金属酞菁的光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,传统意义上的染料,因为它们特殊的光、电、磁等性质在高新技术领域得到广泛的应用,成为“功能性染料”而获得迅速发展。在已知的“功能性染料”中,酞菁以其独特的物理、化学性能而备受瞩目。其中,金属酞菁作为一种很有发展前途的有机非线性光学材料,特别引起了人们浓厚的研究兴趣。本文主要利用单光束纵向Z扫描技术,对几种金属酞菁化合物进行了非线性光学吸收特性和光限幅特性的实验和理论研究。全文的主要研究内容、结论与创新性如下:
     (1)介绍了非线性光学性质测量的Z扫描技术。详细分析了Z扫描技术的原理和Z扫描技术的理论计算过程,讨论了Z扫描测量的影响因素,为全文的实验研究提供了理论依据。
     (2)对两种金属酞菁的电子结构和电子光谱用量子化学的方法进行了研究。以量子化学计算软件Hyperchem为工具,用PM3半经验方法和ZINDO/S方法计算研究了铜酞菁和钴酞菁的电子结构和电子光谱,并定性的归纳总结了总电子数为奇数的这类金属酞菁的可见最大吸收峰(λ_(max))与分子结构的关系。研究结果表明:在优化的分子几何构型基础上计算得到的电子光谱与实验值很吻合;并且λ_(max)与OWF_(π-π)(π-π)重叠加权因子,表征分子共轭程度大小)之间存在很好的线性关系。这为寻找分子结构对材料光学性能的影响规律,合成新型非线性光学材料提供了理论依据。
     (3)对金属酞菁溶液进行了非线性光学吸收特性和光限幅特性的实验和理论研究。首先采用单光束纵向Z扫描技术用飞秒振荡级激光研究了铜酞菁溶液的非线性光学吸收特性,详细讨论了入射激光功率对非线性吸收的影响和溶液浓度对非线性吸收的影响。研究结果表明,铜酞菁溶液总体表现出反饱和吸收(RSA)效应,这主要是由材料的三光子吸收(3PA)引起;并且在铜酞菁溶液浓度较低时,随着入射激光功率增大,样品溶液的RSA效应越强,而对于浓度比较大的铜酞菁溶液,随着入射激光功率增大,样品溶液的RSA效应越强,但入射激光功率增大到一定程度,样品溶液出现“光褪色”现象,RSA效应趋于饱和,并开始减弱。然后用1064 nm Nd:YAG连续激光研究了铜酞菁溶液和多氯代铜酞菁溶液的光限幅特性,根据稳态的速率方程理论分析表明,铜酞菁溶液和多氯代铜酞菁溶液的光限幅效应主要是由材料的三重激发态吸收引起的RSA造成的。
     (4)对金属酞菁薄膜进行了非线性光学吸收特性和光限幅特性的实验和理论研究。采用单光束纵向Z扫描技术用800nm飞秒放大级激光研究了铜酞菁薄膜的非线性光学吸收特性以及光限幅特性。在开孔的Z扫描实验中,观察到了SA向RSA转变的现象。理论上提出了飞秒超短超快脉冲作用有机分子的有效四能级模型,并从动态速率方程理论出发,分析讨论了此种条件下产生非线性光学吸收特性的物理机制,而且提出了SA与RSA相互转化的阈值光强理论。研究结果表明,当入射光强达到转变的阈值光强时,由于CuPc分子的高阶激发态发挥作用,使样品中的五阶非线性效应增强,导致了SA向RSA的转变。同时该研究也表明,铜酞菁薄膜有较大的五阶非线性吸收系数β~((5))(0.24×10~(-21) cm~3/W~2),对800 nm飞秒激光具有很好的光限幅效应,是一种非常有潜力的光限幅材料。
The traditional dyes have been growing rapidly as "functional dyes" because of their special properties of optics,electronics and magnetism in the field of high-tech.In the known "functional dyes",phthalocyanines have attracted a great deal of attentions due to their unique physical and chemical properties.Among them,the metal-phthalocyanine,as a very promising organic nonlinear optical material,has particularly aroused strong research interest.In this dissertation,experimental and theoretical studies on the nonlinear absorption properties and optical limiting properties of metal-phthalocyanine are performed mainly by the sensitive single-beam z-scan technique using the femtosecond laser.The main contents,research conclusions and innovations are summarized as following:
     (1) The z-scan technique used for the measurement of nonlinear optical properties is presented.The principle and theoretical calculation process of z-scan technique are analyzed in detail,and the influence factors in the z-scan measurement are disscused, which provide a theoretical basis and instruction for the experimental researches in the dissertation.
