrication of large-area silicon nanowire p-n junction diode arrays. Adv Mater.2004;16:73-74.
    [54]Peng KQ, Wu Y, Fang H, Zhong XY, Xu Y, Zhu J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. AngewChem.2005;44:2737-42.
    [55]Peng KQ, Xu Y, Wu Y, Yan YJ, Lee ST, Zhu J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small.2005;1:1062-7.
    [56]Fang H, Wu Y, Zhao JH, Zhu J. Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology.2006;17:3768-74.
    [57]Peng KQ, Fang H, Hu JJ, Wu Y, Zhu J, Yan YJ, et al. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chemistry-a European Journal. 2006;12:7942-7.
    [58]Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater.2006; 16:387-94.
    [59]Peng KQ, Zhang ML, Lu AJ, Wong NB, Zhang RQ, Lee ST. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl Phys Lett.2007;90:16123.
    [60]Huang ZP, Zhang XX, Reiche M, Liu LF, Lee W, Shimizu T, et al. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett.2008;8:3046-51.
    [61]Huang ZP, Shimizu T, Senz S, Zhang Z, Zhang XX, Lee W, et al. Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred Etching Directions. Nano Lett.2009;9:2519-25.
    [62]Hochbaum AI, Gargas D, Hwang YJ, Yang PD. Single Crystalline Mesoporous Silicon Nanowires. Nano Lett.2009;9:3550-4.
    [63]Qu YQ, Liao L, Li YJ, Zhang H, Huang Y, Duan XF. Electrically Conductive and Optically Active Porous Silicon Nanowires. Nano Lett.2009;9:4539-43.
    [64]Chang SW, Chuang VP, Boles ST, Ross CA, Thompson CV. Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated using Block-Copolymer Lithography and Metal-Assisted Etching. Adv Funct Mater. 2009;19:2495-500.
    [65]Shiri D, Kong Y, Buin A, Anantram MP. Strain induced change of bandgap and effective mass in silicon nanowires. Appl Phys Lett.2008;93:073114.
    [66]Kim BS, Islam MA, Brus LE, Herman IP. Interdot interactions and band gap changes in CdSe nanocrystal arrays at elevated pressure. J Appl Phys. 2001;89:8127-40.
    [67]Wan YT, Sha J, Chen B, Fang YJ, Wang ZL, Wang YW. Nanodevices Based on Silicon Nanowires. recent patents on nanotechnology.2008;3:1-9.
    [68]Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST. Small-diameter silicon nanowire surfaces. Science.2003;299:1874-7.
    [69]Read AJ, Needs RJ, Nash KJ, Canham LT, Calcott PDJ, Qteish A.1 st-Principles Calculations of the Electronic-Properties of Silicon Quantum Wires. Phys Rev Lett. 1992;69:1232-5.
    [70]Vo T, Williamson AJ, Galli G. First principles simulations of the structural and electronic properties of silicon nanowires. Phys Rev B.2006;74:045116.
    [71]Filonov AB, Tralle IE, Petrov GV, Borisenko VE. Silicon Band-Structure Calculations by the Self-Consistent Crystalline Orbital Method. Modell Simul Mater Sci Eng.1995;3:45-52.
    [72]Leu PW, Shan B, Cho KJ. Surface chemical control of the electronic structure of silicon nanowires:Density functional calculations. Phys Rev B.2006;73:-195320.
    [73]Yao DL, Zhang G, Lo GQ, Li BW. Impacts of size and cross-sectional shape on surface lattice constant and electron effective mass of silicon nanowires. Appl Phys Lett.2009;94:113113.
    [74]Ramayya EB, Vasileska D, Goodnick SM, Knezevic I. Electron mobility in silicon nanowires. Ieee Transactions on Nanotechnology.2007;6:113-7.
    [75]Bhattacharyya S, Samui S. Phonon confinement in oxide-coated silicon nanowires. Appl Phys Lett.2004;84:1564-6.
    [76]Adu KW, Gutierrez HR, Kim UJ, Sumanasekera GU, Eklund PC. Confined phonons in Si nanowires. Nano Lett.2005;5:409-14.