     (2) The electronic structures and electronic spectra of two metal-phthalocyanines are studied by quantum chemical caculation.Using the Hyperchem software,the geometrical molecular structures of cobalt phthalocyanine and copper phthalocyanine are firstly optimized by the semi-empirical PM3 method and the electronic spectra are then calculated by the ZINDO/S method,and the relationship between the visible absorption maximum(λ_(max)) and the molecular structure of phthalocyanines with odd total electron numbers is concluded qualitatively.The results show that the calculated electronic spectra based on the optimized geometrical molecular structures are well consistent with the experimental values.OWF_(π-π)(π-πoverlap weighting factor,which is considered as a measurement of the extent ofπ-electron delocalization) andλ_(max) is in well linear relationship.The study of seeking the relationship between the molecular structures and their optical properties provides a theoretical instruction for synthesizing new nonlinear optical materials.
     (3) The experimental and theoretical studies on the nonlinear absorption(NLA) properties and optical limiting properties of metal-phthalocyanine solutions are performed. Using the femtosecond seed laser,the NLA properties of copper phthalocyanine solutions are studied by the sensitive single-beam z-scan technique.The relationship between the input laser power and NLA properties,and the relationship between the solution concentration and NLA properties are discussed in detail.The results show that the copper phthalocyanine solutions exhibit reverse saturable absorption(RSA) effect,which mainly originates from three-photon absorption(3PA);and the RSA effect becomes stronger with the input laser power increasing when the sample solution concentration is low,while for the high concentration sample solution,with the input laser power increasing,the RSA effect first becomes stronger,then becomes saturable,and finally becomes weaker due to the "optical fading" phenomenon.In addition,the optical limiting performances for 1064 nm continual-wave laser of copper phthalocyanine and polychloro copper phthalocyanine solutions have been investigated.The results of the steady-state rate equation analysis show that the good optical limiting performances are mainly attributed to RSA induced by the absorption of triplet excited state.
     (4) The experimental and theoretical studies on the NLA properties and optical limiting properties of metal-phthalocyanine thin film are performed.Using femtosecond regenerative amplifier laser,the NLA properties and optical limiting properties of copper phthalocyanine thin film are investigated by the sensitive single-beam z-scan technique.In the open-aperture(OA) z-scan measurements of the film,a transition from saturable absorption(SA) to RSA is observed as the excitation intensity is increased.An efficient four-energy-level model for the organic materials excited by femtosecond pulse laser is developed,and based on which the dynamic rate equation analysis is performed and the intensity dependence of level populations is obtained,which reveals the source of NLA. The results show that the transition from SA to RSA is ascribed to the fifth-order effect of excited-state absorption(ESA) induced by two-photon absorption(TPA) process when the input laser intensity reaches a critical value.Furthermore,it is found that the copper phthalocyanine thin film possesses a large fifth-order absorption coefficientβ~(5) (0.24×10~(-21)cm~3/W~2).It indicates that the copper phthalocyanine thin film could be a very promising candidate for optical limiting material.
引文