    [77]Fukata N, Oshima T, Murakami K, Kizuka T, Tsurui T, Ito S. Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl Phys Lett. 2005;86:213112.
    [78]Ponomareva I, Srivastava D, Menon M. Thermal conductivity in thin silicon nanowires:Phonon confinement effect. Nano Lett.2007;7:1155-9.
    [79]Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A. Thermal conductivity of individual silicon nanowires. Appl Phys Lett.2003;83:2934-6.
    [80](a) Markussen T, Jauho AP, Brandbyge M. Heat Conductance Is Strongly Anisotropic for Pristine Silicon Nanowires. Nano Lett.2008;8:3771-5. (b) Tang JY, Wang HT, Lee DH, Fardy M, Huo ZY, Russell TP, et al. Holey Silicon as an Efficient Thermoelectric Material. Nano Lett.2010; 10:4279-83.
    [81](a) Au FCK, Wong KW, Tang YH, Zhang YF, Bello I, Lee ST. Electron field emission from silicon nanowires. Appl Phys Lett.1999;75:1700-2. (b) Kulkarni NN, Bae J, Shih CK, Stanley SK, Coffee SS, Ekerdt JG. Low-threshold field emission from cesiated silicon nanowires. Appl Phys Lett.2005;87:213115. (c) Tzeng YF, Lee YC, Lee CY, Lin IN, Chiu HT. On the enhancement of field emission performance of ultrananocrystalline diamond coated nanoemitters. Appl Phys Lett.2007;91:063117 (d) Wang Q, Li JJ, Ma YJ, Bai XD, Wang ZL, Xu P, et al. Field emission properties of carbon coated Si nanocone arrays on porous silicon. Nanotechnology. 2005;16:2919-22. (e) Chueh YL, Chou LJ, Cheng SL, He JH, Wu WW, Chen LJ. Synthesis of taperlike Si nanowires with strong field emission. Appl Phys Lett.2005;86. (f) Zeng BQ, Xiong GY, Chen S, Wang WZ, Wang DZ, Ren ZF. Field emission of silicon nanowires grown on carbon cloth. Appl Phys Lett.2007;90:003112.
    [82]Adachi MM, Anantram MP, Karim KS. Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires. Nano Lett.2010;10:4093-8.
    [83]Wang W, Wu SM, Reinhardt K, Lu YL, Chen SC. Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells. Nano Lett.2010;10:2012-8.
    [84]Garnett E, Yang PD. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010;10:1082-7.
    [85]Yuan GB, Zhao HZ, Liu XH, Hasanali ZS, Zou Y, Levine A, et al. Synthesis and Photoelectrochemical Study of Vertically Aligned Silicon Nanowire Arrays. Mu, L X. 2009;48:9680-4.
    [86]Cao LY, Fan PY, Vasudev AP, White JS, Yu ZF, Cai WS, et al. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Lett.2010;10:439-45.
    [87]Huang JS, Hsiao CY, Syu SJ, Chao JJ, Lin CF. Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass. Sol Energy Mater Sol Cells. 2009;93:621-4.
    [88]Kayes BM, Atwater HA, Lewis NS. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys.2005;97:114302-11.
    [89]Putnam MC, Boettcher SW, Kelzenberg MD, Turner-Evans DB, Spurgeon JM, Warren EL, et al. Si microwire-array solar cells. Energy & Environmental Science. 2010;3:1037-41.
    [90]Chan CK, Peng HL, Liu G, Mcllwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 2008;3:31-5.
    [91]Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, et al. Silicon Nanotube Battery Anodes. Nano Lett.2009;9:3844-7.
    [92]Cui LF, Ruffo R, Chan CK, Peng HL, Cui Y. Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Lett. 2009;9:491-5.
    [93]Peng K, Jie J, Zhang W, Lee ST. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett.2008;93:003105.
    [94]Cui Y, Wei QQ, Park HK, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293:1289-92.
    [95]Zhou XT, Hu JQ, Li CP, Ma DDD, Lee CS, Lee ST. Silicon nanowires as chemical sensors. Chem Phys Lett.2003;369:220-4.