[1] A. Braun, J. Tcherniac. Products of the action of acetic anhydride on phthalamide.Chem. Ber., 1907,40: 2709-2714
    [2] R. P. Linstead. Phthalocyanines Part II. The Prepare of Phthalocyanine and Some Metallic Derivatives. Derivatives form 0-Cyanobenzamide and Phthalimide. J.Chem. Soc., 1934, 1017-1022
    [3] J. M. Robertson. An X-Ray Study of the Phthalocyanines Part Ⅰ . The Metal-free Nickel Copper and Platinum Compounds. J. Chem. Soc, 1935, 615-621
    [4] J. M. Robertson. An X-Ray Study of the Phthalocyanines Part Ⅱ. Quantitative Structure Determination of The Metal-free Nickel Compounds. J. Chem. Soc.,1936,1195-1209
    [5] Poon Ka-Wo, W. Liu, Chan Pui-Kwan et al. Tetrapyrrole Derivatives Substituted with Ferrocenylethynyl Moieties Synthesis and Electrochemical Studies. J. Org.Chem., 2001, 66(5): 1553-1559
    [6] J. Z. Jiang, W. Liu, W. F. Law et al. A New Synthetic Route to Unsymmetrical Bis(phthalocyaninato) europium (III) complexes. Inorg. Chim. Acta., 1998, 268:141-144
    [7] J. Z. Jiang, W. Liu, W. F. Law et al. Heteroleptic triple-decker (phthalocyaninato)(porphyrinato) europium (III) complexes: synthesis and electrochemical study. Inorg. Chim. Acta., 1998, 268: 49-53
    [8] J. Z. Jiang, F. Furuya, T. Nyokong et al. Comparative spectroscopic and electrochemical properties of bis(octadodecylthionaphthalocyaninato) europium (III) and bis(tert-tert-butylnaphthalocyaninato) europium (III) complexes. Inorg.Chem., 2000, 39: 128-135
    [9] P. A. Barrett, C. E. Cent, P. R. Linstead. Phthalocyanines Part Ⅶ. Phthalocyanine as a co-ordinating group. A general investigation of the metallic derivatioves. J.Chem. Soc, 1936,1719-1736
    [10] E. Bennet, D. E. Broberg, N. C. Baenziger. Crystal structure of stannic phthalocyanine, an eight-coordinated tin complex. Inorg. Chem., 1973, 12: 930-936
    [11]I.S.Kirin,P.N.Moakalev,Yu A.Makashev.Formation of phthalocyanines of rare-earth elements.Russ.J.Inorg.Chem.,1965,10:1065-1066
    [12]De Cian Andre,Moussavi Mehdi,Fischer Jean,et al.Synthesis,structure,and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives:[LuPc(QAn)(H_2O_2)]·H_2O_2·CH_2OH,and LuPc_2.·CH_2Cl_2.Inorg.Chem.,1985,24(20):3162-3167
    [13]K.P.Ng.Dennis,J.Z.Jiang.Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes.Chem.Soc.Rev.,1997,26:433-442
    [14]J.Z.Jiang,R.C.Liu,T.C.W.Mark,et al.Synthesis,spectroscopic and electrochemical properties of substituted bis(phthalocyanine)lanthanide(Ⅲ)complexes.Polythdron,1997,16(3):515-520
    [15]M.Matsuda,T.Naito,I.Inabe et al.Phthalocyanine Molecular Conductors with Paramagnetic Iron(Ⅲ).Synthetic Metals,1999,102(1-3):1774-1775
    [16]Z.Ji,Y.Xiang,U.Yasukiyo.Controlling the orientation of phthalocyanine molecules by heat treatment in magnetic field.Progress in Organic Coatings,2004,49(2):180-182
    [17]Dean Zdravkovski,M.C.Milletti.A comparison of structural and electronic characteristics among subphthalocyanine and phthalocyanine complexes.J.Mol.Struc.:THEOCHEM,2005,717(1-3):85-89
    [18]沈永嘉.酞菁的合成与应用.化学工业出版社,北京,2000,166-190
    [19]Vishal B Sharma,Suma L Jain,Bir Sain.Cobalt phthalocyanine catalyzed aerobic oxidation of secondary alcohols:an efficient and simple synthesis of ketones.Tetrahedron Letters,2003,44(2):383-386
    [20]M.E.El-Khouly,O.Ito,P.M.Smith,et al.Intermolecular and supramolecualr photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems.Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2004,5:79-104
    [21]M.Whitacre,D.K.Feyes,T.Satoh,et al.Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 of SW480 human colon cancer xenografts in athymic mice.Clinical Cancer Research,2000,6:2021-2027
    [22]沈永嘉.氧钒酞菁在激光光盘系统中的应用研究.化学研究与应用,1995,7(2):222-225
    [23]唐福龙,沈淑引.旅涂法制备可溶性酞菁薄膜的光存储性能研究.中国激光,1995,22(11):853-856
    [24]徐明声,季振国,胡端麟等.回顾与展望:酞菁及其应用.材料科学与工程,1999,17(2):1-6
    [25]H.Z.Chen,M.Wang,L.X.Feng.Synthesis and photoconductivity study of Phthalocyanine polymers Ⅱ PVK-CO-CuPc(COOH),J.Appl.Polym.sci.,1993,31:1165-1170
    [26]M.M.Nicholson,F.A.Pizzarello.Charge transport in oxidation product of Lutetion diphthalocyanine.J.Electronchem.Soc.,1979,126(9):1490-1495
    [27]S.C.Danlberg,C.B.Roinganum,C.E.Rice.Characteristic differences in the surface space charge layer of the red and green forms of Lutetion diphthalocyanine.J.Electronchem.Soc.,1981,128:2150-2153
    [28]T.M.Riou.The rare earth substitution effect on the electrochemistry of diphthalocyanine films in contact with an acidic aqueous medium.J.Electronchem.Soc.,1988,249:181-1903
    [29]Tsuyoshi Komastu,Kazuchika Ohta,Tetsuya Fujimoto,et al.Chromic materials Part Ⅰ Liquid-crystalline behaviour and electrochromism in bis(octakis-n-alkylphthalocyaninato)lutetium(Ⅲ) complexes.J.Mater.Chem.,1994,4:533-536
    [30]S.Baker,M.C.Petty,G.G.Roberts,et al.Preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films.THIN SOL.FILMS,1983,99(1-3):53-59
    [31]米君,马国宏,郭立俊等.酞菁铜薄膜的飞秒Z-扫描研究.复量学报(自然科学版)2001,40(3):300
    [32]丛方地,杜锡光,赵宝中等.四氨基取代金属酞菁的光谱分析.高等学校化学学.2002,23:2221
    [33]Stephen M.Contakes,Susan T.beatty,Karen K.Dailey.Complexes of phthalocyanines and metallophthalocyanines.Organometallics,2000,19(10):4767-4774
    [34]Z.Z.Ho,C.Y.Ju,W.M.Hetherington Ⅲ.Third harmonic generation in phthalocyanines.J.Appl.Phys.,1987,62(2):716-718
    [35]James S.Shirk,J.R.Lindle,F.J.Bartoli,et al.Off-resonant third-order optical nonlinearities of metal-substituted phthalocyanines.Appl.Phys.Lett.,1989,55:1287
    [36]K.C.Martin,S.Marek,P.Jiri,et al.Dynamics of third-order nonlinear optical processes in Langrnuir-Blodgett and evaporated films of phthalocyanines.J.Chem.Phys.,1990,92(3):2019-2024
    [37]M.A.Diaz-Garcia,J.M.Cabrera,and F.Agulló-López,et al.Third-order nonlinear optical susceptibilities of the Langmuir-Blodgett films of octa-substituted metallophthalocyanines.Appl.Phys.Lett.,1996,69:293
    [38]K.P.Unnikrishnan,Jayan Thomas,V.P.N.Nampoori,et al.Nonlinear absorption in certain metal phthalocyanines at resonant and near resonant wavelengths.Optics Communications,2003,217(1-6):269-274
    [39]钱士雄,王恭明.非线性光学—原理与进展.上海复旦大学出版社,2001,1-88
    [40]Y.R.Shen.The principle of nonlinear optics.John wily & Sons,Inc,1984
    [41]叶佩弦,司金海.有机聚合物的非线性光学.物理,2000,29(6):344-347
    [42]R.L.Sutherland.Handbook of Nonlinear Optics.1996,Science Applications International Corporation,Dayton,Ohio
    [43]J.L.Bredas,C.Adat,P.Tackx,et al.Third-order nonlinear response in organic materials:theoretical and experimental aspects.Chem.Rev.,1994,94:243-278
    [44]M.Dinu,F.Quochi,H.Garcia.Third-order nonlinearities in silicon at telecom wavelengths.Appl.Phys.Lett.,2003,82(18):2954-2956
    [45]M.D.Dvorak,B.L.Justus.Z-scan studies of nonlinear absorption and refraction in bulk,undoped InP.Opt.Commun.,1995,114:147-150
    [46]P.Prem,B.N.Shivakiran Bhaktha,D.Narayana Rao,et al.Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters Co-doped in SiO_2 Sol-Gel films.J.Appl.Phys.,2004,96(11):6717-6723
    [47]S.S.Harilal,C.V.Bindhu,V.P.N.Nampoori,et al.Optical limiting and thermal tensing studies in C_(60).J.Appl.Phys.,1999,86(3):1388-1392
    [48]M.C.Larciprete,C.Sibilia,S.Paoloni,M.Bertolotti,F.Sarto,M.Scalora.Accessing the optical limiting properties of metallo-dielectric photonic band-gap structures.J.Appl.Phys.,2003,93(9):5013-5017
    [49]J.Staromlynska,T.J.Mckay,P.Wilson.Broadband optical limiting based on excited state absorption in Pt:ethynyl,J.Appl.Phys.,2000,88(4):1726-1732
    [50]X.Sun,R.Q.Ru,G.Q.Xu,et al.Broadband optical limiting with multiwalled carbon nanotubes.Appl.Phys.Lett.,1998,73(25):3632-3634