    [96]Bunimovich YL, Ge GL, Beverly KC, Ries RS, Hood L, Heath JR. Electrochemically programmed, spatially selective biofunctionalization of silicon wires. Lisiecki, I.2004;20:10630-8.
    [97]Li Z, Rajendran B, Kamins TI, Li X, Chen Y, Williams RS. Silicon nanowires for sequence-specific DNA sensing:device fabrication and simulation. Schade, M. 2005;80:1257-63.
    [98]Shao MW, Shan YY, Wong NB, Lee ST. Silicon nanowire sensors for bioanalytical applications:Glucose and hydrogen peroxide detection. Adv Funct Mater.2005;15:1478-82.
    [99]Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294-301.
    [100]Chen Y, Wang XH, Erramilli S, Mohanty P, Kalinowski A. Silicon-based nanoelectronic field-effect pH sensor with local gate control. Appl Phys Lett. 2006;89:-223512.
    [101]Kamins TI, Sharma S, Yasseri AA, Li Z, Straznicky J. Metal-catalysed, bridging nanowires as vapour sensors and concept for their use in a sensor system. Nanotechnology.2006;17:S291-S7.
    [102]Lee KN, Jung SW, Kim WH, Lee MH, Seong WK, Kim M, et al. Fabrication of silicon nanowire for biosensor applications.5th IEEE Sensors Conference. Daegu, SOUTH KOREA.2006.1269-71.
    [103]Park IY, Li ZY, Li XM, Pisano AP, Williams RS. Towards the silicon nanowire-based sensor for intracellular biochemical detection.9th World Congress on Biosensors. Toronto, CANADA 2006.2065-70.
    [104]Patolsky F, Zheng GF, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols.2006; 1:1711-24.
    [105]Wanekaya AK, Chen W, Myung NV, Mulchandani A. Nanowire-based electrochemical biosensors. Wanekaya, A K.2006;18:533-50.
    [106]Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH, et al. Silicon nanowire arrays for ultrasensitive label-free detection of DNA.14th International Conference on Solid-State Sensors, Actuators and Microsystems. Lyon, FRANCE 2007. U1010-U1.
    [107]Kim A, Ah CS, Yu HY, Yang JH, Baek IB, Ahn CG, et al. Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett.2007;91:103901.
    [108]McAlpine MC, Ahmad H, Wang DW, Heath JR. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Boskovic, B O. 2007;6:379-84.
    [109]Nair PR, Alam MA. Design considerations of silicon nanowire biosensors. IEEE T ELECTRON DEV.2007;54:3400-8.
    [110]Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007;7:3405-9.
    [111]Bi XY, Wong WL, Ji WJ, Agarwal A, Balasubramanian N, Yang KL. Development of electrochemical calcium sensors by using silicon nanowires modified with phosphotyrosine. Biosensors & Bioelectronics.2008;23:1442-8.
    [112]Elfstrom N, Karlstrom AE, Linnrost J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett.2008;8:945-9.
    [113]Li MW, Bhiladvala RB, Morrow TJ, Sioss JA, Lew KK, Redwing JM, et al. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech. 2008;3:88-92.
    [114]Mu LX, Shi WS, Chang JC, Lee ST. Silicon nanowires-based huorescence sensor for Cu(Ⅱ). Nano Lett.2008;8:104-9.
    [115]Lin TW, Hsieh PJ, Lin CL, Fang YY, Yang JX, Tsai CC, et al. Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Meng, G W.2010; 107:1047-52.
    [116]Chung SW, Yu JY, Heath JR. Silicon nanowire devices. Appl Phys Lett. 2000;76:2068-70.
    [117]Yu JY, Chung SW, Heath JR. Silicon nanowires:Preparation, device fabrication, and transport properties. J Phys Chem B.2000;104:11864-70.
    [118]Cui Y, Zhong ZH, Wang DL, Wang WU, Lieber CM. High performance silicon nanowire field effect transistors. Nano Lett.2003;3:149-52.
    [119]Duan XF, Niu CM, Sahi V, Chen J, Parce JW, Empedocles S, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature.2003;425:274-8.