    [51]Y.Song,G.Fang,Y.Wang,et al.Excited-state absorption and optical-limiting properties of organometallic fullerence-C_(60) derivates.Appl.Phys.Lett.,1999,74(3):332-334
    [52]M.D.Joshi,S.R.Mishra,H.S.Rswat,et al.Investigation of optical limiting in C_(60)solution.Appl.Phys.Lett.,1993,62(15):1763-1765
    [53]S.Hughes,G.Spruce,B.S.Wherrett,et al.Comparison between the optical limiting behavior of chloroaluminum phthalocyanine and a cyanine dye.J.Appl.Phys.,1997,81(9):5905-5912
    [54]Shekhar Guha,William T.Roberts,B.H.Ahn.Nonlinear optical limiting of C_(60),platinum poly-yne,and tetrabenzporphyrin in the near infrared.Appl.Phys.Lett.,1996,68(26):3686-3688
    [55]S.Qu,Y.Chen,Y.Song,et al.Optical limiting effect in two phthalocyanines observed by picosecond pulsed laser.Chin.Phys.,2001,12:1139
    [56]何国华,张俊祥.一种新型有机染料的宽带双光子吸收和光限幅特性的研究.物理学报,2003,52:1930
    [57]顾玉宗,梁志坚,干福熹.酞菁掺杂有机改性溶胶凝胶材料的自衍射及限幅特性.光学学报,2001,21:507
    [58]Z.W.Lu,Y.L.Lu,J.Yang.Optical limiting effect based on stimulated Brillouin scattering in CCl_4.Chin.Phys.,2003,12:507
    [59]J.E.Geusic,S.Singh,D.W.Tipping,et al.Three-Photon Stepwise Optical Limiting in Silicon.Phys.Rev.Lett.,1960,19:1126
    [60] S. R. Friberg and P. W. Smith. Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quantum Electron. 1987,23(12): 2089-2094
    [61] M. J. Weber, D. Milam and W. L. Smith. Nonlinear refractive index of glasses and crystals. Opt. Eng. 1978, 17(5): 463-469
    [62] M. J. Moran, C. Y She and P. L. Carman. IEEE J. Quantum Electron. QE-11(1975) 259
    
    [63] R. Adair, L. L. Chase and S. A. Payne. Nonlinear refractive-index measurements of glasses using three-wave frequency mixing. J. Opt. Soc. Am. B., 1987, 4(6):875-881
    [64] P. Yeh. Exact solution of a nonlinear model of two-wave mixing in Kerr media. J.Opt. Soc. Am. B., 1986, 3(5): 747-750
    [65] W. E. Williams, M. J. Soileau and E. W. Van Stryland. Optical switching and n_2 measurements in CS_2. Opt. Commun. 1984, 50: 256-260.
    [66] M. Sheik-Bahae, A. A. Said, T. H. Wei, et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, QE-26: 760.
    [67] R. Desalvo, M. Sheik-Bahae, A. A. Said et al. Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals. Opt. Lett., 1993, 18:194.
    [68] P. B. Chapper, J. Staromlynska, J. A. Hermann, et al. J. Nonlinear Optical Physics and Materials. 1997, 6: 251.
    [69] W. Li, L. Sarger, L. Canioni, et al. Time-resolved cross-induced beam deformation: application to the determination of the femtosecond nonlinear process involved in CS_2. Opt. Commun., 1996,132: 583
    [70] T. Kawazoe, H. Kawaguchi, J. inoue, et al. Measurement of nonlinear refractive index by time-resolved z-scan technique. Opt. Commun., 1999,160: 125-129
    [71] I. J. Blewett, J. Stokes, A. Yookey, et al. Fastscan z-scan system for determining optical non-linearities in semiconductors. Optics & Laser Technology, 1997, 29:355-358
    [72] T. H. Wei, T. H. Huang, H. D. Lin, et al. Lifetime determination for high-lying excited states using Z scan. Appl. Phys. Lett. 1995, 67: 2266
    [73]M.Samoc,A.Samoc,B.Luther-Davies,et al.Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order of nonlinearity of soluble conjugated polymers.J.Opt.Soc.Am.B.,1998,15:817-825
    [74]L.C.Oliveira and S.C.Zilio.Single-beam time-resolved Z-scan measurements of slow absorbers.Appl.Phys.Lett.,1994,65:2121
    [75]A.Marcano,F.E.Hernandez,A.D.Seda.Two-color near-field eclipsing Z-scan technique for the determination of nonlinear refraction.J.Opt.Soc.Am.B.,1997,14:3363-3367
    [76]P.Brochard,V Grolier-Mazza,T.Cabanel.Thermal nonlinear refraction in dye solutions:a study of the transient regime.J.Opt.Soc.Am.B.,1997,14:405.
    [77]X.M.Shang,G.Q.Tang,G.L.Zhang,et al.Optical nonlinearities and transient dynamics of 2-(2'-hydroxyphenyl)benzoxazole studied by single-beam and time-resolved two-color Z-scan techniques.J.Opt.Soc.Am.B,1998,15(2):854-862
    [78]H.Ma,C.B.de Araùjo.Two-color Z-scan technique with enhanced sensitivity.Appl.Phys.Lett.,1995,66:1581
    [79]S.M.Mian,B.Taheri,J.P.Wicksted.Effects of beam ellipticity on Z-scan measurements.J.Opt.Soc.Am.B.,1996,13:856
    [80]D.V.Petrov,A.S.L.Gomes,C.B.de Araùjo.Reflection Z-scan technique for measurements of optical properties of surfaces.Appl.Phys.Lett.,1994,65:1067
    [81]M.Martinelli,S.Bian,J.R.Leite,et al.Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam.Appl.Phys.Lett.,1998,72:1427
    [82]L.Misoguti,C.R.Mendonca,S.C.Zilio.Characterization of dynamic optical nonlinearities with pulse trains.Appl.Phys.Lett.,1999,74:1531
    [83]C.Y.Tsai,S.P.Chen and T.C.Wen.Nonlinear absorption and refraction in porphyrazine derivatives.Chem.Phys.,1999,240:191-196
    [84]S.V.Rao,D.N.Rao,J.A.Akkara,et al.Dispersion studies of non-linear absorption in C_(60) using Z-scan.Chem.Phys.Lett.,1998,297:491
    [85]R.Quintero-Torres,M.Thakur.Measurement of the nonlinear refractive index of polydiacetylene using Michelson interferometry and z-scan.J.Appl.Phys.,1999,85:401
    [86]T.H.Wei,T.H.Huang,M.S.Lin.Signs of nonlinear refraction in chloroaluminum phthalocyanine solution.Appl.Phys.Lett.,1998,72:2505
    [87]B.M.Patterson,W.R.White,T.A.Robbins,et al.Linear optical effects in Z-scan measurements of thin films.Appl.Opt.,1998,37:1854
    [88]A.Szabo,R.Ostlund.Quantum Chemistry,Introduction to Advanced Electronic Structure Theory.Dover Publications.INC.,Mineola,New York,1996
    [89]徐光宪,黎乐民.量子化学(基本原理和从头计算法).科学出版社,北京,1999,1-199
    [90]陈念陔,高坡,乐征宇.量子化学理论基础.哈尔滨工业大学出版社,哈尔滨,2002,1-200
    [91]唐敖庆,杨忠志,李前树.量子化学.科学出版社,1982,295-326
    [92]王志中.现代量子化学计算方法.吉林大学出版社,1998,99-128
    [93]M.J.S.Dewar,W.Thiel.Ground States of Molecules.J.Am.Chem.Soc.,1977,99(15):4899-4917
    [94]R.C.Bingham,M.J.S.Dewar,D.H.Lo.Ground States of Molecules.ⅩⅩⅤ.An Improved Version of the MINDO/3 Semiempirical SCF-MO Method.J.Am.Chem.Soc.,1975,97(6):1285-1293
    [95]M.J.S.Dewar,E.G.Zoebisch,E.F.Healy,et al.AM1:a New Gener al Purpose Quantum Mechanical Molecular Model.J.Am.Chem.Soc.,1985,107(13):3902-3909
    [96]J.J.P.Stewart.Optimization of Parameters for Semiempirical methods.J.Comp.Chem.,1989,10(2):209-220
    [97]王志中,大分子的量子化学计算.化学通报.1990,(7):13-19
    [98]Schrodinger.Quantisierung als Eigenwertproblem,Ann.Phys.,1926,79:361-376
    [99]Schrodinger.An Undulatory Theory of the Mechanics of Atoms and Molecules,Phys.Reu,1926,28(6):1049-1070
    [100]M.Born,R.oppenheimer.Zur Quantentheorie der Molekeln.Ann.Phys.,1927,84(20):457-484
    [101]陈志行.有机分子轨道理论.山东科学技术出版社,济南,1991,1-100
    [102]J.A.Pople.Approximate Self-Consistant Molecular Orbital Theory,Ⅰ:Invariant Procedures.J.Chem.Phys.,1965,43(10):S129-135
    [103]J.A.Pople.Approximate Self-Consistent Molecular Orbital Theory,Ⅱ:Calculations with Complete Neglect of Diffrential Overlap.J.Chem.Phys.,1965,43(10):S136-151
    [104]J.A.Pople.Approximate Self-consistent Molecular Orbital Theory,Ⅲ:CNDO Results for AB_2 and AB_3 System.J.Chem.Phys.,1966,44(9):3289-3296
    [105]M.J.S.Dewar,W.Thiel.Ground States of Molecules,38:The MNDO Method Approximations and Parameters.J.Am.Chem.Soc.,1977,99(15):4899-4907
    [106]M.J.S.Dewar,E.G.Zoebisch,E.F.Healy,et al.A New General Purpose Quantum Mechanical.J.Am.Chem.Soc.,1985,107(13):3902-3909
    [107]J.J.P.Stewart.MOPAC:A Semiempirical Molecular Orbital Program,J.Comp.Aided.Mol.Design,1990,4:1-105.