    [120]Cohen GM, Rooks MJ, Chu JO, Laux SE, Solomon PM, Ott JA, et al. Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain. Appl Phys Lett.2007;90:-233100.
    [121]Shan Y, Ashok S, Fonash SJ. Unipolar accumulation-type transistor configuration implemented using Si nanowires. Appl Phys Lett.2007;91.
    [122]Schmidt V, Riel H, Senz S, Karg S, Riess W, Gosele U. Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small.2006;2:85-8.
    [123]Werner P, Buttner CC, Schubert L, Gerth G, Zakarov ND, Gosele U. Gold-enhanced oxidation of silicon nanowires. Werner, P.2007;98:1066-70.
    [124]Buttner CC, Zakharov ND, Pippel E, Gosele U, Werner P. Gold-enhanced oxidation of MBE-grown silicon nanowires. Semicond Sci Technol.2008;23:-075040.
    [125]Hannon JB,Kodambaka S, Ross FM, Tromp RM. The influence of the surface migration of gold on the growth of silicon nanowires. Nature.2006;440:69-71.
    [126]Kawashima T, Mizutani T, Nakagawa T, Torii H, Saitoh T, Komori K, et al. Control of surface migration of gold particles on Si nanowires. Nano Lett. 2008;8:362-8.
    [127]Kodambaka S, Hannon JB, Tromp RM, Ross FM. Control of Si nanowire growth by oxygen. Nano Lett.2006;6:1292-6.
    [128]Kendrick CE, Yoon HP, Yuwen YA, Barber GD, Shen HT, Mallouk TE, et al. Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth. Appl Phys Lett.2010;97:143108.
    [129]Su ZX, Dickinson C, Wan YT, Wang ZL, Wang YW, Sha JA, et al. Crystal growth of Si nanowires and formation of longitudinal planar defects. Crystengcomm. 2010;12:2793-8.
    [130]Xia JB, Cheah KW. Quantum confinement effect in thin quantum wires. Phys Rev B.1997;55:15688-93.
    [131]Bai ZG, Yu DP, Wang JJ, Zou YH, Qian W, Fu JS, et al. Synthesis and photoluminescence properties of semiconductor nanowires. International Conference on Advanced Materials:Sympopsium M-Silicon-based Materials and Devices. Beijing, Peoples R China1999:117-20.
    [132]Bhattacharya S, Banerjee D, Adu KW, Samui S, Bhattacharyya S. Confinement in silicon nanowires:Optical properties. Appl Phys Lett.2004;85:2008-10.
    [133]Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett.1998;72:1173-5.
    [134]Yin AJ, Guico RS, Xu J. Fabrication of anodic aluminium oxide templates on curved surfaces. Nanotechnology.2007;18:-035304.
    [135]Wan YT, Wang ZL, Fang YJ, Xia ZB, Wang YW, Sha JA. Silicon nanowires grown from copper oxalate. Mater Lett.2010;64:1839-42.
    [136]Wen CY, Reuter MC, Tersoff J, Stach EA, Ross FM. Structure, Growth Kinetics, and Ledge Flow during Vapor-Solid-Solid Growth of Copper-Catalyzed Silicon Nanowires. Nano Lett.2010;10:514-9.
    [137]Yao Y, Fan S. Si nanowires synthesized with Cu catalyst. Mater Lett. 2007;61:177-81.
    [138]Arbiol J, Kalache B, Cabarrocas PRI, Morante JR, Morral AFI. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology.2007; 18:305606.
    [139]Zhang XJ, Zhang DG, Ni XM, Zheng HG. Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate. Solid State Electron 2008;52:245-8.
    [140]Renard VT, Jublot M, Gergaud P, Cherns P, Rouchon D, Chabli A, et al. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nature Nanotech.2009;4:654-7.
    [141]Su ZX, Sha J, Pan GW, Liu JX, Yang DR, Dickinson C, et al. Temperature-dependent Raman scattering of silicon nanowires. J Phys Chem B. 2006; 110:1229-34.
    [142]Thonhauser T, Mahan GD. Predicted Raman spectra of Si[111] nanowires. Phys Rev B.2005;71.