    [108]M.J.S.Dewar,K.M.Dieter.Evaluation of AM1 Calculated Proton Affinities and Deprotonation Enthalpies,J.Am.Chem.Soc.,1986,108(25):8075-8086
    [109]J.J.P.Stewart.Optimization of Parameters for Semiempirical Methods,Ⅰ:Method,J.Comp Chem.,1989,10(2):209-220
    [110]J.J.P.Stewart.Optimization of Parameters for Semiempirical Methods,Ⅱ:Applications,J.Comp.Chem.,1989,10(2):221-264
    [111]J.J.P.Stewart.Optimization of Parameters for Semiempirical Methods,Ⅲ:Extension of PM_3 to Be,Mg,Zn,Ga,Ge,As,Se,Cd,In,Sn,Sb,Te,Hg,Tl,Pb,and Bi.J.Comp.Chem.,1991,12(3):320-341.
    [112]W.D.Anderson,T.R.Cundarl,M.C.Zerner.An lnermediate Neglect of Differential Overlap Model for Second-row Transition Metal Species.Int.J.Quantum Chem.,1991,39(1):31-45
    [113]A.D.Bacon.An Intermediate Neglect of Differential Overlap Theory for Transition Metal Complexes:Fe,Co,and Cu Chlorides.Theoret.Chim.Acta,1979,53(1):21-54
    [114]K.K.Stavrev,M.C.Zemer.Outer-sphere Charge-transfer Effects on the Spectroscopy of the [Ru(NH_3)_5(py)]~(2+) Complex. J. Am. Chem. Soc., 1995,117(33),8684-8690
    [115] M. C. Zerner, G. H. Loew, R. Kirchner, et al. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy of Transition-Metal Complexes. J.Am. Chem. Soc, 1980,102 (2): 589-599
    [116] K. K. Stavrev, M. C. Zerner. A Theoretical Treatment of the Absorption and Emission Properties of Cu(II) Porphyrin. Chem. Phys. Lett., 1995, 233(12):179-184
    [117] K. K. Stavrev, M. C. Zemer. Theoretical Study of the Jahn-Teller Effect on the Spectroscopy of VCl_4. Chem. Phys. Lett., 1996,263(5): 667-670
    [118] J. D. Bene, H. H. Jaffe. Use of the CNDO Method in Spectroscopy, I: Benzene,Pyridine, and the Diazine. J. Chem. Phys., 1968,48(4): 1807-1813
    [119] J. D. Bene, H. H. Jaffe. Use of the CNDO Method in Spectroscopy, II: Five-Membered Rings. J. Chem. Phys, 1968,48(9): 4050-4055
    [120] K. Stavrev, M. C. Zerner. On the Jahn-Teller Effect on Mn~(2+) in Zinc-blend ZnS Crystal. J. Chem. Phys., 1995,102(1): 34-38
    [121] J. E. Ridley, M. C. Zerner. Triplet States via Intermediate Neglect of Differential Overlap: Benzene, Pyridine and the Diazines. Theoret. Chim. Acta, 1976, 42(3):223-236
    [122] J. E. Ridley, M. C. Zemer. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines, Theoret. Chim. Acta, 1973,32(2): 111-134
    [123] L. Edwards and M. Gouterman. Porphyrins: XV. Vapor absorption spectra and stability: Phthalocyanines. J. Mol. Spectrosc., 1970, 33: 292-310
    [124] J. W. Perry, K. Mansour, L. Y. Lee, et al. Organic Optical Limiter with a Strong Nonlinear Absorptive Response. Science, 1996,273: 1533
    [125] C. C. Leznoff, A. B. P. Lever. Phthalocyanines properties and application [M].New York:VCH Publishers. 1993.