    [143]Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, et al. Raman spectroscopy of silicon nanowires. Physical Review B (Condensed Matter and Materials Physics)|Physical Review B (Condensed Matter and Materials Physics). 2003;68:241312-1-4.
    [144]Li BB, Yu DP, Zhang SL. Raman spectral study of silicon nanowires. Phys Rev B.1999;59:1645-8.
    [145]Wang Q, Li JJ, Ma YJ, Bai XD, Wang ZL, Xu P, et al. Field emission properties of carbon coated Si nanocone arrays on porous silicon. Nanotechnology. 2005;16:2919-22.
    [146]Cao LY, Nabet B, Spanier JE. Enhanced raman scattering from individual semiconductor nanocones and nanowires. Phys Rev Lett.2006;96:-157402.
    [147]Zhu J, Yu ZF, Burkhard GF, Hsu CM, Connor ST, Xu YQ, et al. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Lett.2009;9:279-82.
    [148]Chueh YL, Fan ZY, Takei K, Ko H, Kapadia R, Rathore AA, et al. Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays. Nano Lett. 2010;10:520-3.
    [149]Zhiyong Fan, Rehan Kapadia, Paul W.Leu, Xiaobo Zhang, Yu-Lun Chueh, KuniharuTakei, et al. Ordered Arrays of Dual-diameter Nanopillars for Maximized Broadband Optical Absorption. Nano Lett.2010;10:3823-7.
    [150]Arbiol J, Kalache B, Cabarrocas PRI, Morante JR, Morral AFI. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology.2007;18:305606.
    [151]Dhalluin F, Baron T, Ferret P, Salem B, Gentile P, Harmand JC. Silicon nanowires:Diameter dependence of growth rate and delay in growth. Appl Phys Lett. 2010;96:133109.
    [152]Wan YT, Sha J, Wang ZL, Wang YW. Influence of ambient gas on the growth kinetics of Si nanocones. Appl Phys Lett.2010;97:153128.
    [153]Sugiyama N, Hirashita N, Mizuno T, Moriyama Y, Takagi S. Analysis of growth rate during Si epitaxy by hydrogen coverage model. Mater Sci Semicond Process. 2005;8:11-4.
    [154]BY T. R. HOGNESST HWINWJ. The thermal Decomposition of Silane. J Am Chem Soc.1936;58-108.
    [155]Zhao HZ, Zhou S, Hasanali Z, Wang DW. Influence of pressure on silicon nanowire growth kinetics. Journal of Physical Chemistry C.2008;112:5695-8.
    [156]Zhang XN, Chen YG, Xie ZP, Yang WY. Shape and Doping Enhanced Field Emission Properties of Quasialigned 3C-SiC Nanowires. Chi, H.2010;114:8251-5.
    [157]Cao LZ, Jiang H, Song H, Liu X, Guo WG, Yu SZ, et al. SiC/SiO2 core-shell nanowires with different shapes:Synthesis and field emission properties. Solid State Commun.2010; 150:794-8.
    [158]Yang YJ, Meng GW, Liu XY, Zhang LD, Hu Z, He CY, et al. Aligned SiC Porous Nanowire Arrays with Excellent Field Emission Properties Converted from Si Nanowires on Silicon Wafer. Chi, H.2008;112:20126-30.
    [159]Attolini G, Rossi F, Bosi M, Watts BE, Salviati G. Synthesis and characterization of 3C-SiC nanowires. J Non-Cryst Solids.2008;354:5227-9.
    [160]Niu JJ, Wang JN. A simple route to synthesize scales of aligned single-crystalline SiC nanowires arrays with very small diameter and optical properties. J Phys Chem B.2007;111:4368-73.
    [161]Zhou XT, Zhang RQ, Peng HY, Shang NG, Wang N, Bello I, et al. Highly efficient and stable photoluminescence from silicon nanowires coated with SiC. Chem Phys Lett.2000;332:215-8.
    [162]Pan ZW, Lai HL, Au FCK, Duan XF, Zhou WY, Shi WS, et al. Oriented silicon carbide nanowires:Synthesis and field emission properties. Adv Mater. 2000;12:1186-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700