    [126] C. J. Brown. Crystal structure of β-copper phthalocyanine. J. Chem. Soc. A, 1968,2488-2493
    [127]S.F.Yuan,Z.R.Chen.Study on the prediction of visible absorption maximum of phthalocyanine compounds by semiempirical quantum methods.J.Phys.Chem.A,2005,109:2582
    [128]B.N.Figgis,E.S.Kucharski,P.A.Reynold.The electronic structure of Cobalt Phthalocyanine:a charge density study.J.Chem.Soc.,1989,111:1683
    [129]D.Cotter,R.J.Manning,K.J.Blow,et al.Nonlinear Optics for High-Speed Digital Information Processing.Science,1999,286:1523
    [130]N.Nishiyarna,A.Iriyama,W.D.Jang,et al.Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer.Nature Materials,2005,4:934-941
    [131]J.Griffiths,J.Schofield,M Wainwright,et al.Some observations on the synthesis of polysubstituted zinc phthalocyanine sensitisers for photodynarnic therapy.Dyes and Pigments,1997,33:65-78
    [132]J.H.Zagal.Metallophthalocyanines as catalysts in electrochemical reactions.Coord.Chem.Rev.,1992,119:89-136
    [133]杨小兵,丁松涛,王安邦.一种铟酞菁染料的吸收光谱及其光褪色现象研究.中国激光,2003,30(3):271
    [134]H.Ye,Q.Chang,Y.Wu,et al.Optical limiting of metallic naphthalocyanine compound.Mater.Lett.,2003,57:3302-3304
    [135]S.Xu,H.L.Wang,A.I.Malko,et al.Development of solid state optical limiting device,in Power-Limiting Materials and Device,C.M.Lawson,ed.Proc.SPIE,1999,3798:76-84
    [136]陈煜,李云静,聂玉昕.8-辛烷氧基金属酞菁的皮秒三阶光学非线性与光限幅特性.物理学报,2002,51:578
    [137]夏春辉,陈志敏,吴谊群等人.三-a-(2,4-二甲基-3-戊氧基)溴硼亚酞菁的三阶非线性光学性质研究.物理学报,2005,54:5168
    [138]R.L.Sutherland.Hand book of Nonlinear Optics,Second Edition,Revised and expanded.New York,NY:Marcel Dekker,2003
    [139]C.Li,J.Si,M.Yang,et al.Excited-state nonlinear absorption in multi-energy-level molecular systems.Phys.Rev.A,1995,51:569-575
    [140] N. Venkatram, D. Narayana Rao, L. Giribabu, et al. Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studies at 532 nm with nanosecond pulse excitation. Appl. Phys. B, 2008, 91:149-156
    [141] S. Venugopal Rao, N. K. M. Naga Srinivas, D. Narayana Rao. Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques. Chem. Phy. Lett., 2002, 361: 439-445
    [142] C. Li, L. Zhang, M. Yang, et al. Dynamic and steady-state of reverse saturable absorption in metallophthalocyanine. Phys. Rev. A, 1994,49: 1149
    [143] R. Ell, U. Morgner, F. X. Kartner et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: sapphire laser. Optics Letters, 2001,26(6): 373-375
    [144] K. Yamane, Z. G. Zhang, K. Oka et al. Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation. Optics Letters, 2003, 28(22):2258-2260
    [145] E. Matsubara, K. Yamane, T. Sekikawa et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B,2007, 24(4): 985-989
    [146] U. Keller. Recent developments in compact ultrafast lasers. Nature, 2003, 424:831-838
    [147] T. Tajima, G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Physical Review Special Topics-Accelerators and Beams,2002,5:031301
    [148] A. Santhi, Vinu V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori,"Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006)
    [149] G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004)
    [150] S. M. OFlaherty, S. V. Hold, Y. Chen, M. Hanack, and W. J. Blau, "Reverse saturable absorption based optical limiting properties of Indium and Gallium phthalocyanines and naphthalocyanines," Proc. SPIE 4991, 183 (2003)
    [151] S. Hughes, G. Spruce, J. M. Burzler, R. Rangel-Rojo, and B. S. Wherrett,"Theoretical analysis of the picosecond, induced absorption exhibited by chloroaluminum phthalocyanine," J. Opt. Soc. Am. B 14,400-404 (1997)
    [152] N. K. M. Naga Srinivas, S. Venugopal Rao, and D. Narayana Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc.Am. B 20, 2471 (2003)
    [153] M. Fakis, G. Tsigaridas, I. Polyzos, et al. Intensity dependent nonlinear absorption of pyrylium chromophores. Chem. Phys. Lett., 2001, 342: 155-161
    [154] T. C. Lin, G. S. He, Q. Zheng, et al. Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore. J. Mater. Chem., 2006,16: 2490
    [155] M. Drobizhev, A. Rebane, Z. Suo, et al. One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains. J.Lumin., 2005,111:291
    [156] S. Venugopal Rao, S. Singh, B. S. DeCristofano, et al. Theoretical and experimental study of the excited state dynamics in reverse saturable absorbers using Z-scan technique. http://www.standrews.ac.uk/ scnlo/icol.pdf
    [157] B. Aneeshkumar, P. Gopinath, C. P. G. Vallabhan, et al. Optical-limiting response of rare-earth metallophthalocyanine-doped copolymer matrix. J. Opt. Soc. Am. B,2003, 20: 1486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700